ROCZNIK NAUKOWO-DYDAKTYCZNY WSP W KRAKOWIE

Zeszyt 207 Prace Matematyczne XVI 1999

Zoltan Daróczy and Gyula Maksa

Functions commuting with ternary operations

Abstract. The problem of finding all functions which commute with a given ternary operation leads to a general functional equation. In this note we solve this problem in the case when the ternary operation is given by $[x, y, z] = (x * y - z)^{-1}, x, y, z \in F, x * y \neq z$ where F is a field having at least four elements and in which $x \in F$, $2x = 0$ imply $x = 0$, **and * is any binary operation on F with a right-sided unit element.**

1. During the time of The Sixth International Conference on Functional Equations and Inequalities (Muszyna-Złockie, Poland, 1997) we proposed investigations connected with the following type of functional equations: Let A be a set, and $\emptyset \neq D \subset X \times X \times X$. Suppose that there is an element $[x, y, z] \in X$ corresponding to each $(x, y, z) \in D$, i.e., a ternary operation $\left[\cdot, \cdot, \cdot\right]$: $D \to X$ is given. The question is which functions commute with this **operation?** More exactly: Find all functions $f: X \to X$ for which $(x, y, z) \in D$ $\text{implies}(f(x),f(y),f(z)) \in D$, and

$$
f([x, y, z]) = [f(x), f(y), f(z)].
$$
 (A)

This problem is motivated by the following exercise in [1]. Suppose that $f : \mathbb{R} \to \mathbb{R}$ satisfies the following property: If $x, y, z \in \mathbb{R}$ with $x + y \neq 2z$ then $f(x) + f(y) \neq 2f(z)$ and

$$
f\left(\frac{2xy - xz - yz}{x + y - 2z}\right) = \frac{2f(x)f(y) - f(x)f(z) - f(y)f(z)}{f(x) + f(y) - 2f(z)}.
$$

Give an "elementary" proof to show that f is a nonconstant linear function.

Obviously, here $X := \mathbb{R}, D := \{(x, y, z) \in \mathbb{R}^3 : x + y \neq 2z\}$, and $[x, y, z] :=$ *2xy—xz—yz x+y-2z '*

2. In this note we solve (A) in the following general case: $X := F$, where F is a field with some additional properties, $D := \{(x, y, z) \in F^3 : x * y \neq z\}$

AMS (1991) subject classification: 39B52.

and $[x,y,z] := (x * y - z)^{-1}$, where $* : F \times F \to F$ is any binary operation with a right-sided unit element $e \in F$.

T heorem 1

Let F be a field with the following properties: F has at least four elements, and $x \in F$, $2x = 0$ *imply* $x = 0$. Let furthermore $(F, *)$ be a groupoid with *a right-sided unit element* $e \in F$ *and* $f : F \to F$ *be an unknown function for which the functional equation*

$$
f\left(\frac{1}{x*y-z}\right)(f(x)*f(y)-f(z))=1
$$
\n(1)

holds for all $x, y, z \in F$ *,* $x * y \neq z$ *. Then the following two cases are possible:* (i) $f(x) = c$ ($c \in F$) for all $x \in F$, where $c(c * c - c) = 1$;

or

(ii) $f(x) = A(x)$ for all $x \in F$, where $A : F \to F$ is an additive function $(i.e., A(x + y) = A(x) + A(y)$ for all $x, y \in F$, $A(x)A(x^{-1}) = 1$ for all $x \in F \setminus \{0\}$ and $A(x * y) = A(x) * A(y)$ for all $x, y \in F$.

Proof. Let $y = e$, and $z = 0$ in (1). Then

$$
f\left(\frac{1}{x}\right)(f(x) * f(e) - f(0)) = 1, \quad x \neq 0.
$$
 (2)

Therefore (1) implies

$$
f(x * y - z) * f(e) - f(0) = f(x) * f(y) - f(z), \qquad (3)
$$

provided that *x, y, z* \in *F*, *x* * *y* \neq *z*. With the substitution *y* = *e* in (3), we **have**

$$
f(x-z) * f(e) - f(0) = f(x) * f(e) - f(z), \quad x \neq z,
$$

or, writing $x + z$ instead of x ,

$$
f(x) * f(e) + f(z) - f(0) = f(x + z) * f(e), \qquad (4)
$$

for all $x \in F \setminus \{0\}$, $z \in F$. Interchanging *x* and *z* in (4) we obtain

$$
f(x) * f(e) + f(z) = f(z) * f(e) + f(x), \quad x, z \in F \setminus \{0\}.
$$

This implies that there exists a $\gamma \in F$ such that

$$
f(x) = f(x) * f(e) + \gamma, \quad x \neq 0.
$$
 (5)

So from (4)

$$
f(x) + f(z) - f(0) = f(x + z)
$$
 (6)

follows for all $x, z \in F$, $x \neq 0$, $x + z \neq 0$. If $x = 0$ then (6) obviously holds for all $z \in F$. If $x + z = 0$ then choose a $t \in F$ such that $x + z + t = 0$, and $z + t \neq 0$ (such a $t \in F$ exists because of the assumption on *F*). Then, by (6),

$$
f(t) = f(x + z + t) = f(x) + f(z + t) - f(0)
$$

= f(x) + f(z) + f(t) - 2f(0),

that is,

$$
f(x + z) + f(0) = 2f(0)
$$

= f(x) + f(z).

Thus (6) also holds for all $x, z \in F$. Therefore there exists an additive function $A: F \to F$ **such that**

$$
f(x) = A(x) + f(0), \quad x \in F. \tag{7}
$$

Equations (2), (5), and (7) imply

$$
\left(A\left(\frac{1}{x}\right) + f(0)\right)(A(x) - \gamma) = 1, \quad x \neq 0,
$$

that is,

$$
A\left(\frac{1}{x}\right)A(x) + f(0)A(x) - \gamma A\left(\frac{1}{x}\right) - \gamma f(0) = 1, \quad x \neq 0. \tag{8}
$$

Writing $-x$ instead of *x* in (8) we have

$$
A\left(\frac{1}{x}\right)A(x) - f(0)A(x) + \gamma A\left(\frac{1}{x}\right) - \gamma f(0) = 1, \quad x \neq 0. \tag{9}
$$

The difference of (8**) and (9) gives**

$$
2\left(f(0)A(x)-\gamma A\left(\frac{1}{x}\right)\right)=0, \quad x\neq 0,
$$

and because of the assumption on *F* **we have**

$$
f(0)A(x) - \gamma A\left(\frac{1}{x}\right) = 0, \quad x \neq 0,
$$
 (10)

thus, by (8**),**

$$
A\left(\frac{1}{x}\right)A(x) = 1 + f(0)\gamma, \quad x \neq 0. \tag{11}
$$

We consider te following two cases: (i) $f(0) \neq 0$, and (ii) $f(0) = 0$.

(i) Suppose first $A(x) \equiv 0$ ($x \in F$). Then, by (7), we have

$$
f(x)=f(0)=c, \quad x\in F,
$$

where $c \neq 0$, and by (1) *c* satisfies the equation $c(c * c - c) = 1$. Then we have case (i) in our theorem. Secondly, suppose $A(x) \neq 0$. We prove that this case is impossible. From (10) and (11) with the notations $\alpha := \frac{\gamma}{f(0)}$, and $\beta := f(0)$ *x* we have

$$
A(x)A\left(\frac{1}{x}\right) = 1 + \beta, \text{ and } A(x) = \alpha A\left(\frac{1}{x}\right), \quad x \neq 0,
$$
 (12)

and $A: F \to F$ is an additive function. By (12)

$$
A(x)^2 = \alpha(1+\beta), \quad x \neq 0. \tag{13}
$$

Let $x \neq 0$, and $x \neq 1$. Then by the additivity of *A* and by (13) we have

$$
\alpha(1+\beta) = A(x-1)^2 = A(x)^2 - 2A(1)A(x) + A(1)^2
$$

= $\alpha(1+\beta) - 2A(1)A(x) + A(1)^2$,

that is,

$$
A(1)^2 = 2A(1)A(x), \quad x \neq 0, \ x \neq 1. \tag{14}
$$

It follows from (14) that

$$
A(1)^{2} = 2A(1)A(-x) = -2A(1)A(x), \quad x \neq 0, \ x \neq -1.
$$
 (15)

Since *F* has at least four elements, there exists an $x_0 \in F$, $x_0 \neq 0$, $x_0 \neq 1$, $x_0 \neq -1$. Putting $x = x_0$ in (14) and (15), we obtain $2A(1)^2 = 0$, i.e., $A(1)^2 = 0$. Therefore, by (13), $A(1)^2 = \alpha(1 + \beta) = 0$, and $A(x)^2 = 0$ for all $x \neq 0$. Since $A(x) \neq 0$, there exists an $x_1 \in F$, $x_1 \neq 0$ such that $A(x_1) \neq 0$, i.e., $A(x_1)^2 \neq 0$, which is a contradiction.

In case (ii) by (11) we have $A(x^{-1})A(x) = 1$ for all $x \in F \setminus \{0\}$. By (7), $f(x) = A(x)$, $(x \in F)$, where $A : F \to F$ is an additive function. From (5) **and (3) with** *z = 0*

$$
A(x * y) = f(x * y) = f(x * y) * f(e) + \gamma = f(x) * f(y) + \gamma
$$

= $A(x) * A(y) + \gamma$

follows for all $x, y \in F$ **,** $x * y \neq 0$ **. Here** $\gamma = 0$ **by (10) and (11)** $(\gamma A(x^{-1}) = 0)$ **,** $x \neq 0$; $A(x^{-1}) \neq 0$, $x \neq 0$), therefore

$$
A(x * y) = A(x) * A(y), \quad x, y \in F, \ x * y \neq 0. \tag{16}
$$

Put $x * y = 0$ in (1). Then

$$
A\left(\frac{1}{-z}\right)\left(A(x) * A(y) - A(z)\right) = 1
$$

for all $z \in F \setminus \{0\}$, from which

$$
A\left(\frac{1}{z}\right)(A(x) * A(y)) = 0, \quad z \neq 0
$$

follows. Since $A(z^{-1}) \neq 0$ ($z \neq 0$), we have

$$
0 = A(0) = A(x * y) = A(x) * A(y),
$$

i.e., (16) holds also for $x * y = 0$. This completes the proof of the theorem.

3. Remarks

(a) If there is no $c \in F$ such that $c(c * c - c) = 1$ then case (i) cannot **occur.** For example, in the case of $F = \mathbb{R}$ the operation $x * y := x \sin y$ has a *right-sided unit element e =* $\frac{\pi}{\cdot}$ *. However, c(csinc-c) = 1 holds only if c* \neq *0,* and $\sin c = 1 + \frac{1}{\sqrt{2}}$, which is obviously impossible.

(b) Since the function $A(x) = x$ ($x \in F$) is additive, and $A(x)A(x^{-1}) = 1$ **if** $x \neq 0$, for any binary operation $* : F \times F \rightarrow F$ with a right-sided unit **element,** $A(x * y) = x * y = A(x) * A(y)$, i.e., $f(x) = x (x \in F)$ is always a **solution of the functional equation (**1**).**

(c) The function $A(x) = -x$ ($x \in F$) is additive, and $A(x)A(x^{-1}) =$ $(-x)(-x^{-1}) = 1$ if $x \neq 0$. If $A(x * y) = -x * y = (-x) * (-y) = A(x) *$ $A(y)$ $(x, y \in F)$ then $f(x) = -x$ $(x \in F)$ is also a solution. For example, the operation $x * y = x \sin y$ $(x, y \in \mathbb{R})$ in Remark (a) does not satisfy the **identity** $-(x * y) = (-x) * (-y)$, so $f(x) = -x$ $(x \in \mathbb{R})$ is not a solution. However, for the operation $x * y = x \cos y$ $(x, y \in \mathbb{R})$ (with right-sided unit element $e = 0$), the identity $-(x * y) = -x \cos y = (-x) \cos(-y)$ holds, thus $f(x) = -x$ $(x \in \mathbb{R})$ is a solution of the equation.

(d) If $A: F \to F$ is additive, and $A(x)A(x^{-1}) = 1$ for all $x \in F \setminus \{0\}$ then, with the notation $A(1) = \alpha$, we get that $\alpha^2 = 1$. Furthermore if $x \neq 0$, and $x \neq 1$ then

$$
A(x) - A(x^{2}) = A(x(1 - x)) = \frac{1}{A\left(\frac{1}{x(1 - x)}\right)}
$$

$$
= \frac{1}{A\left(\frac{1}{x}\right) + A\left(\frac{1}{1 - x}\right)} = \frac{1}{\frac{1}{A(x)} + \frac{1}{\alpha - A(x)}}
$$

$$
=A(x)-\frac{A(x)^2}{\alpha},
$$

from which

$$
A(x^{2}) = \frac{A(x)^{2}}{\alpha}, \quad x \neq 0, \ x \neq 1
$$
 (17)

follows. On the other hand, if $x = 0$, or $x = 1$ (17) trivially holds. From this we have that for all $x, y \in F$

$$
2A(xy) = A((x + y)^2) - A(x^2) - A(y^2)
$$

=
$$
\frac{A(x + y)^2 - A(x)^2 - A(y)^2}{\alpha}
$$

=
$$
\frac{2A(x)A(y)}{\alpha},
$$

from which, by $\alpha^2 = 1$, we have

$$
\alpha A(xy) = \alpha A(x)\alpha A(y) \tag{18}
$$

for all $x, y \in F$. This implies that the function $a(x) := \alpha A(x)$ ($x \in F$) is additive and multiplicative, that is, $a: F \rightarrow F$ is an endomorphism of F for which $a(1) = \alpha^2 = 1$.

(e) If $F = \mathbb{R}$ then it is known that $a : \mathbb{R} \to \mathbb{R}$, $a(1) = 1$ is an endomorphism if and only if $a(x) = x$ for all $x \in \mathbb{R}$ (see [3]). From this we have $\alpha A(x) =$ $x (\alpha^2 = 1)$, that is, $A(x) = x$, or $A(x) = -x$ for all $x \in \mathbb{R}$. This implies

Corollary 1

If $f : \mathbb{R} \to \mathbb{R}$ is a non-constant solution of the functional equation (1), where $(\mathbb{R},*)$ is a groupoid with a right-sided unit element then either $f(x) = x$ *or* $f(x) = -x$ ($x \in \mathbb{R}$). In the first case further assumptions on $*$ are not *needed. In the second case,* $f(x) = -x$ *is a solution if and only if* $-x * y =$ $(-x) * (-y)$ *holds for all* $x, y \in \mathbb{R}$.

(f) If $F = \mathbb{C}$ then it is known that there are two classes of endomorphisms $a: \mathbb{C} \to \mathbb{C}, \ a(1) = 1$:

- (i) the trivial, i.e., continuous ones, which are $f(x) = x$, and $f(x) = x$ for all $x \in \mathbb{C}$, where \bar{x} denotes the complex conjugate of $x \in \mathbb{C}$;
- **(ii) the non-trivial ones, which exist (see [2], [3]). Therefore, in this case, there are discontinuous solutions of the functional equation (**1**) for special operations** * (for example, $x * y = x + y - xy$ if $x, y \in \mathbb{C}$).

Acknowledgement

This work was supported by the National Science Foundation Grant OTKA, Hungary No. T-016846.

References

- **[1]** *New Advanced Problems N. 138,* **Kôzépiskolai Mat. Lapok 47 (1997), 234-235.**
- **[2] H. Kestelman,** *Automorphisms of the field of complex numbers,* **Proc. London Math. Soc. 53 (1951), 1-12.**
- **[3] M. Kuczma,** *An Introduction to the Theory of Functional Equations and Inequalities,* **PWN, Uniwersytet Śląski, Warszawa - Kraków - Katowice, 1985.**

Institute of Mathematics and Informatics Kossuth Lajos University H-fOlO Debrecen Pf. 12 Hungary E-mail: **daroczy@math.klte.hu**