ROCZNIK NAUKOWO-DYDAKTYCZNY WSP W KRAKOWIE

Zeszyt 207

Prace Matematyczne XVI

1999

Zoltán Daróczy and Gyula Maksa

Functions commuting with ternary operations

Abstract. The problem of finding all functions which commute with a given ternary operation leads to a general functional equation. In this note we solve this problem in the case when the ternary operation is given by $[x, y, z] = (x * y - z)^{-1}$, $x, y, z \in F$, $x * y \neq z$ where F is a field having at least four elements and in which $x \in F$, 2x = 0 imply x = 0, and * is any binary operation on F with a right-sided unit element.

1. During the time of The Sixth International Conference on Functional Equations and Inequalities (Muszyna-Złockie, Poland, 1997) we proposed investigations connected with the following type of functional equations: Let X be a set, and $\emptyset \neq D \subset X \times X \times X$. Suppose that there is an element $[x, y, z] \in X$ corresponding to each $(x, y, z) \in D$, i.e., a ternary operation $[\cdot, \cdot, \cdot] : D \to X$ is given. The question is which functions commute with this operation? More exactly: Find all functions $f : X \to X$ for which $(x, y, z) \in D$ implies $(f(x), f(y), f(z)) \in D$, and

$$f([x, y, z]) = [f(x), f(y), f(z)].$$
 (A)

This problem is motivated by the following exercise in [1]. Suppose that $f : \mathbb{R} \to \mathbb{R}$ satisfies the following property: If $x, y, z \in \mathbb{R}$ with $x + y \neq 2z$ then $f(x) + f(y) \neq 2f(z)$ and

$$f\left(\frac{2xy - xz - yz}{x + y - 2z}\right) = \frac{2f(x)f(y) - f(x)f(z) - f(y)f(z)}{f(x) + f(y) - 2f(z)}$$

Give an "elementary" proof to show that f is a nonconstant linear function.

Obviously, here $X := \mathbb{R}$, $D := \{(x, y, z) \in \mathbb{R}^3 : x + y \neq 2z\}$, and $[x, y, z] := \frac{2xy - xz - yz}{x + y - 2z}$.

2. In this note we solve (A) in the following general case: X := F, where F is a field with some additional properties, $D := \{(x, y, z) \in F^3 : x * y \neq z\}$

AMS (1991) subject classification: 39B52.

and $[x, y, z] := (x * y - z)^{-1}$, where $* : F \times F \to F$ is any binary operation with a right-sided unit element $e \in F$.

THEOREM 1

Let F be a field with the following properties: F has at least four elements, and $x \in F$, 2x = 0 imply x = 0. Let furthermore (F, *) be a groupoid with a right-sided unit element $e \in F$ and $f : F \to F$ be an unknown function for which the functional equation

$$f\left(\frac{1}{x*y-z}\right)\left(f(x)*f(y)-f(z)\right) = 1 \tag{1}$$

holds for all $x, y, z \in F$, $x * y \neq z$. Then the following two cases are possible: (i) $f(x) = c \ (c \in F)$ for all $x \in F$, where c(c * c - c) = 1;

0**r**

(ii) f(x) = A(x) for all $x \in F$, where $A : F \to F$ is an additive function (i.e., A(x+y) = A(x) + A(y) for all $x, y \in F$), $A(x)A(x^{-1}) = 1$ for all $x \in F \setminus \{0\}$ and A(x * y) = A(x) * A(y) for all $x, y \in F$.

Proof. Let y = e, and z = 0 in (1). Then

$$f\left(\frac{1}{x}\right)(f(x)*f(e)-f(0)) = 1, \quad x \neq 0.$$
 (2)

Therefore (1) implies

$$f(x * y - z) * f(e) - f(0) = f(x) * f(y) - f(z),$$
(3)

provided that $x, y, z \in F$, $x * y \neq z$. With the substitution y = e in (3), we have

$$f(x-z) * f(e) - f(0) = f(x) * f(e) - f(z), \quad x \neq z,$$

or, writing x + z instead of x,

$$f(x) * f(e) + f(z) - f(0) = f(x+z) * f(e),$$
(4)

for all $x \in F \setminus \{0\}$, $z \in F$. Interchanging x and z in (4) we obtain

$$f(x) * f(e) + f(z) = f(z) * f(e) + f(x), \quad x, z \in F \setminus \{0\}.$$

This implies that there exists a $\gamma \in F$ such that

$$f(x) = f(x) * f(e) + \gamma, \quad x \neq 0.$$
(5)

So from (4)

$$f(x) + f(z) - f(0) = f(x + z)$$
(6)

follows for all $x, z \in F$, $x \neq 0$, $x + z \neq 0$. If x = 0 then (6) obviously holds for all $z \in F$. If x + z = 0 then choose a $t \in F$ such that x + z + t = 0, and $z + t \neq 0$ (such a $t \in F$ exists because of the assumption on F). Then, by (6),

$$f(t) = f(x + z + t) = f(x) + f(z + t) - f(0)$$

= f(x) + f(z) + f(t) - 2f(0),

that is,

$$f(x + z) + f(0) = 2f(0)$$

= f(x) + f(z).

Thus (6) also holds for all $x, z \in F$. Therefore there exists an additive function $A: F \to F$ such that

$$f(x) = A(x) + f(0), \quad x \in F.$$
 (7)

Equations (2), (5), and (7) imply

$$\left(A\left(\frac{1}{x}\right)+f(0)\right)\left(A(x)-\gamma\right)=1, \quad x\neq 0,$$

that is,

$$A\left(\frac{1}{x}\right)A(x) + f(0)A(x) - \gamma A\left(\frac{1}{x}\right) - \gamma f(0) = 1, \quad x \neq 0.$$
(8)

Writing -x instead of x in (8) we have

$$A\left(\frac{1}{x}\right)A(x) - f(0)A(x) + \gamma A\left(\frac{1}{x}\right) - \gamma f(0) = 1, \quad x \neq 0.$$
(9)

The difference of (8) and (9) gives

$$2\left(f(0)A(x)-\gamma A\left(\frac{1}{x}\right)\right)=0, \quad x\neq 0,$$

and because of the assumption on F we have

$$f(0)A(x) - \gamma A\left(\frac{1}{x}\right) = 0, \quad x \neq 0, \tag{10}$$

thus, by (8),

$$A\left(\frac{1}{x}\right)A(x) = 1 + f(0)\gamma, \quad x \neq 0.$$
(11)

We consider te following two cases: (i) $f(0) \neq 0$, and (ii) f(0) = 0.

(i) Suppose first $A(x) \equiv 0$ ($x \in F$). Then, by (7), we have

$$f(x) = f(0) = c, \quad x \in F,$$

where $c \neq 0$, and by (1) c satisfies the equation c(c * c - c) = 1. Then we have case (i) in our theorem. Secondly, suppose $A(x) \neq 0$. We prove that this case is impossible. From (10) and (11) with the notations $\alpha := \frac{\gamma}{f(0)}$, and $\beta := f(0)\gamma$ we have

$$A(x)A\left(\frac{1}{x}\right) = 1 + \beta$$
, and $A(x) = \alpha A\left(\frac{1}{x}\right)$, $x \neq 0$, (12)

and $A: F \to F$ is an additive function. By (12)

$$A(x)^{2} = \alpha(1+\beta), \quad x \neq 0.$$
(13)

Let $x \neq 0$, and $x \neq 1$. Then by the additivity of A and by (13) we have

$$\begin{aligned} \alpha(1+\beta) &= A(x-1)^2 = A(x)^2 - 2A(1)A(x) + A(1)^2 \\ &= \alpha(1+\beta) - 2A(1)A(x) + A(1)^2, \end{aligned}$$

that is,

$$A(1)^{2} = 2A(1)A(x), \quad x \neq 0, \ x \neq 1.$$
(14)

It follows from (14) that

$$A(1)^{2} = 2A(1)A(-x) = -2A(1)A(x), \quad x \neq 0, \ x \neq -1.$$
(15)

Since F has at least four elements, there exists an $x_0 \in F$, $x_0 \neq 0$, $x_0 \neq 1$, $x_0 \neq -1$. Putting $x = x_0$ in (14) and (15), we obtain $2A(1)^2 = 0$, i.e., $A(1)^2 = 0$. Therefore, by (13), $A(1)^2 = \alpha(1+\beta) = 0$, and $A(x)^2 = 0$ for all $x \neq 0$. Since $A(x) \neq 0$, there exists an $x_1 \in F$, $x_1 \neq 0$ such that $A(x_1) \neq 0$, i.e., $A(x_1)^2 \neq 0$, which is a contradiction.

In case (ii) by (11) we have $A(x^{-1})A(x) = 1$ for all $x \in F \setminus \{0\}$. By (7), $f(x) = A(x), (x \in F)$, where $A : F \to F$ is an additive function. From (5) and (3) with z = 0

$$\begin{aligned} A(x*y) &= f(x*y) = f(x*y)*f(e) + \gamma = f(x)*f(y) + \gamma \\ &= A(x)*A(y) + \gamma \end{aligned}$$

follows for all $x, y \in F$, $x * y \neq 0$. Here $\gamma = 0$ by (10) and (11) ($\gamma A(x^{-1}) = 0$, $x \neq 0$; $A(x^{-1}) \neq 0$, $x \neq 0$), therefore

$$A(x * y) = A(x) * A(y), \quad x, y \in F, \ x * y \neq 0.$$
 (16)

Put x * y = 0 in (1). Then

$$A\left(\frac{1}{-z}\right)\left(A(x)*A(y)-A(z)\right)=1$$

for all $z \in F \setminus \{0\}$, from which

$$A\left(\frac{1}{z}\right)(A(x)*A(y)) = 0, \quad z \neq 0$$

follows. Since $A(z^{-1}) \neq 0$ $(z \neq 0)$, we have

$$0 = A(0) = A(x * y) = A(x) * A(y),$$

i.e., (16) holds also for x * y = 0. This completes the proof of the theorem.

3. Remarks

(a) If there is no $c \in F$ such that c(c * c - c) = 1 then case (i) cannot occur. For example, in the case of $F = \mathbb{R}$ the operation $x * y := x \sin y$ has a right-sided unit element $e = \frac{\pi}{2}$. However, $c(c \sin c - c) = 1$ holds only if $c \neq 0$, and $\sin c = 1 + \frac{1}{c^2}$, which is obviously impossible.

(b) Since the function A(x) = x $(x \in F)$ is additive, and $A(x)A(x^{-1}) = 1$ if $x \neq 0$, for any binary operation $* : F \times F \to F$ with a right-sided unit element, A(x * y) = x * y = A(x) * A(y), i.e., f(x) = x $(x \in F)$ is always a solution of the functional equation (1).

(c) The function A(x) = -x $(x \in F)$ is additive, and $A(x)A(x^{-1}) = (-x)(-x^{-1}) = 1$ if $x \neq 0$. If A(x * y) = -x * y = (-x) * (-y) = A(x) * A(y) $(x, y \in F)$ then f(x) = -x $(x \in F)$ is also a solution. For example, the operation $x * y = x \sin y$ $(x, y \in \mathbb{R})$ in Remark (a) does not satisfy the identity -(x * y) = (-x) * (-y), so f(x) = -x $(x \in \mathbb{R})$ is not a solution. However, for the operation $x * y = x \cos y$ $(x, y \in \mathbb{R})$ (with right-sided unit element e = 0), the identity $-(x * y) = -x \cos y = (-x) \cos(-y)$ holds, thus f(x) = -x $(x \in \mathbb{R})$ is a solution of the equation.

(d) If $A: F \to F$ is additive, and $A(x)A(x^{-1}) = 1$ for all $x \in F \setminus \{0\}$ then, with the notation $A(1) = \alpha$, we get that $\alpha^2 = 1$. Furthermore if $x \neq 0$, and $x \neq 1$ then

$$A(x) - A(x^{2}) = A(x(1-x)) = \frac{1}{A\left(\frac{1}{x(1-x)}\right)}$$
$$= \frac{1}{A\left(\frac{1}{x}\right) + A\left(\frac{1}{1-x}\right)} = \frac{1}{\frac{1}{A(x)} + \frac{1}{\alpha - A(x)}}$$

$$=A(x)-rac{A(x)^2}{lpha},$$

from which

$$A(x^{2}) = \frac{A(x)^{2}}{\alpha}, \quad x \neq 0, \ x \neq 1$$
(17)

follows. On the other hand, if x = 0, or x = 1 (17) trivially holds. From this we have that for all $x, y \in F$

$$2A(xy) = A((x + y)^2) - A(x^2) - A(y^2)$$

=
$$\frac{A(x + y)^2 - A(x)^2 - A(y)^2}{\alpha}$$

=
$$\frac{2A(x)A(y)}{\alpha},$$

from which, by $\alpha^2 = 1$, we have

$$\alpha A(xy) = \alpha A(x)\alpha A(y) \tag{18}$$

for all $x, y \in F$. This implies that the function $a(x) := \alpha A(x)$ $(x \in F)$ is additive and multiplicative, that is, $a : F \to F$ is an endomorphism of F for which $a(1) = \alpha^2 = 1$.

(e) If $F = \mathbb{R}$ then it is known that $a : \mathbb{R} \to \mathbb{R}$, a(1) = 1 is an endomorphism if and only if a(x) = x for all $x \in \mathbb{R}$ (see [3]). From this we have $\alpha A(x) = x$ ($\alpha^2 = 1$), that is, A(x) = x, or A(x) = -x for all $x \in \mathbb{R}$. This implies

COROLLARY 1

If $f : \mathbb{R} \to \mathbb{R}$ is a non-constant solution of the functional equation (1), where $(\mathbb{R}, *)$ is a groupoid with a right-sided unit element then either f(x) = xor f(x) = -x ($x \in \mathbb{R}$). In the first case further assumptions on * are not needed. In the second case, f(x) = -x is a solution if and only if -x * y =(-x) * (-y) holds for all $x, y \in \mathbb{R}$.

(f) If $F = \mathbb{C}$ then it is known that there are two classes of endomorphisms $a : \mathbb{C} \to \mathbb{C}, a(1) = 1$:

- (i) the trivial, i.e., continuous ones, which are f(x) = x, and $f(x) = \overline{x}$ for all $x \in \mathbb{C}$, where \overline{x} denotes the complex conjugate of $x \in \mathbb{C}$;
- (ii) the non-trivial ones, which exist (see [2], [3]). Therefore, in this case, there are discontinuous solutions of the functional equation (1) for special operations * (for example, x * y = x + y xy if $x, y \in \mathbb{C}$).

Acknowledgement

This work was supported by the National Science Foundation Grant OTKA, Hungary No. T-016846.

References

- [1] New Advanced Problems N. 138, Középiskolai Mat. Lapok 47 (1997), 234-235.
- H. Kestelman, Automorphisms of the field of complex numbers, Proc. London Math. Soc. 53 (1951), 1-12.
- [3] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, PWN, Uniwersytet Śląski, Warszawa - Kraków - Katowice, 1985.

Institute of Mathematics and Informatics Kossuth Lajos University H-4010 Debrecen Pf. 12 Hungary E-mail: daroczy@math.klte.hu