Zeszyt 207 Prace Matematyczne XVI 1999

Wojciech Jabłoński

On extensibility of some homomorphisms

Abstract. The paper deals with a system of functional equations connected with the determination of some class of homomorphisms of uniquely divisible abelian semigroup $(G,+)$ into the group L^1 or L^1_{∞} . We give a **necessary form of such homomorphisms into** L^1_{∞} **. Moreover, we give a** necessary condition for extensibility of homomorphisms into L^1 _{*i*} to homomorphisms into L_{s+1}^1 .

Introduction

In the sequel R stands for the set of all real numbers and $\mathbb{R}_0 := \mathbb{R} \setminus \{0\}.$ Let $|k,l|$ denote the set of all integers n such that $k \le n \le l$, and let $|k,\infty|$ be the set of all integers $n \ge k$. We adhere to the convention that $0^0 = 1$, $\sum_{t \in \emptyset} a_t = 0$, $\sum_{k=m}^n a_k = 0$ and $|m, n| = \emptyset$ for $m > n$.

Given a positive integer *s* we consider a family \mathcal{J}_0 of intervals of R containing 0 and a family \mathcal{D}_0 of C^{∞} -diffeomorphisms defined on an elements of \mathcal{J}_0 and mapping 0 to 0. We introduce on \mathcal{D}_0 the equivalence relations j^s and *j°°* **on the following way**

$$
(f,g)\in j^s\quad\text{if and only if}\quad(f-g)^{(k)}(0)=0\quad\text{for}\quad k\in\{1,\ldots,s\},\ f,g\in\mathcal{D}_0,\\ (f,g)\in j^\infty\quad\text{if and only if}\quad(f-g)^{(k)}(0)=0\quad\text{for}\quad k\in\mathbb{N},\ f,g\in\mathcal{D}_0.
$$

On the sets $J_s \mathbb{R}$, $J_\infty \mathbb{R}$ of all the equivalence classes $j^s f$ and $j^{\infty} f$, respectively, **we define binary operations**

$$
(j^s f) \cdot (j^s g) = (j^s (f \circ g)),
$$

$$
(j^{\infty} f) \cdot (j^{\infty} g) = (j^{\infty} (f \circ g)).
$$

It is known that $L^1_s := (J_s \mathbb{R}, \cdot)$ and $L^1_{\infty} := (J_{\infty} \mathbb{R}, \cdot)$ are groups. These groups appear in the theory of the classification of one dimensional geometric objects which are solutions of the translation equation on L^1_s or on their subgroups.

AMS (1991) subject classification: 39B52, 20M99.

The coordinates (x_1, \ldots, x_s) of the point $j^s f$ are the coefficients of the s-th Taylor's expansion of f , that is

$$
x_i := f^{(k)}(0) \quad \text{ for } k \in \{1,\ldots,s\},\
$$

where $f^{(k)}$ is the k-th derivative of f. It is known (cf. [5], Chapter III, §7) that if $f, g : \mathbb{R} \to \mathbb{R}$ are s-times differentiable functions, then

$$
(f \circ g)^{(n)}(x) = \sum_{k=1}^{n} f^{(k)}(g(x)) \sum_{\bar{u}_n \in U_{n,k}} A_{\bar{u}_n} \prod_{j=1}^{n} (g^{(j)}(x))^{u_j} \quad \text{for } n \in [1, s],
$$

where

$$
U_{n,k} := \left\{ \bar{u}_n := (u_1, \ldots, u_n) \in [0, k]^n : \sum_{i=1}^n u_i = k \quad \land \quad \sum_{i=1}^n i u_i = n \right\},
$$

$$
A_{\bar{u}_n} := \frac{n!}{\prod_{i=1}^n (u_i!(i!)^{u_i})}.
$$

Therefore the group L_s^1 is isomomorphic to a set

$$
Z_s := \{ \bar{x}_s := (x_1, \ldots, x_s) \in \mathbb{R}^s : x_1 \neq 0 \}
$$

with the operation

$$
\bar{x}_s\cdot \bar{y}_s=\bar{z}_s
$$

defined by

$$
z_n = \sum_{k=1}^n x_k \sum_{\bar{u}_n \in U_{n,k}} A_{\bar{u}_n} \prod_{j=1}^n y_j^{u_j} \quad \text{for } n \in [1, s], \tag{1}
$$

where $U_{n,k}$ and $A_{\bar{u}_n}$ are defined as above.

Similarly, the group L^1_{∞} is isomorphic to a set

$$
Z_{\infty} := \{ \bar{x}_{\infty} := (x_1, x_2, \ldots) : \ \forall \, i \in \mathbb{N} : \ x_i \in \mathbb{R} \ \land \ x_1 \neq 0 \}
$$

with the operation

$$
\bar{x}_{\infty}\cdot\bar{y}_{\infty}=\bar{z}_{\infty},
$$

where z_n , $U_{n,k}$ and $A_{\bar{u}_n}$ are given above.

In particular cases the formula (1) reads as follows

$$
z_1 = x_1y_1,
$$

\n
$$
z_2 = x_1y_2 + x_2y_1^2,
$$

\n
$$
z_3 = x_1y_3 + 3x_2y_1y_2 + x_3y_1^3,
$$

\n
$$
z_4 = x_1y_4 + 4x_2y_1y_3 + 3x_2y_2^2 + 6x_3y_1^2y_2 + x_4y_1^4
$$

L. Reich posed the following question (see [1], p. 309): "When does a homomorphism Φ_s of $(\mathbb{R}, +)$ into L_s^r (of truncated formal power series trans**formations in r indeterminates) have an extension** Φ_s **from** $(\mathbb{R}, +)$ **into** L_{++}^r **?"** For $r = 1$ the term "extensibility of homomorphisms" one should understand as follows. Given a homomorphism $\Phi_s = (f_1, \ldots, f_s)$ of the group $(\mathbb{R}, +)$ into L^1_s , does there exist a function f_{s+1} such that $\overline{\Phi}_s = (f_1, \ldots, f_{s+1})$ is the homomorphism from $(\mathbb{R}, +)$ into L_{s+1}^1 ? If such a function exists, we call $\overline{\Phi}_s$ an extension of Φ_s , and the homomorphism Φ_s -extensible.

In [4] all the homomorphisms of $(\mathbb{R}, +)$ into L^1 for $s \leq 5$ have been determined. The results contained in that work show that for $s = 1, 2$ every homomorphism into L^1_s is extensible. Moreover, for $s = 3, 4$ there exist homomorphisms, all in the case $f_1 = 1$, which are not extensible.

Z. Moszner conjectured (see [1], p. 309) that extension of Φ_s is possible if $f_1 \neq 1$, while $\Phi_s = (1, 0, \ldots, 0, f_{p+2}, \ldots, f_s)$ with $f_{p+2} \neq 0$ can be extended iff f_{s-p} is a polynomial in f_{p+2} . We prove that for $f_1 = 1$ the above condition is necessary for extensibility of Φ_s .

We consider here the problem of extensibility of homomorphisms of uniquely divisible abelian semigroup $(G,+)$ into the group L^1 . Moreover we give **a** necessary form of homomorphisms of *G* into L^1_{∞} .

Auxiliary results

Let us recall some useful results.

- (i) If $\bar{u}_n \in U_{n,k}$ $(2 \leq k \leq n)$, then $u_i = 0$ for all $j \in [n-k+2, n]$.
- (ii) If $n \ge 3$, $k \in [2, n-1]$, $\bar{u}_n \in U_{n,k}$, then there exists $j \in [2, n-k+1]$ such that $u_j \geq 1$.
- (iii) For $n \geq 2$

$$
z_n = x_1 y_n + \sum_{k=2}^{n-1} x_k \sum_{\bar{u}_n \in U_{n,k}} A_{\bar{u}_n} \prod_{j=1}^{n-1} y_j^{u_j} + x_n y_1^n. \tag{2}
$$

- (iv) Let $1 \leqslant p \leqslant q$ be natural numbers and let $r = p + q + 1$. If $x_j = 0$ for all $j \in [2, q]$ and $y_j = 0$ for all $j \in [2, p]$, then
	- 1) $z_1 = x_1y_1$, 2) $z_n = 0$ for $n \in [2, p]$, 3) $z_n = x_1 y_n$ for $n \in |p+1, q|$, 4) $z_n = x_1y_n + x_ny_1^n$ for $n \in |q+1, p+q|$, 5) $z_r = x_1 y_r + {r \choose p+1} x_{q+1} y_1^q y_{p+1} + x_r y_1^r.$

For the proof we refer the reader to [2] and [3].

Notice that in view of (i) we can rewrite (2) as follows

$$
z_n = x_1 y_n + \sum_{k=2}^{n-1} x_k \sum_{\bar{u}_n \in U_{n,k}} A_{\bar{u}_n} \prod_{j=1}^{n-k+1} y_j^{u_j} + x_n y_1^n. \tag{3}
$$

For a nonnegative integer $p \leq n-1$ we denote

$$
U_{n,k}^p := \{ \bar{u}_n \in U_{n,k} : \ \forall \, i \in [2, p+1] : \ u_i = 0 \ \}.
$$

Clearly

$$
U_{n,k}^{p_2} \subset U_{n,k}^{p_1} \subset U_{n,k}^0 = U_{n,k}
$$

for $0 \leqslant p_1 \leqslant p_2 \leqslant n-1$ and arbitrary $1 \leqslant k \leqslant n$.

LEMMA 1

Let $p \ge 1$, $n \ge 2p + 1$, $k \in [n - p, n - 1]$. Then $U_{n,k}^p = \emptyset$.

Proof. Suppose that $\bar{u}_n \in U_{n,k}^p$ for $n \geq 2p+1$ and $k \in [n-p, n-1]$. Then, by (i), there exists $j \in [2, n-k+1] \subset [2, p+1]$ such that $u_j \geq 1$, which with $\bar{u}_n \in U_{n,k}^p$ leads to a contradiction.

From (3) and Lemma 1 we have

LEMMA₂

Let p be a positive integer. If $x_n = y_n = 0$ for all $n \in [2, p + 1]$, then for $n \geqslant p+2$

$$
z_n = x_1 y_n + \sum_{k=p+2}^{n-p-1} x_k \sum_{\bar{u}_n \in U_{n,k}^p} A_{\bar{u}_n} y_1^{u_1} \prod_{j=p+2}^{n-k+1} y_j^{u_j} + x_n y_1^n.
$$

The simply proof of the following lemma is left to the reader.

LEMMA₃

Let p be a non-negative integer and $n \geq p+3$. Then

$$
U_{n+p+1,n}^{p} = \{(n-1,0,\ldots,0,\stackrel{p+2}{1},0,\ldots,0)\},
$$

$$
U_{n+p+1,p+2}^{p} = \{(p+1,0,\ldots,0,\stackrel{n}{1},0,\ldots,0)\}
$$

$$
\cup \{\bar{u}_{n+p+1} \in U_{n+p+1,p+2}^{p}: \forall j \in [n,n+p+1]: u_{j} = 0\}.
$$

We denote

$$
\tilde{U}_{n+p+1,p+2}^p = \left\{ \bar{u}_{n+p+1} \in U_{n+p+1,p+2}^p : \ \forall j \in [n, n+p+1] : \ u_j = 0 \right\},
$$

$$
\tilde{U}_{n+p+1,k}^p = U_{n+p+1,k}^p \quad \text{for } k \in [p+3, n-1].
$$

Main results

Let *s* be a natural number or $s = \infty$ and let $(G, +)$ be an abelian semigroup uniquely divisible by some prime. Consider a function Φ_s : $G \to Z_s$,

$$
\Phi_s = (f_j)_{j\in[1,s]},
$$

where $f_1: G \to \mathbb{R}_0$, $f_n: G \to \mathbb{R}$ for $n \in [2, s]$.

The function Φ_s is a homomorphisms if and only if the functions f_n solve **the following system of functional equations**

$$
f_n(x+y) = \sum_{k=1}^n f_k(x) \sum_{\bar{u}_n \in U_{n,k}} A_{\bar{u}_n} \prod_{j=1}^n f_j(y)^{u_j} \quad n \in [1, s]. \tag{4}
$$

We consider this system of equations in the case

 $f_1 = 1$, $f_i = 0$ for $i \in [2, p + 1]$, $f_{p+2} \neq 0$.

The system (4) reduces then to the following one

$$
f_n(x+y) = f_n(x) + \sum_{k=p+2}^{n-p-1} f_k(x) \sum_{\bar{u}_n \in U_{n,k}^p} A_{\bar{u}_n} \prod_{j=p+2}^{n-k+1} f_j(y)^{u_j} + f_n(y),
$$

\n
$$
n \in |p+2, s|.
$$
\n(5)

We prove

Theorem 1

Let functions f_n satisfy the system of equations (5). Then f_{p+2} is a *nonzero additive function and for every* $n \geq p + 3$ *with* $n + p + 1 \leq s$ *there exists a polynomial wn, such that*

$$
f_n = w_n (f_{p+2}), \quad w_n(0) = 0, \quad \deg w_n \leq \left[\frac{n-1}{p+1}\right].
$$

Polynomials wn are defined as follows

$$
w_{p+2}(x) = x,
$$

\n
$$
w_n(x) = d_n \ x + \frac{n! (p+2)!}{(n+p+1)! (n-p-2)} \sum_{k=p+2}^{n-1} \sum_{\substack{\bar{u}_{n+p+1} \in \dot{U}_{n+p+1,k}^p \ \bar{u}_{n+p+1,k}}} \ A_{\bar{u}_{n+p+1}} \begin{bmatrix} \frac{n+p+2-k}{m} & \frac{n+p+2-k}{m+p+2-k} \\ \frac{1}{m} & \frac{1}{m} & \frac{n+p+2-k}{m+p+2} \\ \frac{n+p+2-k}{m+p+2} & \frac{n+p+2-k}{m+p+2} \end{bmatrix},
$$

where dn are some constants.

Proof. At the beginning we consider the equation $(5 \cdot p + 2)$, i.e. (compare (iv)

$$
f_{p+2}(x+y) = f_{p+2}(x) + f_{p+2}(y).
$$

Thus, in view of the assumption, f_{p+2} is a nonzero additive function.

Now our purpose is to prove that there exist polynomials w_n (we determine the form of them) such that $f_n = w_n (f_{p+2})$ whenever $n+p+1 \leq s$. The proof is by induction with respect to n . To do this, we denote

$$
w_{p+2}\left(f_{p+2}\right)=f_{p+2}
$$

and assume that for some $n \geqslant p+3$ such that $n+p+1 \leqslant s$ there exist polynomials w_i such that

$$
f_j = w_j(f_{p+2}), \quad \deg w_j \leqslant \left[\frac{j-1}{p+1}\right], \quad w_j(0) = 0 \text{ for } j \in |p+2, n-1|,
$$

 (x) denotes the integral part of x). We show that then there exists a polynomial w_n such that

$$
f_n = w_n(f_{p+2}), \quad \deg w_n \leqslant \left[\frac{n-1}{p+1}\right], \quad w_n(0) = 0.
$$

To this end let us consider the equation (5.*r*) with $r = n + p + 1$, that is

$$
f_r(x+y) = f_r(x) + \sum_{k=p+2}^n f_k(x) \sum_{\bar{u}_r \in U_{r,k}^p} A_{\bar{u}_r} \prod_{j=p+2}^{r-k+1} f_j(y)^{u_j} + f_r(y). \tag{6}
$$

From the symmetry of the left hand side of (6) we get

$$
\sum_{k=p+2}^{n} f_k(x) \sum_{\bar{u}_r \in U_{r,k}^p} A_{\bar{u}_r} \prod_{j=p+2}^{r-k+1} f_j(y)^{u_j} = \sum_{k=p+2}^{n} f_k(y) \sum_{\bar{u}_r \in U_{r,k}^p} A_{\bar{u}_r} \prod_{j=p+2}^{r-k+1} f_j(x)^{u_j}
$$

and next, from Lemma 3, taking into account the adopted notation, we obtain

$$
\binom{r}{p+1} f_{p+2}(x) f_n(y) + \sum_{k=p+2}^{n-1} f_k(x) \sum_{\tilde{u}_r \in \tilde{U}_{r,k}^p} A_{\tilde{u}_r} \prod_{j=p+2}^{r-k+1} f_j(y)^{u_j}
$$

+
$$
\binom{r}{p+2} f_n(x) f_{p+2}(y)
$$

=
$$
\binom{r}{p+1} f_{p+2}(y) f_n(x) + \sum_{k=p+2}^{n-1} f_k(y) \sum_{\tilde{u}_r \in \tilde{U}_{r,k}^p} A_{\tilde{u}_r} \prod_{j=p+2}^{r-k+1} f_j(x)^{u_j}
$$

+
$$
\binom{r}{p+2} f_n(y) f_{p+2}(x).
$$

Notice that the sum $\sum_{k=p+2}^{n-1} f_k(x) \sum_{\bar{u}_r \in \bar{U}_{r,k}^p} A_{\bar{u}_r} \prod_{j=p+2}^{r-k+1} f_j(y)^{u_j}$ does not contain the function f_n . From the above equality we thus obtain

$$
f_n(x)f_{p+2}(y) = f_{p+2}(x)f_n(y) + \frac{n! (p+2)!}{(n+p+1)! (n-p-2)} \sum_{k=p+2}^{n-1}
$$

$$
\sum_{\tilde{u}_r \in \tilde{U}_{r,k}^p} A_{\tilde{u}_r} \left[f_k(y) \prod_{j=p+2}^{r-k+1} f_j(x)^{u_j} - f_k(x) \prod_{j=p+2}^{r-k+1} f_j(y)^{u_j} \right].
$$
 (7)

Since f_{p+2} is a nonzero additive function and G is an abelian semigroup uniquely divisible by some prime, so the set $f(G)$ is dense in \mathbb{R} . Thus there exists a sequence $(t_m)_{m \in \mathbb{N}}$ of elements of the group *G* with $\lim_{m\to\infty} f_{p+2}(t_m) =$ 1. Set in (7) $y = t_m$ and take $m \rightarrow \infty$. Then we get

$$
f_n(x) = d_n f_{p+2}(x) + \frac{n! (p+2)!}{(n+p+1)! (n-p-2)} \sum_{k=p+2}^{n-1} \sum_{\bar{u}_r \in \tilde{U}^p_{r,k}} \sum_{\tilde{u}_r \in \tilde{U}^p_{r,k}} d_{\tilde{u}_r} \left[w_k(1) \prod_{j=p+2}^{r-k+1} w_j (f_{p+2}(x))^{u_j} - w_k (f_{p+2}(x)) \prod_{j=p+2}^{r-k+1} w_j(1)^{u_j} \right],
$$

where $d_n = \lim_{m \to \infty} f_n(t_m)$. This limit exists since $f_{p+2}(x) \neq 0$ for some $x \in G$ and there exist both the remaining limits. Thus we can write

 $f_n = w_n (f_{p+2})$.

Since $\prod_{j=p+2}^{r-k+1} w_j(0)^{u_j} = 0$ for $k \in [p+2, n-1]$ and $u_r \in U_{r,k}^p$, so $w_n(0) = 0$. **Moreover**

Moreover

\n
$$
\begin{aligned}\n\deg \left(\prod_{j=p+2}^{r-k+1} w_j \left(f_{p+2}(x) \right)^{u_j} \right) &\leq \sum_{j=p+2}^{r-k+1} \left[\frac{j-1}{p+1} \right] u_j \leq \sum_{j=1}^r \left[\frac{j-1}{p+1} \right] u_j \\
&\leq \sum_{j=1}^r \left[\frac{j-1}{p+1} u_j \right] \leq \left[\sum_{j=1}^r \frac{j-1}{p+1} u_j \right] \\
&= \left[\frac{1}{p+1} \sum_{j=1}^r j u_j - \frac{1}{p+1} \sum_{j=1}^r u_j \right] = \left[\frac{r-k}{p+1} \right] \\
&\leq \left[\frac{n+p+1-(p+2)}{p+1} \right] \\
&= \left[\frac{n-1}{p+1} \right].\n\end{aligned}
$$

Consequently $\deg w_n \leqslant \left\lceil \frac{n-1}{p+1} \right\rceil$ and this completes the proof.

Thus we have

COROLLARY 1

If a function $\Phi_{\infty} = (1, 0, \ldots, 0, f_{p+2}, f_{p+3}, \ldots)$ *is a homomorphism of* $(G,+)$ *into* L^1_{∞} *, then the functions* $f_n, n \in [p+2, \infty]$ *have the form given in Theorem 1.*

Prom Theorem 1 we deduce

THEOREM 2

Let s be a natural number. If a homomorphism $\Phi_s: G \to Z_s$,

 $\Phi_1 = (1, 0, \ldots, 0, f_{n+2}, \ldots, f_s)$

is extensible, then the function f_{s-p} *is a polynomial in* f_{p+2} *-*

Proof. Suppose $\Phi_s = (1, 0, \ldots, 0, f_{p+2}, \ldots, f_s)$ is extensible, i.e. there **exists a function** f_{s+1} such that $\bar{\Phi}_s = (1, 0, \ldots, 0, f_{p+2}, \ldots, f_s, f_{s+1})$ is a homomorphism into L_{s+1}^1 . Then the functions f_n satisfy the system (5). From **Theorem 1 there exist polynomials** *wn* **such that**

 $f_n = w_n (f_{p+2})$ whenever $n + p + 1 \in [p+2, s+1],$

which completes the proof.

Acknowledgement

The author wishes to express his gratitude to Professor Zenon Moszner for his helpful suggestions during the preparation of this paper.

References

- **[1]** *The Twenty-eight International Symposium on Functional Equations, August 23 - September 1, 1990, Graz - Mariatrost, Austria, Report of the Meeting,* **Aequationes Math. 41 (1991), 248-310.**
- **[2] B. Fejdasz, Z. Wilczyński,** *On some s**l-parameter subsemigroups of the group L\,* **Zeszyty Naukowe WSP w Rzeszowie 1 /2 (1990), 45-50.**
- **[3] W. Jabłoński,** *On some subsemigroups of the group L***\ , Wyż. Szkoła Ped. Kraków Rocznik Nauk.-Dydakt. Prace Matematyczne 14 (1997), 101-119.**
- **[4] S. Midura, Z. Wilczyński,** *Sur les homomorphismes du groupe* **(R, +)** *au groupe L \ pour* **s ^ 5, Wyż. Szkoła Ped. Kraków Rocznik Nauk.-Dydakt. Prace Matematyczne 13 (1993), 241-258.**

[5] L. Schwartz, *Kurs analizy matematycznej***, PWN, Warszawa, 1983.**

Institute of Mathematics Pedagogical University Rejtana 16 A 35-310 Rzeszów Poland E-mail: **wojciech@atena.univ.rzeszow.pi**