1999

ZYGFRYD KOMINEK AND WŁADYSŁAW WILCZYŃSKI

On sets for which the difference set is the whole space

Abstract. We give a sufficient condition for a set $A \subset \mathbb{R}^p$ to get $A - A = \mathbb{R}^p$.

The well-known theorem of Steinhaus [4] says that if $A \subset \mathbb{R}$ (the set of all reals) has a positive Lebesgue measure then $A-A:=\{a-b:a,b\in A\}$ has a non-empty interior. Usually in the proof of this theorem the property of having a density point of the set A is used. Steinhaus theorem says nothing on the "size" of the intervals contained in A-A. However Boardmann [1] and Świątkowski [5] obtained some results of this type. On the other hand, it is known that there exists a subset $A \subset \mathbb{R}$ of Lebesgue measure zero such that $A-A=\mathbb{R}$. An example of such set is $A=\mathbb{Z}+C$ where \mathbb{Z} denotes the set of all integers and C is a classical Cantor set (a nice geometrically proof of this fact can be find in a paper of Utz [6]). The aim of this note is to prove some sufficient condition for a set $A \subset \mathbb{R}^p$ to have $A-A=\mathbb{R}^p$. In the sequel by m_p we will denote p-dimensional Lebesgue measure in \mathbb{R}^p , the symbol $K_p(0,r)$ means the p-dimensional ball with center at zero and with the radius r (if p=1 the index 1 will be omitted). Our main result reads as follows

THEOREM 1

Let $A \subset \mathbb{R}^p$ be a Lebesgue measurable set. If

$$\limsup_{r \to \infty} \frac{m_p[A \cap K_p(0,r)]}{m_p[K_p(0,r)]} =: \lambda > \frac{1}{2}, \tag{1}$$

then $A - A = \mathbb{R}^p$.

Proof. In the first step we assume that p=1. Choose an $\varepsilon>0$ and a sequence $(r_n)_{n\in\mathbb{N}}$ of positive numbers tending to infinity such that

$$\lambda > 1 - \frac{1}{2^{1+\epsilon}}$$
 and $m[A \cap K(0, r_n)] > \left(1 - \frac{1}{2^{1+\epsilon}}\right) 2r_n$. (2)

Put

$$\varphi(x) := \left(1 - \frac{1}{2^{\varepsilon}}\right)x, \quad x > 0,$$

and note that

$$\lim_{x\to\infty}\varphi(x)=\infty.$$

To prove our theorem in this case it is enough to show that

$$K(0, \varphi(r_n)) \subset A - A, \quad n \in \mathbb{N}.$$
 (3)

In the sequel we will write r instead of r_n ($n \in \mathbb{N}$ is arbitrary and fixed). Fix an arbitrary $k \in K(0, \varphi(r))$. Then

$$k + [A \cap K(0, r - \varphi(r))] \subset (k + A) \cap K(0, r) \tag{4}$$

and

$$A \cap K(0,r) = [A \cap K(0,r-\varphi(r))] \cup [A \cap (K(0,r) \setminus K(0,r-\varphi(r)))]. \tag{5}$$

We shall show that

$$m\left[k + (A \cap K(0, r - \varphi(r)))\right] > \frac{r}{2^{\varepsilon}}.$$
 (6)

In fact, by virtue of (5), we obtain

$$\begin{split} m[k+(A\cap K(0,r-\varphi(r)))] &= m[A\cap K(0,r-\varphi(r)))] \\ &= m[A\cap K(0,r)] \\ &- m[A\cap (K(0,r)\setminus K(0,r-\varphi(r)))] \\ &> \left(1-\frac{1}{2^{1+\varepsilon}}\right)2r - m[K(0,r)\setminus K(0,r-\varphi(r))] \\ &= -\frac{2r}{2^{1+\varepsilon}} + 2(r-\varphi(r)) \\ &= 2r\left[\left(1-\frac{\varphi(r)}{r}\right) - \frac{1}{2^{1+\varepsilon}}\right] = \frac{2r}{2^{1+\varepsilon}} \\ &= \frac{r}{2^{\varepsilon}}. \end{split}$$

To show (3) it is enough to prove

$$A \cap K(0,r) \cap [k + (A \cap K(0,r - \varphi(r)))] \neq \emptyset. \tag{7}$$

Assume that the set on the left-hand side of (7) is empty. Hence and by (4) we get

$$k + [A \cap K(0, r - \varphi(r))] \subset K(0, r) \setminus A$$

and applying (2)

$$\begin{split} m[k+[A\cap K(0,r-\varphi(r))]] &\leqslant m[K(0,r)\setminus A] \\ &= m[K(0,r)\setminus (K(0,r)\cap A)] \\ &< 2r - \left(1 - \frac{1}{2^{1+\varepsilon}}\right)2r \\ &= \frac{r}{2^{\varepsilon}}. \end{split}$$

This contradicts (6) and in this way proves (7). Consequently, (3) holds true for every positive integer n and it ends the proof of Theorem 1 in the case p = 1.

Now we assume that $p \geqslant 2$. Recall that $m_p[(K_p(0,r)] = \gamma_p r^p$, where γ_p is a constant depending only on p. Choose an arbitrary $y \in \mathbb{R}^p \setminus \{0\}$ and let \mathbb{R}_y be one-dimensional subspace of \mathbb{R}^p generated by y i.e. $\mathbb{R}_y := \{ty : t \in \mathbb{R}\}$. Let $(\mathbb{R}_y)^{\perp}$ be a (p-1)-dimensional orthogonal complement of \mathbb{R}_y to the space \mathbb{R}^p . Take an $\varepsilon > 0$ and a positive number r such that

$$m_p(A \cap K_p(0,r)) > \left(\frac{1}{2} + \frac{\gamma_p + 2\gamma_{p-1}}{\gamma_p}\varepsilon\right)\gamma_p r^p$$
 (8)

and

$$||y|| < r\varepsilon \sqrt{1 - \sqrt[p-1]{(1-\varepsilon)^2}}.$$
 (9)

For an arbitrary $x \in (\mathbb{R}_y)^{\perp}$ with $||x|| \leq r$ we define a set A_x and a function h in the following manner:

$$A_x := \left\{ t \in \mathbb{R} : \ x + t \frac{y}{\|y\|} \in A \right\}, \quad h(x) := \sqrt{r^2 - \|x\|^2}$$

(the symbol ||x|| denotes here the norm in the space $(\mathbb{R}_y)^{\perp}$). Let us denote

$$B:=\left\{x\in (\mathbb{R}_y)^\perp:\ m(A_x\cap [-h(x),h(x)])>\left(rac{1}{2}+arepsilon
ight)2h(x)
ight\}.$$

We shall prove that

$$m_{p-1}(B) > \gamma_{p-1} r^{p-1} \varepsilon. \tag{10}$$

For this assume that $m_{p-1}(B) \leq \gamma_{p-1} r^{p-1} \varepsilon$. Let $K_{p-1}^{\perp}(0, \delta)$ denotes an orthogonal projection of $K_p(0, \delta)$ to the space $(\mathbb{R}_y)^{\perp}$. Then

$$m_{p}(A \cap K_{p}(0,r)) \leq \int_{K_{p-1}^{\perp}(0,r)\cap B} m(A_{x} \cap [-h(x),h(x)]) dx + \int_{K_{p-1}^{\perp}(0,r)\setminus B} m(A_{x} \cap [-h(x),h(x)]) dx$$

$$\leqslant m_{p-1}(B)2r + \int_{K_{p-1}^{\perp}(0,r)\backslash B} \left(\frac{1}{2} + \varepsilon\right) 2h(x) dx
\leqslant 2\varepsilon \gamma_{p-1} r^p + \left(\frac{1}{2} + \varepsilon\right) \gamma_p r^p
= \gamma_p r^p \left(\frac{1}{2} + \left(1 + \frac{2\gamma_{p-1}}{\gamma_p}\right)\varepsilon\right)
= \gamma_p r^p \left(\frac{1}{2} + \frac{\gamma_p + 2\gamma_{p-1}}{\gamma_p}\varepsilon\right),$$

which contradicts (8) and proves (10). Since

$$m_{p-1}\left(K_{p-1}^{\perp}\left(0, \sqrt[p-1]{1-\varepsilon} r\right)\right) + m_{p-1}(B) > \gamma_{p-1}(1-\varepsilon)r^{p-1} + \gamma_{p-1}r^{p-1}\varepsilon$$
$$= m_{p-1}(K_{p-1}^{\perp}(0,r))$$

and

$$K_{p-1}^{\perp} (0, \sqrt[p-1]{1-\varepsilon} r) \cup B \subset K_{p-1}^{\perp} (0, r),$$

then there exists an $x_0 \in K_{p-1}^{\perp} (0, \sqrt[p-1]{1-\varepsilon} r) \cap B$. Therefore,

$$h(x_0) = \sqrt{r^2 - ||x_0||^2}$$

$$\geqslant \sqrt{r^2 - \sqrt[p-1]{(1-\varepsilon)^2}} r^2$$

$$= r \sqrt{1 - \sqrt[p-1]{(1-\varepsilon)^2}}.$$

Setting

$$E_{x_0} := A_{x_0} \cap [-h(x_0), h(x_0)]$$

and using (9) we get

$$E_{x_0} \cup (E_{x_0} + ||y||) \subset [-h(x_0) - \varepsilon h(x_0), h(x_0) + \varepsilon h(x_0)].$$

Consequently,

$$m(E_{x_0} \cup (E_{x_0} + ||y||)) \leq 2h(x_0)(1 + \varepsilon).$$

On the other hand the condition $x_0 \in B$ implies that

$$m(E_{x_0}) = m(E_{x_0} + ||y||) > \left(\frac{1}{2} + \varepsilon\right) 2h(x_0).$$

This proves that

$$E_{x_0} \cap (E_{x_0} + ||y||) \neq \emptyset.$$

Assume that $t_0 \in E_{x_0}$ and $t_0 \in E_{x_0} + ||y||$. Then $x_0 + t_0 \frac{y}{||y||} \in A$ and $x_0 + (t_0 + ||y||) \frac{y}{||y||} \in A$. This means that $y \in A - A$. The proof of Theorem 1 is completed.

REMARK 1

The condition (1) is the best one in a sense. There exists a set $T \subset \mathbb{R}^p$ such that

$$\limsup_{r \to \infty} \frac{m_p[T \cap K_p(0,r)]}{m_p[K_p(0,r)]} = \frac{1}{2}$$

and simultaneously $T - T \neq \mathbb{R}^p$.

For, define

$$T:=igcup_{n\in\mathbb{Z}}[2n,2n+1) imes\mathbb{R}^{p-1}$$

where \mathbb{Z} denotes the set of all integers. It is easily seen that $(T-T)\cap ((2\mathbb{Z}+1)\times\mathbb{R}^{p-1})=\emptyset$ which implies that $T-T\neq\mathbb{R}^p$ and on the other hand

$$\lim_{n\to\infty}\frac{m_p[T\cap K_p(0,n)]}{m_p[K(0,n)]}=\frac{1}{2}.$$

The following two theorems concern the set of all distances of elements of a given set A contained in a real normed space.

THEOREM 2

Let A be an arbitrary subset of a real normed space X and assume that $\dim X \geqslant 2$. Then

$$D(A) := \{ \|x - y\| : \ x, y \in A \} = [0, \infty)$$

or

$$D(X \setminus A) := \{ \|x - y\| : x, y \in X \setminus A \} = [0, \infty).$$

Proof. Assume that there exist $r_i \in (0, \infty)$, i = 1, 2 such that

$$r_1 \not\in D(A)$$
 and $r_2 \not\in D(X \setminus A)$.

Then for every $x \in X$ with $||x|| = r_1$ we have

$$(A+x)\cap A=\emptyset,$$

or, equivalently,

$$A + \{x \in X : ||x|| = r_1\} \subset X \setminus A =: B.$$
 (11)

It follows from (11) that

$$A - A \subset B - B$$
.

Similarly one can prove that

$$B-B\subset A-A$$
.

According to Theorem 3 from [3]

$$B = A + x$$
 iff $x \notin A - A = B - B$.

So, if our assertion does not hold then

$$B = A + x \quad \text{for every } x \in X \text{ with } ||x|| = r_1. \tag{12}$$

Take an x, $||x|| = r_1$, and choose a y with $||y|| = r_1$ such that $||x + y|| = r_1$ (it is possible since dim $X \ge 2$; the set $\{y : ||y|| = r_1\}$ is connected and $0 = ||x - x|| < r_1 < 2r = ||x + x||$). Now by (12)

$$B = A + (x + y) = (A + x) + y = B + y = A$$

a contradiction. The proof of Theorem 2 is complete.

REMARK 2

In the case $X = \mathbb{R}$ the assertion of Theorem 2 does not hold.

For, take $A = \bigcup_{n \in \mathbb{Z}} [2n, 2n + 1)$. Then B = A + 1 and, of course, $1 \notin A - A = B - B$.

THEOREM 3

Let A be an arbitrary non-empty subset of a real normed space X such that $B := X \setminus A \neq \emptyset$ and assume that $\dim X \geqslant 2$. Then $D(A, B) := \{ ||x - y|| : x \in A, y \in B \} = (0, \infty)$.

Proof. Evidently, $0 \notin D(A, B)$. Take an r > 0 and assume that $r \notin D(A, B)$. Then for every $x \in X$ with ||x|| = r we have

$$(A+x) \cap B = \emptyset \quad \text{and} \quad (B+x) \cap A = \emptyset. \tag{13}$$

Let us denote $S(r) := \{x \in X : ||x|| = r\}$. It follows from (13) that

$$A + S(r) \subset A$$
 and $B + S(r) \subset B$. (14)

If $0 \in A$ then $S(r) \subset A$. We shall show that

$$S(nr) \subset A$$
 for every positive integer n . (15)

On account of (14) we note that condition (15) holds true for n = 1. Assume (15) for a positive integer n and take $x \in S((n+1)r)$. Then $y := nr \frac{x}{\|x\|} \in S(nr)$ and $\|x-y\| = \|x\| \left(1 - \frac{nr}{\|x\|}\right) = \|x\| - nr = r$. So, $x \notin B$ because $r \notin D(A, B)$. Consequently, $S((n+1)r) \subset A$ and the proof of (15) is complete. On account of a result of R. Ger [2] (the proof of Lemma 1) we have

$${x \in X : ||x|| < 2\varepsilon} \subset S(\varepsilon) + S(\varepsilon)$$

for every $\varepsilon > 0$, which together with (15), yields the equality A = X, a contradiction. In the case $0 \in B$ the proof runs quite similarly.

References

- [1] E. Boardman, A quantitive estimate for the Steinhaus distance theorem, Bull. London Math. Soc. 2 (1970), 171-177.
- [2] R. Ger, Some remarks on quadratic functionals, Glas. Mat. Ser III. 23(43) (1988), 315-330.
- [3] Z. Kominek, Some properties of decompositions of a commutative group, Comment. Math. Prace Mat. 28 (1989), 249-252.
- [4] H. Steinhaus, Sur les distances des points dans les ensembles de mesure positive, Fund. Math. 1 (1920), 93-104.
- [5] T. Świątkowski, Properties of a function of E. Marczewski, Fund. Math. 100 (1978), 45-49.
- [6] W. R. Utz, The distance set of the Cantor discontinuum, Amer. Math. Monthly, 58 (1951), 407-408.

Zygfryd Kominek
Institute of Mathematics
Silesian University
Bankowa 14
PL-40-007 Katowice
Poland
E-mail: zkominek@ux2.math.us.edu.pl

Władysław Wilczyński
Institute of Mathematics
University of Łódź
S. Banacha 22
PL-90-238 Łódź
Poland
E-mail: wwil@krysia.uni.lodz.pl