Zeszyt 207 Prace Matematyczne XVI 1999

Wilhelmina Smajdor

On a functional equation of Abel

Abstract. We are concerned with the general solution and the stability problem for the functional equation

$$
f(x + y) = g(xy) + h(x - y)
$$

in the case $f, g, h : [0, \infty) \to S$, where S is an Abelian semigroup with **the cancelation law. The set-valued case is considered as an application.**

1. General solution

Let $(S, +)$ be an Abelian semigroup with zero satisfying the cancelation **law, i.e.,**

$$
t + s = t' + s \implies t = t'. \tag{1}
$$

Consider the Abel functional equation

$$
0 \leqslant y \leqslant x \quad \Longrightarrow \quad f(x+y) = g(xy) + h(x-y), \tag{2}
$$

where $f, g, h : [0, \infty) \rightarrow S$ are unknown functions. The general solution of the **equation**

$$
f(x + y) = g(xy) + h(x - y)
$$

for functions $f, g, h : \mathbb{R} \to \mathbb{R}$ was given by Aczél [1] and by Lajkó (see [5] and $[6]$. The same equation was also solved in the case $f, g, h : K \to G$, where K **is a field and** *G* **is an Abelian group (see [4]).**

A function $g : [0, \infty) \rightarrow S$ satisfying the functional equation

$$
2g\left(\frac{x+y}{2}\right) = g(x) + g(y) \tag{3}
$$

for all $x, y \in [0, \infty)$, is said to be Jensen.

AMS (1991) subject classification: 39B72, 47H15, 54C60.

THEOREM 1

Let **(***S* **, +)** *be ап Abelian semigroup with zero satisfying the cancellation law* and let $f, g, h : [0, \infty) \to S$ satisfy equation (2). Then g is a Jensen function *and*

$$
f(x) = g\left(\frac{x^2}{4}\right) + h(0),\tag{4}
$$

$$
h(x) + g(0) = g\left(\frac{x^2}{4}\right) + h(0)
$$
\n(5)

for all $x \in [0, \infty)$. *Conversely, if g* : $[0, \infty) \rightarrow S$ *is a Jensen function and*

$$
f(x) = g\left(\frac{x^2}{4}\right) + \alpha,\tag{6}
$$

$$
h(x) + g(0) = g\left(\frac{x^2}{4}\right) + \alpha \tag{7}
$$

for $x \in [0, \infty)$, where α is an element of S, then functions f, g, h satisfy *equation* **(**2**).**

Proof. Putting $y = 0$ in (2) we get

$$
f(x) = g(0) + h(x) \text{ for all } x \in [0, \infty).
$$
 (8)

Next, let us fix $u \in [0, \infty)$. The substitution $x = y = \frac{u}{2}$ yields

$$
f(u) = h(0) + g\left(\frac{u^2}{4}\right). \tag{9}
$$

Take arbitrary $u, v \in [0, \infty)$. We may find x, y such that $0 \leq y \leq x$ and

$$
u = xy, \quad v = \left(\frac{x-y}{2}\right)^2.
$$
 (10)

Indeed, it sufficies to take

$$
x = \sqrt{u+v} + \sqrt{v}, \quad y = \sqrt{u+v} - \sqrt{v}.
$$

Then we have also $u + v = \frac{1}{4}(x + y)^2$. Relations (2) and (9) imply that

$$
g(u + v) + h(0) = g\left(\frac{1}{4}(x + y)^2\right) + h(0)
$$

= $f(x + y) = g(xy) + h(x - y)$
= $g(u) + h(2\sqrt{v}),$

whence by (8) and (9)

$$
g(u + v) + h(0) + g(0) = g(u) + h(2\sqrt{v}) + g(0)
$$

= g(u) + f(2\sqrt{v})
= g(u) + g(v) + h(0).

From (1) we get

$$
g(u + v) + g(0) = g(u) + g(v).
$$
 (11)

Setting $v = u$ we obtain hence

$$
2g(u) = g(2u) + g(0).
$$

Setting next $u = \frac{x+y}{2}$ in the above equality and applying once more (11) we **get**

$$
2g\left(\frac{x+y}{2}\right) = g(x+y) + g(0) = g(x) + g(y),
$$

i.e., 9 **is a Jensen function. Formula (4) coincides with (9) while (5) follows from (4) and (**8**).**

Assume that $g : [0, \infty) \to S$ is a Jensen function and $\alpha \in S$. We have

$$
g\left(\frac{(x+y)^2}{4}\right) + g(0) = g\left(\frac{(x-y)^2}{4} + xy\right) + g(0)
$$

$$
= 2g\left(\frac{\frac{(x-y)^2}{4} + xy}{2}\right)
$$

$$
= g\left(\frac{(x-y)^2}{4}\right) + g(xy)
$$

for all $x \ge y \ge 0$. Suppose that functions f and h are given by (6) and (7). **Then**

$$
f(x + y) + g(0) = g\left(\frac{(x + y)^2}{4}\right) + \alpha + g(0)
$$

= $g\left(\frac{(x - y)^2}{4}\right) + g(xy) + \alpha$
= $g(xy) + h(x - y) + g(0)$

for all $x \ge y \ge 0$ and condition (2) holds.

Let $(G, +)$ be an Abelian group and let $g : [0, \infty) \to G$ be a Jensen function. It is well known that there exists an additive function $a : \mathbb{R} \to G$ such that $g(x) = a(x) + g(0)$ for $x \in [0, \infty)$. Taking $S = G$ we obtain from Theorem 1

COROLLARY 1

Let $(G,+)$ *be an Abelian group. Functions* $f,g,h:[0,\infty) \to G$ satisfy (2) if and only if there exist an additive function $a : \mathbb{R} \to G$ and constants $\alpha, \beta \in G$ *such that*

$$
g(x) = a(x) + \beta
$$
, $f(x) = \frac{1}{4}a(x^2) + \beta + \alpha$, $h(x) = \frac{1}{4}a(x^2) + \alpha$

for all $x \in [0, \infty)$.

An Abelian semigroup *S* **with zero is said to be an abstract convex cone** if a map $(\lambda, s) \rightarrow \lambda s$ defined on $[0, \infty) \times S$ into S such that

$$
1 \cdot s = s, \quad \lambda(\mu s) = (\lambda \mu)s, \quad \lambda(s+t) = \lambda s + \lambda t, \quad (\lambda + \mu)s = \lambda s + \mu s
$$

for all $s, t \in S$ and $\lambda, \mu \in [0, \infty)$, is given. We will assume that an abstract convex cone is endowed with a complete metric ρ such that

$$
\rho(s+t, s+t') = \rho(t, t') \quad \text{for all } s, t, t' \in S \tag{12}
$$

and

 $\rho(\lambda s, \lambda t) = \lambda \rho(s, t)$ for all $\lambda \in [0, \infty)$, $s, t \in S$. (13)

The following theorem will be usefull (see [9]).

THEOREM W

Assume that S is an abstract convex cone satisfying the cancellation law and that a complete metric p is given in S such that (12) *and* (13) *hold. Then,* $f : [0, \infty) \rightarrow S$ is a Jensen function if and only if there exist an additive *function* $a : \mathbb{R} \to S$ *and a constant* $b \in S$ *such that*

$$
f(x) = a(x) + b \quad \text{for all } x \in [0, \infty).
$$

Let us note direct consequences of Theorems 1 and W.

COROLLARY 2

Assume that S is as in Theorem W. Then functions $f, g, h : [0, \infty) \rightarrow S$ satisfy (2) if and only if there exist an additive function $a : \mathbb{R} \to S$ and con*stants* $\alpha, \beta \in S$ *such that*

$$
g(x) = a(x) + \beta
$$
, $f(x) = \frac{1}{4}a(x^2) + \beta + \alpha$, $h(x) = \frac{1}{4}a(x^2) + \alpha$

for all $x \in [0, \infty)$.

2. Stability

In what follows, we will need the following theorem due to A. Smajdor (see $[8]$

THEOREM A

Let $(M,+)$ be an Abelian semigroup with zero and let $(S,+)$ be an abstract *convex cone satisfying the cancellation law. Assume that a complete metric* ρ such that (12) and (13) hold is given in S. If $f, g, h : M \rightarrow S$ satisfy the *conditon*

$$
\rho(f(x+y),g(x)+h(y))\leqslant \varepsilon
$$

for some $\epsilon \geqslant 0$ *and* $x, y \in M$, then there exists exactly one additive function $a: M \rightarrow S$ such that

$$
\rho(a(x)+f(0),f(x))\leqslant 4\varepsilon,\quad \rho(a(x)+g(0),g(x))\leqslant 4\varepsilon
$$

and

$$
\rho(a(x)+h(0),h(x))\leqslant 4\varepsilon
$$

for all $x \in M$.

The theorem in $[8]$ was formulated in the case when f , g , h are set-valued **functions. But the closer analysis of the proof shows that this assumption is superfluous and actually the theorem in the above form was proved.**

THEOREM 2

Assume that $(S,+)$ *is as in Theorem A. If functions* $f,g,h:[0,\infty) \to S$ *satisfy the condition*

$$
0 \leq y \leq x \quad \Longrightarrow \quad \rho \left(f(x+y), g(xy) + h(x-y) \right) \leq \varepsilon \tag{14}
$$

with some $\epsilon \geq 0$, then there exists exactly one additive functon a : $\mathbb{R} \to S$ such *that*

$$
\rho\left(f(x),\frac{1}{4}a(x^2)+g(0)+h(0)\right)\leqslant 17\varepsilon,\tag{15}
$$

$$
\rho\left(g(x), a(x) + g(0)\right) \leqslant 16\varepsilon\tag{16}
$$

and

$$
\rho\left(h(x), \frac{1}{4}a(x^2) + h(0)\right) \leqslant 18\varepsilon \tag{17}
$$

for all $x \in [0, \infty)$.

Proof. Setting $y = 0$ in (14) we get $\rho \left(f(x), g(0) + h(x) \right) \leqslant \varepsilon$ (18) for all $x \in [0, \infty)$. Take $u \in [0, \infty)$ and put $x = y = \frac{u}{2}$ in (14). Then

$$
\rho\left(f(u), g\left(\frac{1}{4}u^2\right) + h(0)\right) \leq \varepsilon. \tag{19}
$$

Let us fix $u, v \in [0, \infty)$ and take $x = \sqrt{u+v} + \sqrt{v}$, $y = \sqrt{u+v} - \sqrt{v}$. Relations **(12). (14), (18) and (19) yield**

$$
\rho(g(u + v) + g(0), g(u) + g(v))
$$
\n
$$
= \rho\left(g\left(\frac{(x + y)^2}{4}\right) + g(0) + h(0), g(xy) + g\left(\frac{(x - y)^2}{4}\right) + h(0)\right)
$$
\n
$$
\leq \rho\left(g\left(\frac{(x + y)^2}{4}\right) + g(0) + h(0), f(x + y) + g(0)\right)
$$
\n
$$
+ \rho\left(f(x + y) + g(0), g(xy) + h(x - y) + g(0)\right)
$$
\n
$$
+ \rho\left(g(xy) + h(x - y) + g(0), g(xy) + g\left(\frac{(x - y)^2}{4}\right) + h(0)\right)
$$
\n
$$
\leq \rho\left(g\left(\frac{(x + y)^2}{4}\right) + h(0), f(x + y)\right)
$$
\n
$$
+ \rho\left(f(x + y), g(xy) + h(x - y)\right)
$$
\n
$$
+ \rho\left(h(x - y) + g(0), f(x - y)\right)
$$
\n
$$
+ \rho\left(f(x - y), g\left(\frac{(x - y)^2}{4}\right) + h(0)\right)
$$
\n
$$
\leq 4\varepsilon.
$$

In virtue of Theorem A there exists an additive function $a : \mathbb{R} \to S$ such that

$$
\rho\left(a(x)+g(0),g(x)\right)\leqslant 16\varepsilon
$$

for $x \in [0, \infty)$. Hence, by (12), (18) and (19)

$$
\rho\left(f(x), \frac{1}{4}a(x^2) + g(0) + h(0)\right)
$$
\n
$$
\leq \rho\left(f(x), g\left(\frac{x^2}{4}\right) + h(0)\right) + \rho\left(g\left(\frac{x^2}{4}\right) + h(0), \frac{1}{4}a(x^2) + g(0) + h(0)\right)
$$
\n
$$
\leq \varepsilon + 16\varepsilon
$$
\n
$$
= 17\varepsilon
$$

and

$$
\rho\left(h(x),\frac{1}{4}a(x^2)+h(0)\right)=\rho\left(h(x)+g(0),\frac{1}{4}a(x^2)+h(0)+g(0)\right)
$$

$$
\leqslant \rho\left(h(x) + g(0), f(x)\right) + \rho\left(f(x), \frac{1}{4}a\left(x^2\right) + g(0) + h(0)\right) \leqslant 18\varepsilon
$$

for $x \in [0, \infty)$.

To prove uniqueness of *a* **suppose that (16) holds with an additive function** $a : \mathbb{R} \to S$. Since

$$
a(nx)=na(x)
$$

for every $n \in \mathbb{N}$ and $x \in \mathbb{R}$, we have

$$
\rho\left(g(nx),na(x)+g(0)\right)\leqslant 16\varepsilon
$$

for the same *n* and $x \in [0,\infty)$. Dividing by *n* and passing to the limit as $n \rightarrow \infty$, we get

$$
a(x)=\lim_{n\to\infty}\frac{1}{n}g\left(nx\right),\quad\text{for all }x\in[0,\infty).
$$

This shows the uniqueness of *a* **and completes the proof.**

3. Applications

Now let X be a real Banach space and let $\mathcal{K}(X)$ denote the set of all non**empty, convex, bounded and closed subsets of** *X .* **Introduce a binary operation *** $+$ in $\mathcal{K}(X)$ by the formula

$$
A + B = \text{cl}(A + B)
$$

***** (cl A denotes the closure of the set A). It is easy to see that $(K(X), +)$ is an **Abelian semigroup with zero. The cancellation law for this semigroup follows from a generalization of the Rädström lemma (cf. [7], [10]). Moreover, the semigroup** $\mathcal{K}(X)$ is an abstract convex cone. In particular, the multiplication $[0, \infty) \times \mathcal{K}(X) \ni (\lambda, A) \longmapsto \lambda A \in \mathcal{K}(X)$ has the following properties

$$
\lambda(A + B) = \lambda A + \lambda B, \quad (\lambda + \mu)A = \lambda A + \mu A
$$

for all $\lambda, \mu \in [0, \infty)$ and $A, B \in \mathcal{K}(X)$.

The Hausdorff distance of A and B is defined by

$$
\delta(A,B)=\max\{e(A,B),e(B,A)\},
$$

where $e(A, B) = \sup{\{\inf\{\|a - b\| : b \in B\} : a \in A\}}$. δ is a metric on $\mathcal{K}(X)$. It is well known that $K(X)$ is a complete metric space with the distance δ **(cf. [3]). Furthermore**

$$
\delta(A + B, C + B) = \delta(A, C), \quad \delta(\lambda A, \lambda B) = \lambda \delta(A, B)
$$

for all $\lambda \in [0, \infty)$, $A, B, C \in \mathcal{K}(X)$ (see [2] for the proof of the first equality, **the second one is clear).**

The following theorem follows from Corollary 2.

THEOREM₃

If X is a Banach space, then set-valued functions $F, G, H : [0, \infty) \rightarrow \mathcal{K}(X)$ *satisfy the equation*

$$
0 \leqslant y \leqslant x \implies F(x+y) = G(xy) + H(x-y)
$$

if and only if there exists a set-valued function $A : \mathbb{R} \to \mathcal{K}(X)$ *and sets* $B, C \in$ $K(X)$ such that

$$
F(x) = \frac{1}{4}A(x^{2}) + B + C, \quad G(x) = A(x) + B, \quad H(x) = \frac{1}{4}A(x^{2}) + C
$$

for all $x \in [0, \infty)$ *and*

$$
A(x + y) = A(x) + A(y) \quad \text{for all } x, y \in \mathbb{R}.
$$
 (20)

Concerning a stability problem for set-valued functions satisfying the Abel functional equation we have the following as a consequence of Theorem 2.

THEOREM 4

Let X be a Banach space. If set-valued functions $F, G, H : [0, \infty) \to \mathcal{K}(X)$ *satisfy the inequality*

$$
0\leqslant y\leqslant x\;\;\implies\;\; \delta(F(x+y),G(xy)+H(x-y))\leqslant \varepsilon,
$$

where ε is some non-negative number, then there exists a set-valued function $A: \mathbb{R} \to \mathcal{K}(X)$ such that (20) and

$$
\delta\left(F(x), \frac{1}{4}A(x^2) + G(0) + H(0)\right) \le 17\varepsilon,
$$

$$
\delta\left(G(x), A(x) + G(0)\right) \le \varepsilon,
$$

$$
\delta\left(H(x), \frac{1}{4}A(x^2) + H(0)\right) \le 18\varepsilon
$$

for all $x \in [0, \infty)$, *hold.*

Acknowledgement

The author would like to thank Professor Karol Baron for his valuable comments and remarks.

References

- **[1] J. Aczél,** *The state of the second of Hilbert's fifth problem,* **Bull. Amer. Math. Soc. 20 (1989), 153-163.**
- **[2] F. S. De Błasi,** *On differentiability of multifunctions,* **Pacific J. Math.** 66 **(1976). 67-81.**
- [3] C. Castaing, M. Valadier, *Convex analysis and measurable multifunctions*. Lec**ture Notes in Math. 580, Springer-Verlag, Berlin - New York, 1977.**
- **[4] J. K. Chung, B. R. Ebanks, C. T. Ng, P. K. Sahoo, W. B. Zeng,** *On a functional equation of Abel,* **Results Math. 26 (1994), 241-252.**
- **[5] K. Lajkó,** *Remarks on the Hosszii functional equation,* **Wyż. Szkoła Ped. Kraków Rocznik Nauk.-Dydakt. Prace Matematyczne** 12 **(1987), 192-193.**
- **[**6**] К. Lajkó,** *The general solution of Abel-type functional equations,* **Results Math. 26 (1994), 336-341.**
- **[7] H. Râdstrom,** *An embedding theorem for spaces of convex sets,* **Proc. Amer. Math. Soc. 3 (1952), 165-169.**
- **[**8**] A. Smajdor,** *The stability of the Pexider equation for set-valued functions,* **Wyż. Szkoła Ped. Kraków Rocznik Nauk.-Dydakt. Prace Matematyczne 13 (1993), 277-286.**
- **[9] W. Smajdor,** *Note on Jensen and Pexider functional equations,* **to appear in Demonstratio Mathematica.**
- **[10] R. Urbański,** *A generalization of Minkowski-Rädström-Hörmander theorem,* **Bull. Acad. Polon. Sei. Ser. Sei. Math. Astronom. Phys. 24 (1976), 709-715.**

Institute of Mathematics Silesian University Bankowa Ц PL-40-007 Katowice Poland E-mail: **WSmajdor@ux2.math.us.edu.pl**