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A b stract. A Cauchy functional congruence and corresponding charac
ters are discussed from the point of view of decency in the sense of Baker.

1. Introduction

The Cauchy functional congruence

<p{x +  y) -  <p(x) -  (p(y) e  Z  ( x , y € R )

was considered first by J .G . van der Corput [4]. He described all its solutions 
(p : R  —> R , and he found a necessary and sufficient condition for the solutions 
to have the property

<p(x) — cx 6 Z  ( i £ M )

with some real constant c. Few years later L. Vietoris [10] described the cha
racters X of Q  that admit the representation

X{x) =  e x p (2 n if{x )) {x 6 Q)

with an additive /  : Q  —> R . (A  slight incompleteness was corrected by J .  Ratz 
[8], cf. [9; pp. 185-187] for more information). The study of the Cauchy func
tional congruence started again in the eighties and continued in the nineties, 
see, e.g., [6; Chapter 12] by D .H . Hyers, G . Isac, and Th .M . Rassias, and the 
recent papers [2], [3] by J .  Brzdęk.

In the present paper we consider both, the Cauchy functional congruence 
and characters, from the point of view of decency in the sense of J .A . Baker 

[11-
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2. The Cauchy functional congruence

B y V  we denote a vector space over the field Q . We consider the functional 
congruence

¥>(x +  y) =  <p{x) +  <p{y) (mod 1) {x, y  € V)  

for functions ip : V  —>• R , but we simply write

<p{x +  y) =  v ( x)  +  <p{y) ( x , y  e  V) .  (2.1)

If
(p =  /  +  g, f  : V  —> R  additive, g : V  —ï Z , (2.2)

then ip solves (2.1). In analogy to Baker [1], we call such functions ip decent 
solutions of (2.1).

T h e o r e m  2.1
A solution ip : V  - ) R o / ( 2 . 1 )  is decent i f  and only if for every a € V  there 

is a real a  such that
<p(£a) =  Ça ( £ e Q ) .  (2.3)

Proof. From (2.2) we get immediately (2.3) with a =  f {a) .  To prove the 
converse, we first observe that the real number a  in (2.3) uniquely depends 
upon a € V  : If also

i p ( f a ) = f ß  ( f  e Q ),

then f a  =  f ß  ( f  € Q ), i.e. £ (а  -  ß)  G Ъ ( f  6 Q ), whence a =  ß.
When setting f ( a )  =  a,  we now have a well defined function

/  : V  ->■ R ,

and (2.3) can be rewritten as

i p ( f a ) = f f ( a )  ( f e Q  , a e V ) .  (2.4)

f  =  1 shows g =  ip — f  to be integer valued, and it is sufficient to prove that 
/  is additive: For x, y 6 V  we have by (2.4)

¥>(£4 = £/(■'■)• V>{fy) ® f f ( y) ,  +  2/)) =  £ /(*  + y) {f £ Q), (2.5)

and by (2.1) we have

<Ж(-'; + y)) = &(£*) + v) (f G Ш-  (2.(1)
An obvious combination of (2.5), (2.6) gives

f f { x  +  y ) = f f ( x )  +  f f { y )  ( f  £  Q ), 

whence f ( x  +  y) =  f { x )  +  f {y) .
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If  a  € R , then [a] denotes its integer part and a  its fractional part, re
spectively. So we have the decomposition

a  =  [a] +  5,

where [a] €  Z  and 0 ^  5  <  1. For solutions ip : V  —> R  of (2.1) we introduce

ф(х) =  ip{x) =  <p(x) -  [^(x)] (x £ V ).

Then fp : V  —> [0,1) also solves the functional congruence (2.1). and it is easy 
to see that ф(0) =  0 and (for x € V )

I 0, if <p(x) =  0,

I  1 — <p(x), if 0 <  <p{x) <  1.
(2.7)

In the next two theorems we characterize decent solutions <p of (2.1) by using 
fp. By N we mean the set of natural numbers, i.e. the set of integers ^  1.

Theorem 2.2
Consider a sequence of numbers

h i,h -2 , h 3, . . .  G N, hn ^  2 for n ^  2.

and put
H ji — h\ fin (n ^  1).

Then a solution p> : V  —» R  of (2.1) is decent i f  and only i f  for every a £ V  
there is an N  G N such that

H n
¥ 4  TF" ) =  h n + lip

H,
or

n i — hn +iT

n+1

—a

H n+l

(n ź  N )  

{n >  N ) .

(2.8)

Proof. 1. Let ip be a decent solution of (2.1), i.e., let (2.2) be satisfied. If 
a £ V, then f ( a )  ^  0 or / ( —a) ^  0, and it will be sufficient to treat the first 
case: We choose N  £  N such that

Then we get for n  ^  N  also 0 ^  / ( ^ - )  <  1, hence

(n ^  IV), and this proves (2.8).
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2. Now let ip be a solution of (2.1), and suppose (2.8) to be true (with 
N e  N depending upon а 6 V) .  We use Theorem 2.1 to show the decency of 
ip : We fix а € V,  and we suppose

Our goal is to find a real number a , such that (2.3) holds. In the other 
case of (2.8) (i.e., (2.9) with —a instead of a) we then get ß e  R , such that 
</?(£(—a)) =  £/3 (£ € Q ); from this (2.3) follows with a  =  - ß .

3. A  general observation concerning solutions <p : V  —> К  of (2.1) is the 
following one: l î  x e  V  and к e  N  are such that p{kx) =  kip(x), then also 
ip(mx) =  mip(x) for m  =  0 , 1 , . . . ,  k. This is an easy consequence of (2.1) and 
the inequalities 0 ^  m p (x )  <  1.

4. When iterating (2.9), we get

(2.9)

i.e.,

B y the foregoing remark we have

{тп 0, 1, . . . ,  /ijv+i • ■ • h/v+„), (2.11)

and combining with (2.10) yields

<p I -------------------------------------- I =  ------------------------------- p
\Ны+\ -  ■ ■ hrv+n H n  )  hN+i- ' -hu+n  

for the numbers m occurring in (2.11). This shows

m a

)

m

where

Now wo get

in the following manner: For д e  Пдг we select M  such that

(2.13)
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M  £ z  \  {o}, £ e Q N, o <  <  l.

(2.12) implies =  мФ(тг^)- We multiply by M H N and use (2.1) to
get the congruence in (2.13). When setting а =  (2.13) can be
rewritten as

ф(да) =  да (q £ Q n ). (2.14)

5. For ( g Q,  consider the element f a  in V.  In analogy to (2.14), there is 
some ß £ Ш and some M  £ N, such that

p (ßfa) =  gß (g £ Q M). (2.15)

For L =  max {M , N }  we have Q l — Q m  П Q n , and (2.14), (2.15) imply

ф(да) =  д а , p( gf a)  =  gß (g £ Q L). (2.16)

We suppose

f  =  - ,  where p £ Z , q £  N.
q

Then (2.1), (2.16) imply for g £ Q l

pga =  pp(ga) =  ф(рда) =  ip(qgfa) =  qp(gfa)  =  qgß,

hence
(pa -  qß)g £ Z  (g £ Q L).

The set Q l  being dense in M, this yields p a  — qß , hence ß — fa .  Now by 
(2.15) (with g =  1) we get ip(fa) =  fa .  The number f  £  Q  being arbitrary,
(2.3) is established.

Remark 2.1
<p : V  —» [0,1) being a solution of (2.1), for x £ V  and m £ N equality 

ф(т х) — mip(x) is equivalent to fp(mx) ^  mfp(x). Therefore (2.8) also can be 
formulated as

<P ( J r )  ^  hn+1&

or

$  ^  hn + iv  (n ^  N ï-

Remark 2.2
The case hn =  n (i.e., H n =  n!) of Theorem 2.2 goes back to Sablik [9]. 

Another important case is hn =  2 (i.e., H n =  2n); it will be used in the proof 
of the next theorem.
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Theorem 2.3
Let ip : V  —> M. be a solution of (2.1). The decency o f ip is equivalent to 

each of the following conditions:
(A) For every a G V  there is an e >  0 such that

Ф((,а) <  ^ (£ € Q , 0 <  £ <  e) or f i ( - f a )  <  ^ (£ G Q , 0 ^  £ sC e).

(B) For every a € V  there is an N  £ N such that

<̂ ( ê ' ) < ^ ('i e N ’ n ^ JV) or & (^ t ) < \ (n e N’ n ^ ЛГ)-

(C ) For every a G V  there is an N  € N such that

(E ) I f  a £ V, then

Proof. 1. It is sufficient to show

(2.2) =►  (A) = >  (B) = »  (C ) = »  (2.2) = >  (D) = »  (E) =►  (C ).

The steps
(A ) =►  (B ). (D) =►  (E) =►  (C )

are trivial, the remaining conclusions

(2.2) — ► (A ), (2.2) = >  (D ), (B) =>■ (C ). (C ) = »  (2.2)

will be verified now.

2. (2.2) = >  ( A ) . ( D ) .  Suppose (2.2) to hold, and consider a G V. Then 
f ( a )  ^  0 or / ( —a) ^  0, and we only treat the first case. The function /  being 
additive, we have

0 ^  f (Ça)  =  f f  (a) < 1 -  for f  £ Q , 0 ^  £ ïï 1
2 2/ (a) +  1

tlierefore we get condition (A ) with e =  2^ ^ + 1 . For n £ N we have /  (^ )  =  

Ц-^-, henceП 7
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/ ( g )
iП

and this proves (D ).

3. (B ) =>■ (C ). Suppose (B) to hold, and consider a G V . Suppose

Ф ( ^ r )  <  ^  (n 6 N, n ^  N )  (2.17)

(the other case can be treated similarly). Then (2.1), (2.17) imply for n ^  N

v ( ^ ) s v ( ^ ) + ? ( ^ r ) < i .

and therefore the congruence is in fact an equality, which gives 

Replacing N  +  1 by N  yields (C ).

4. (C ) = >  (2.2). Let (C ) hold. For а G V  we shall show that

^ ( Ю =2К г ^ )  (n> N) (2Л8)
or

К 2̂) = 2̂(г )̂ {n> N)- (219)
Then we can apply Theorem 2.2 with hn =  2 (n € N) to deduce (2.2). For 
a G F  we have by (C )

* K ^ ) < 5  i 2 -2ui

or ф ( t v ) <  3 . We shall show that the hrst case implies (2.18); the second 
case then implies (2.19). So we start with (2.20), and we like to deduce

^ ( 2*0 = 2 (̂w+î) ’ 2̂'21)
after this, (2.18) follows recursively. From (C ) we get

" ™ { » i ( ^ V r )  * î ( ^ ) } <

If Ф (^ vVt ) <  51 then (2.21) follows from ф ( ^ )  = 2ф ( j v t t ). If ф ( t v t t ) <  
3 . then we have (cf. (2.20))

0 =  < (̂0) ^  c? ( ^ )  +  2c? ( ^ J t )  < 1.

which yields ф {фг) =  Ф (p r fr ) =  But then also ф (^r+r) =  0 (cf. (2.7)), 
and again we have (2.21).
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3. Decent characters

J .A . Baker [1] called decent a character x  of a group G , if there exists an 
additive function /  : G  —> R  such that

X(x)  =  ехр(27гг/(x))  (x £ G).

He also noticed that a function satisfies the congruence (2.1) if and only if 
the mapping x <p '■ x exp(27ri<p(x)) is a character. It is also obvious that a
solution ip of (2.1) is decent if and only if the corresponding character x<p is 
decent.

We are going now to express the results of the previous section in the 
language of characters. Let us first focus on rational characters. Put Q + :=  
Q  П [0, oo), let T  stand for the unit circle, and start with the following.

Lemma 3.1
Let (S , + )  be a subsemigroup of (Q + , + )  such that 0 £ S  and S  is dense 

in Q + . Then a character x  ■ S  —> T  is continuous at 0 i f  and only if it admits 
the form

x{x)  =  ехр(27ггсх) (x £ S)  (3.1)

where c is a real constant.

Proof. If x  has the form (3.1) then it is obviously continuous. To prove the 
converse, similarly as J .A . Baker did in [1; Lemma 2] (cf. also [5; (23.30)]) we 
observe that x  is uniformly continuous and extend it to a continuous function 
Xi : Q +  T . It is clear that x i  is a character. Setting Хг(^) =  X i ( |m|)sgn  ̂ for 
i g Q w e  extend x i to a continuous character of Q. By Lemma 3 in [1] (cf. 
also [5; (25.26)]) we get our assertion.

To prove the forthcoming Proposition we will use the following result (cf. 
[9; Proposition 1]).

Lemma 3.2
Let (S , + )  be a topological semigroup with neutral element e. I f  x  '■ S  -*  T  

is a character and { 1} is the only semigroup contained in c \ x ( U )  for a neigh
bourhood U  of e then x  is continuous at e.

We have

P roposition 3.1
Let ( 5 ,+ )  be a subsemigroup of (Q + ,- f )  such that S  is dense in Q + and 

0 £ S . A character x  '■ Q  —> T  is decent i f  and only i f  for every £ £ Q + there 
exists an e >  0 such that the only semigroup contained in c lx (C(5 ' П [0, e))) is
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Proof. The “only if” part easily follows from (1; Corollary in Section 4 
on p. 323 and Lemma 3]. To prove sufficiency fix a f  G Q + and consider the 
character X{ : S  —,у T  given by

x d x ) =  x(&*0 -

From our assumptions and Lemma 3.2 we infer that Xç is continuous at 0. 
Hence by Lemma 3.1 there exists a constant c(£) G К  such that

X(£x) =  ехр(2тпс(Оя) (£ €  Q + , x  € S ).

Define /  : Q  —> M by / ( £ )  =  sgn(£)c(|£|). It is easy to check that we have 
indeed

X(£x) =  ехр(2тг i f  ( Ox)  (£ G Q , x G S). (3.2)

Fix some rationale £ and r/. Then by (3.2) we obtain for every x  G S

ехр(2тгг(/(£ +  r?) -  /(О  -  / ( t?))x) =  x((£ +  ^ а О х Ф О ^ Х ^ Г 1 =  1

whence

( / ( £  +  * ? ) - / ( £ ) - / ( » ? ) ) * €  Z  ( x G 5 ) .

Thus in view of density of 5  in Q + we obtain

/ ( £  +  */) =  Я 0  +  f ( i 7),

which means that /  is additive. Finally, fix an io  G S  \  {0} and let r be an 
arbitrary rational. Write r =  £xo for some £ G Q . Then by (3.2) and additivity 
o f /

х И  =  x(£*o) =  ехр(2ттг/(0 хо) =  ехр(2тгг/(^х0)) =  ехр(2тгг/(г)),

or x  is decent in view of additivity of / .

The above Proposition can be easily generalized to the case of linear ra
tional spaces. Indeed, let X be a character of a rational linear space V  and let 
В  be a Hamel base of V.  Further, for every b G В  define хь : Q  T  by

X b (0  =  x №  (£ G Q ).

Then хь is a character for every b G В . and [1; Remark on p. 321] states that 
X is decent if and only if хь is decent for every b G В .  Thus we can extend 
Proposition 3.1 to the following.

T heorem 3.1
Let V  be a rational linear space and let x  ’■ V  —> T  be a character. Further, 

let В  be a Hamel base of V  and for every b G В  let Sb be a dense subset of Q +
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such that О G Sb and ( S t , , + )  is a subsernigroup of (Q + , + ) .  Then x  is decent 
i f  and only i f  for every b G В  and every £ G Q + there exists an e >  0 such 
that the only semigroup contained in clx(£(S), П [0, e))b) is {1}.

R e m a r k  3.1
Theorem 3.1 contains Theorem 2.2. To see this consider a sequence 

h i, /г-2, h :u . . .  of positive integers with hn ^  2 for n  ^  2, put H n =  h\ ■ ■ ■ hn 
(n  ^  1) and observe that the subset S  of Q + defined by

5  =  {  - j — : f c e NU{ 0 } ,  m e  N 
I Hm

is dense in Q + , 0 G S , and (S , + )  is a subsemigroup of Q + . Suppose that 
ip : V  —> К  is a solution of the congruence (2.1), ip is defined as in Section 2, 
and x ■ V  T  is a character defined by x(x) =  exp(27riip(x)). Moreover, 
assume that for every a G F  there is an N  G N such that (2.8) is satisfied.

1. Let В  be a Hamel base of V  and for every b G В  put Sb =  S .  Let 
a =  fb , where b is an arbitrary chosen element of В  and £ is a fixed number 
from Q + .

2. Put e =  ■ It is now a matter of a simple calculation to check

that s G Sb П [0, e) if and only if there exist n  ^  3 and к G {0 ......... /гдг+з • • •
h x + п -  1} such that

s =  . (3.3)

3. Assume first that there is an IV G N such that (2.9) holds. Fix such 
an N  and let s G Sb П [0, e) be given by (3.3) for some n ^  3 and к G 
{0. .  . .  . /iyv+з • ' ' fi/v+n — I}- Using the argument from part 4 of the proof of 
Theorem 2.2, and since hjx+r ^  2 (r G N ), we obtain

0 <  <f(sib) =
ka

К  Л’4-n fiyv+ i fi/v
-ч>

+п

<
1

h л • i h x  ■ 2 h л • (

This implies that the only semigroup of T  contained in с1х(£(5' П [U.e))6) is 
{1}. as it is the only subsemigroup of T  contained in the halfplane {z G C  : 
Re г >  ()}.

In the ease where there is an Al G N such that

—a
Y (n >  N )
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we have 0 <  <p(-s£6) <  g and, according to (2.7), <p(s£b) £ {0} U (|, l)  for 
every s G S (,f1 [0,e). This implies that {1} is the only semigroup contained in 
c l X ( £ ( S n [ 0,e))&).

4. Since b and £ were chosen arbitrarily, by Theorem 3.1 we get decency 
of X, which is equivalent to decency of <p, as we observed at the beginning of 
this section.

5. Conversely, if is decent then so is the corresponding character ут . If 
а =  0 then (2.8) obviously holds. In the case where а ф 0, let В  be a Hamel 
base of V  which contains a. Now in view of Theorem 3.1, Lemmas 3.2 and 
3.1, we see that there exists a c £ l  such that <p(£a) =  £c (£ € <Q>+ ). Hence 
we have either <p(£a) =  £c or <p(—fa )  =  —£c for £ positive and small enough. 
This implies (2.8).

Let us state now an analogue of Theorem 2.3 where conditions ( A ) - ( E )  
are translated to the language of characters. To this aim let us introduce the 
following notation.

T h e o r e m  3.2
Let X '■ У  —> T  be a character. The decency of x  is equivalent to each of 

the following conditions:
(A ') For every a £ V  there is an £ >  0 such that

X(£a) G T+ (£ G Q , 0 <  £ ^  e) or x ( -£ a )  G T + (£ G Q , 0 <  £ <  e).

Tr

T+ =  { z £ T  : Irnz >  0} \  { - 1 } ,  

T,

{z G T  : jz — 11 <  |exp(27ur) -  1|},
if r >  5,
if 0 ^  r śf

(B ') For every a £ V  there is an N  £ N such that

(n G N, n  ^  N ) or

(C r) For every a £ V  there is an N  £ N such that

(n 6 N - n ^ ) -

(D ') I f  a G V  then there is a D  >  0 such that

(n £ N) or

(E ') I f  a £ V  then there exists a D  >  0 such that
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X ( - )  6 T o  (n G N). 
\ n J  n

Remark 3.2
Let us note that the condition (C ')  slightly differs from (C ). In fact (C ) is 

equivalent to

where x ( x ) =  exp(27riîp(x)) (x E V ) . However, since x  is a character, we have 
X{ ~ x )  — x ( æ ) - 1 > and therefore if one of numbers x  ( ^ r ) >  X  ( f £ )  belongs to 
T i  then so does the other one. Thus at least one of them must belong to T + .

3

A similar argument justifies that (E ') is equivalent to (E).

Remark 3.3
We have used above the fact that a character of a rational linear space is 

decent if and only if its restrictions to rays passing through elements of a fixed 
Hamel base В  are decent. Therefore in Theorem 3.2 it is enough to assume 
each of the conditions (A , ) - ( E /) for а =  Çb where £ E Q  and b E В .

In view of [1; Corollary in Section 4 on p. 323] another condition equivalent 
to decency of a character x  ° f  a rational linear space V  is its continuity along 
(rational) rays, i.e., continuity of functions Ç —> x(Ca)i mapping Q  into T  (for 
а £ V ) . Let us conclude with a result characterizing decency as continuity 
with respect to some topology in V . This topology is called core-topology, and 
it is defined as follows (cf., e.g., [7; Chapter I]). A  point x E A  C  F  is said 
to be algebraically interior to A  iff for every a E V  there exists an e >  0 such 
that

for every Ç E ( —e, e) П Q . B y core A  we denote the set of all points which are 
algebraically interior to A. We say that A  is algebraically open, if core A  =  A. 
The family of all algebraically open subsets of V  is a topology, usually called 
the core-topology. This is the finest topology in V  such that with respect to 
this topology, and the natural topology in Q , the mappings

of Q  into V  are continuous for every x and y in V . This characterization of 
the core-topology and the equality

(n G N, n ^  N ),

Ça +  x E A

+  V

x(y)x(&0 =  x(& + y)

yield immediately the announced characterization of decency.
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Theorem 3.3
A character of a rational linear space is decent i f  and only i f  it is continuous 

with respect to the core-topology.
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