Zeszyt 204 Prace Matematyczne XVII 2000

Karol Baron, Maciej Sablik and Peter Volkmann

On decent solutions of a functional congruence

Dedicated to Professor Zenon Moszner on his seventieth anniversary

Abstract. A Cauchy functional congruence and corresponding characters are discussed from the point of view of decency in the sense of Baker.

1. Introduction

The Cauchy functional congruence

 $\varphi(x + y) - \varphi(x) - \varphi(y) \in \mathbb{Z} \quad (x, y \in \mathbb{R})$

was considered first by J.G . van der Corput [4]. He described all its solutions $\varphi : \mathbb{R} \to \mathbb{R}$, and he found a necessary and sufficient condition for the solutions to have the property

 $\varphi(x) - cx \in \mathbb{Z} \quad (x \in \mathbb{R})$

with some real constant c. Few years later L. Vietoris [10] described the characters χ of $\mathbb Q$ that admit the representation

$$
\chi(x) = \exp(2\pi i f(x)) \quad (x \in \mathbb{Q})
$$

with an additive $f : \mathbb{Q} \to \mathbb{R}$. (A slight incompleteness was corrected by J. Rätz [8], cf. [9; pp. 185-187] for more information). The study of the Cauchy functional congruence started again in the eighties and continued in the nineties, see, e.g., [6; Chapter 12] by D.H . Hyers, G . Isac, and Th .M . Rassias, and the recent papers [2], [3] by J. Brzdęk.

In the present paper we consider both, the Cauchy functional congruence and characters, from the point of view of decency in the sense of J.A . Baker $[1]$.

2. The Cauchy functional congruence

By V we denote a vector space over the field \mathbb{Q} . We consider the functional congruence

$$
\varphi(x + y) \equiv \varphi(x) + \varphi(y) \pmod{1} \quad (x, y \in V)
$$

for functions $\varphi : V \to \mathbb{R}$, but we simply write

$$
\varphi(x+y) \equiv \varphi(x) + \varphi(y) \quad (x, y \in V). \tag{2.1}
$$

If

 $\varphi = f + g, \quad f: V \to \mathbb{R}$ additive, $g: V \to \mathbb{Z}$, (2.2)

then φ solves (2.1). In analogy to Baker [1], we call such functions φ decent solutions of (2.1).

THEOREM 2.1

A solution $\varphi : V \to \mathbb{R}$ of (2.1) is decent if and only if for every $a \in V$ there *is a real a such that*

$$
\varphi(\xi a) \equiv \xi \alpha \quad (\xi \in \mathbb{Q}). \tag{2.3}
$$

Proof. From (2.2) we get immediately (2.3) with $\alpha = f(a)$. To prove the converse, we first observe that the real number α in (2.3) uniquely depends upon $a \in V$: If also

 $\varphi(\epsilon a) \equiv \epsilon \beta \quad (\epsilon \in \mathbb{Q}).$

then $\xi \alpha \equiv \xi \beta$ ($\xi \in \mathbb{Q}$), i.e. $\xi(\alpha - \beta) \in \mathbb{Z}$ ($\xi \in \mathbb{Q}$), whence $\alpha = \beta$.

When setting $f(a) = \alpha$, we now have a well defined function

 $f: V \to \mathbb{R}$,

and (2.3) can be rewritten as

$$
\varphi(\xi a) \equiv \xi f(a) \quad (\xi \in \mathbb{Q}, \ a \in V). \tag{2.4}
$$

 $f = 1$ shows $g = \varphi - f$ to be integer valued, and it is sufficient to prove that f is additive: For $x, y \in V$ we have by (2.4)

$$
\varphi(\xi x) \equiv \xi f(x), \quad \varphi(\xi y) \equiv \xi f(y), \quad \varphi(\xi(x+y)) \equiv \xi f(x+y) \quad (\xi \in \mathbb{Q}), \quad (2.5)
$$

and by (2.1) we have

$$
\varphi(\xi(x+y)) \equiv \varphi(\xi x) + \varphi(\xi y) \quad (\xi \in \mathbb{Q}). \tag{2.6}
$$

An obvious combination of (2.5), (2.6) gives

$$
\xi f(x+y) \equiv \xi f(x) + \xi f(y) \quad (\xi \in \mathbb{Q}),
$$

whence $f(x + y) = f(x) + f(y)$.

If $\alpha \in \mathbb{R}$, then $[\alpha]$ denotes its integer part and α its fractional part, respectively. So we have the decomposition

$$
\alpha = [\alpha] + \widetilde{\alpha},
$$

where $[\alpha] \in \mathbb{Z}$ and $0 \le \tilde{\alpha} < 1$. For solutions $\varphi : V \to \mathbb{R}$ of (2.1) we introduce

$$
\widetilde{\varphi}(x) = \varphi(x) = \varphi(x) - [\varphi(x)] \quad (x \in V).
$$

Then $\tilde{\varphi}: V \to [0,1)$ also solves the functional congruence (2.1). and it is easy to see that $\tilde{\varphi}(0) = 0$ and (for $x \in V$)

$$
\widetilde{\varphi}(-x) = \begin{cases} 0, & \text{if } \widetilde{\varphi}(x) = 0, \\ 1 - \widetilde{\varphi}(x), & \text{if } 0 < \widetilde{\varphi}(x) < 1. \end{cases} \tag{2.7}
$$

In the next two theorems we characterize decent solutions φ of (2.1) by using $\bar{\varphi}$. By N we mean the set of natural numbers, i.e. the set of integers ≥ 1 .

Theorem 2.2

Consider a sequence of numbers

$$
h_1, h_2, h_3, \ldots \in \mathbb{N}, \quad h_n \geqslant 2 \quad \text{for } n \geqslant 2.
$$

and put

$$
H_n = h_1 \cdots h_n \quad (n \geq 1).
$$

Then a solution $\varphi: V \to \mathbb{R}$ of (2.1) is decent if and only if for every $a \in V$ *there is an* $N \in \mathbb{N}$ *such that*

$$
\overline{\varphi}\left(\frac{a}{H_n}\right) = h_{n+1}\overline{\varphi}\left(\frac{a}{H_{n+1}}\right) \quad (n \ge N)
$$
\n
$$
\overline{\varphi}\left(\frac{-a}{H_n}\right) = h_{n+1}\overline{\varphi}\left(\frac{-a}{H_{n+1}}\right) \quad (n \ge N).
$$
\n(2.8)

Proof. 1. Let φ be a decent solution of (2.1), i.e., let (2.2) be satisfied. If $a \in V$, then $f(a) \geq 0$ or $f(-a) \geq 0$, and it will be sufficient to treat the first case: We choose $N \in \mathbb{N}$ such that

$$
0 \leqslant f\left(\frac{a}{H_N}\right) = \frac{1}{H_N}f(a) < 1.
$$

Then we get for $n \ge N$ also $0 \le f(\frac{a}{H_{-}}) < 1$, hence

$$
\widetilde{\varphi}\left(\frac{a}{H_n}\right) = f\left(\frac{a}{H_n}\right) = f\left(\frac{h_{n+1}a}{H_{n+1}}\right) = h_{n+1}f\left(\frac{a}{H_{n+1}}\right) = h_{n+1}\widetilde{\varphi}\left(\frac{a}{H_{n+1}}\right)
$$

 $(n \geq N)$, and this proves (2.8).

2. Now let φ be a solution of (2.1), and suppose (2.8) to be true (with $N \in \mathbb{N}$ depending upon $a \in V$). We use Theorem 2.1 to show the decency of φ : We fix $a \in V$, and we suppose

$$
\widetilde{\varphi}\left(\frac{a}{H_n}\right) = h_{n+1}\widetilde{\varphi}\left(\frac{a}{H_{n+1}}\right) \quad (n \ge N). \tag{2.9}
$$

Our goal is to find a real number α , such that (2.3) holds. In the other case of (2.8) (i.e., (2.9) with $-a$ instead of *a*) we then get $\beta \in \mathbb{R}$, such that $\varphi(\xi(-a)) \equiv \xi \beta$ ($\xi \in \mathbb{Q}$); from this (2.3) follows with $\alpha = -\beta$.

3. A general observation concerning solutions $\varphi : V \to \mathbb{R}$ of (2.1) is the following one: If $x \in V$ and $k \in \mathbb{N}$ are such that $\overline{\varphi}(kx) = k\overline{\varphi}(x)$, then also $\tilde{\varphi}(mx) = m\tilde{\varphi}(x)$ for $m = 0, 1, \ldots, k$. This is an easy consequence of (2.1) and the inequalities $0 \leq m \varphi(x) < 1$.

4. When iterating (2.9), we get

$$
\widetilde{\varphi}\left(\frac{a}{H_N}\right) = h_{N+1}\widetilde{\varphi}\left(\frac{a}{H_{N+1}}\right) = \dots = h_{N+1}\dots h_{N+n}\widetilde{\varphi}\left(\frac{a}{H_{N+n}}\right),\tag{2.10}
$$

i.e.,

$$
\widetilde{\varphi}\left(h_{N+1}\cdots h_{N+n}\frac{a}{H_{N+n}}\right)=h_{N+1}\cdots h_{N+n}\widetilde{\varphi}\left(\frac{a}{H_{N+n}}\right).
$$

By the foregoing remark we have

$$
\widetilde{\varphi}\left(m\frac{a}{H_{N+n}}\right) = m\widetilde{\varphi}\left(\frac{a}{H_{N+n}}\right) \quad (m = 0, 1, \dots, h_{N+1} \cdots h_{N+n}), \qquad (2.11)
$$

and combining with (2.10) yields

$$
\bar{\varphi}\left(\frac{m}{h_{N+1}\cdots h_{N+n}}\frac{a}{H_N}\right)=\frac{m}{h_{N+1}\cdots h_{N+n}}\bar{\varphi}\left(\frac{a}{H_N}\right)
$$

for the numbers m occurring in (2.11) . This shows

$$
\widetilde{\varphi}\left(\eta \frac{a}{H_N}\right) = \eta \widetilde{\varphi}\left(\frac{a}{H_N}\right) \quad \text{for } \eta \in \Omega_N, \ 0 \leqslant \eta \leqslant 1,\tag{2.12}
$$

where

$$
\Omega_N = \left\{ \frac{m}{h_{N+1} \cdots h_{N+n}} : m \in \mathbb{Z}, n \in \mathbb{N} \right\}.
$$

Now wo get

$$
\tilde{\varphi}(\varrho a) \equiv \varrho H_N \tilde{\varphi}\left(\frac{a}{H_N}\right) \quad (\varrho \in \Omega_N) \tag{2.13}
$$

in the following manner: For $\rho \in \Omega_N$ we select M such that

$$
M\in\mathbb{Z}\setminus\{0\},\quad \frac{\varrho}{M}\in\Omega_N,\quad 0\leqslant\frac{\varrho}{M}\leqslant 1.
$$

(2.12) implies $\tilde{\varphi}(\frac{\varrho}{M}\frac{a}{H_N})=\frac{\varrho}{M}\tilde{\varphi}(\frac{a}{H_N})$. We multiply by MH_N and use (2.1) to get the congruence in (2.13). When setting $\alpha = H_N \widetilde{\varphi}(\frac{a}{H_N})$, (2.13) can be rewritten as

$$
\tilde{\varphi}(\varrho a) \equiv \varrho \alpha \quad (\varrho \in \Omega_N). \tag{2.14}
$$

5. For $\xi \in \mathbb{Q}$, consider the element ξa in *V*. In analogy to (2.14), there is some $\beta \in \mathbb{R}$ and some $M \in \mathbb{N}$, such that

$$
\overline{\varphi}(\varrho\xi a) \equiv \varrho\beta \quad (\varrho \in \Omega_M). \tag{2.15}
$$

For $L = \max\{M, N\}$ we have $\Omega_L = \Omega_M \cap \Omega_N$, and (2.14), (2.15) imply

$$
\widetilde{\varphi}(\varrho a) \equiv \varrho \alpha, \quad \widetilde{\varphi}(\varrho \xi a) \equiv \varrho \beta \qquad (\varrho \in \Omega_L). \tag{2.16}
$$

We suppose

$$
\xi = \frac{p}{q}, \quad \text{where } p \in \mathbb{Z}, \ q \in \mathbb{N}.
$$

Then (2.1) , (2.16) imply for $\rho \in \Omega_L$

$$
p\varrho\alpha\equiv p\bar{\varphi}(\varrho a)\equiv\widetilde{\varphi}(p\varrho a)=\widetilde{\varphi}(q\varrho\xi a)\equiv q\bar{\varphi}(\varrho\xi a)\equiv q\varrho\beta,
$$

hence

$$
(p\alpha - q\beta)\varrho \in \mathbb{Z} \quad (\varrho \in \Omega_L).
$$

The set Ω_L being dense in R, this yields $p\alpha = q\beta$, hence $\beta = \xi \alpha$. Now by (2.15) (with $\rho = 1$) we get $\varphi(\xi a) \equiv \xi a$. The number $\xi \in \mathbb{Q}$ being arbitrary, (2.3) is established.

Remark 2.1

 $\bar{\varphi}: V \to [0,1]$ being a solution of (2.1), for $x \in V$ and $m \in \mathbb{N}$ equality $\widetilde{\varphi}(mx) = m\widetilde{\varphi}(x)$ is equivalent to $\widetilde{\varphi}(mx) \geq m\widetilde{\varphi}(x)$. Therefore (2.8) also can be formulated as

$$
\overline{\varphi}\left(\frac{a}{H_n}\right) \ge h_{n+1}\widetilde{\varphi}\left(\frac{a}{H_{n+1}}\right) \quad (n \ge N)
$$

$$
\widetilde{\varphi}\left(\frac{-a}{H_n}\right) \ge h_{n+1}\widetilde{\varphi}\left(\frac{-a}{H_{n+1}}\right) \quad (n \ge N).
$$

or

Remark 2.2

The case $h_n = n$ (i.e., $H_n = n!$) of Theorem 2.2 goes back to Sablik [9]. Another important case is $h_n = 2$ (i.e., $H_n = 2^n$); it will be used in the proof of the next theorem.

Theorem 2.3

Let $\varphi : V \to \mathbb{R}$ be a solution of (2.1). The decency of φ is equivalent to *each of the following conditions:*

(A) For every $a \in V$ there is an $\varepsilon > 0$ such that

$$
\tilde{\varphi}(\xi a) < \frac{1}{2} \quad (\xi \in \mathbb{Q}, 0 \leqslant \xi \leqslant \varepsilon) \quad or \quad \tilde{\varphi}(-\xi a) < \frac{1}{2} \quad (\xi \in \mathbb{Q}, 0 \leqslant \xi \leqslant \varepsilon).
$$

(B) For every $a \in V$ there is an $N \in \mathbb{N}$ such that

$$
\widetilde{\varphi}\left(\frac{a}{2^n}\right) < \frac{1}{2} \quad (n \in \mathbb{N}, \, n \geq N) \qquad \text{or} \qquad \widetilde{\varphi}\left(\frac{-a}{2^n}\right) < \frac{1}{2} \quad (n \in \mathbb{N}, \, n \geq N).
$$

(C) For every $a \in V$ there is an $N \in \mathbb{N}$ such that

$$
\min\left\{\widetilde{\varphi}\left(\frac{a}{2^n}\right),\widetilde{\varphi}\left(\frac{-a}{2^n}\right)\right\} < \frac{1}{3} \quad (n \in \mathbb{N}, n \ge N).
$$

(D) If $a \in V$, then

$$
\widetilde{\varphi}\left(\frac{a}{n}\right) = O\left(\frac{1}{n}\right)
$$
 or $\widetilde{\varphi}\left(\frac{-a}{n}\right) = O\left(\frac{1}{n}\right)$.

 (E) *If a* \in *V, then*

$$
\min \left\{\widetilde{\varphi}\left(\frac{a}{n}\right), \widetilde{\varphi}\left(\frac{-a}{n}\right)\right\} = O\left(\frac{1}{n}\right).
$$

Proof. 1. It is sufficient to show

$$
(2.2) \Longrightarrow (A) \Longrightarrow (B) \Longrightarrow (C) \Longrightarrow (2.2) \Longrightarrow (D) \Longrightarrow (E) \Longrightarrow (C).
$$

The steps

$$
(A) \Longrightarrow (B). \quad (D) \Longrightarrow (E) \Longrightarrow (C)
$$

are trivial, the remaining conclusions

 $(2.2) \implies (A), (2.2) \implies (D), (B) \implies (C). (C) \implies (2.2)$

will be verified now.

2. $(2.2) \implies (A)$. (D). Suppose (2.2) to hold, and consider $a \in V$. Then $f(a) \geq 0$ or $f(-a) \geq 0$, and we only treat the first case. The function f being additive, we have

$$
0 \leqslant f(\xi a) = \xi f(a) < \frac{1}{2} \quad \text{for } \xi \in \mathbb{Q}, \ 0 \leqslant \xi \leqslant \frac{1}{2f(a) + 1}.
$$

therefore we get condition (A) with $\varepsilon = \frac{1}{2f(a)+1}$. For $n \in \mathbb{N}$ we have $f\left(\frac{a}{n}\right) =$ $\frac{f(a)}{n}$, hence

$$
0\leqslant \widetilde{\varphi}\left(\frac{a}{n}\right)\leqslant \frac{f(a)}{n},
$$

and this proves (D) .

3. (B) \implies (C). Suppose (B) to hold, and consider $a \in V$. Suppose

$$
\tilde{\varphi}\left(\frac{a}{2^n}\right) < \frac{1}{2} \quad (n \in \mathbb{N}, \ n \geqslant N) \tag{2.17}
$$

(the other case can be treated similarly). Then (2.1) , (2.17) imply for $n \ge N$

$$
\bar{\varphi}\left(\frac{a}{2^n}\right) \equiv \bar{\varphi}\left(\frac{a}{2^{n+1}}\right) + \tilde{\varphi}\left(\frac{a}{2^{n+1}}\right) < 1,
$$

and therefore the congruence is in fact an equality, which gives

$$
\widetilde{\varphi}\left(\frac{a}{2^{n+1}}\right) = \frac{1}{2}\widetilde{\varphi}\left(\frac{a}{2^n}\right) < \frac{1}{4} \quad (n \ge N).
$$

Replacing $N + 1$ by N yields (C).

4. (C) \implies (2.2). Let (C) hold. For $a \in V$ we shall show that

$$
\tilde{\varphi}\left(\frac{a}{2^n}\right) = 2\tilde{\varphi}\left(\frac{a}{2^{n+1}}\right) \quad (n \ge N)
$$
\n(2.18)

or

$$
\widetilde{\varphi}\left(\frac{-a}{2^n}\right) = 2\widetilde{\varphi}\left(\frac{-a}{2^{n+1}}\right) \quad (n \geqslant N). \tag{2.19}
$$

Then we can apply Theorem 2.2 with $h_n = 2$ ($n \in \mathbb{N}$) to deduce (2.2). For $a \in V$ we have by (C)

$$
\tilde{\varphi}\left(\frac{a}{2^N}\right) < \frac{1}{3} \tag{2.20}
$$

or $\tilde{\varphi}(\frac{1}{2N}) < \frac{1}{3}$. We shall show that the first case implies (2.18); the second case then implies (2.19). So we start with (2.20), and we like to deduce

$$
\tilde{\varphi}\left(\frac{a}{2^N}\right) = 2\tilde{\varphi}\left(\frac{a}{2^{N+1}}\right);
$$
\n(2.21)

after this, (2.18) follows recursively. From (C) we get

$$
\min\left\{\widetilde{\varphi}\left(\frac{a}{2^{N+1}}\right),\widetilde{\varphi}\left(\frac{-a}{2^{N+1}}\right)\right\}<\frac{1}{3}.
$$

If $\tilde{\varphi}\left(\frac{a}{2^{N+1}}\right) < \frac{1}{3}$, then (2.21) follows from $\tilde{\varphi}\left(\frac{a}{2^{N}}\right) \equiv 2 \tilde{\varphi}\left(\frac{a}{2^{N+1}}\right)$. If $\tilde{\varphi}\left(\frac{-a}{2^{N+1}}\right) <$ $\frac{1}{3}$, then we have (cf. (2.20))

$$
0 = \widetilde{\varphi}(0) \equiv \widetilde{\varphi}\left(\frac{a}{2^N}\right) + 2\widetilde{\varphi}\left(\frac{-a}{2^{N+1}}\right) < 1,
$$

which yields $\tilde{\varphi}\left(\frac{a}{2N}\right) = \tilde{\varphi}\left(\frac{-a}{2N+1}\right) = 0$. But then also $\tilde{\varphi}\left(\frac{a}{2N+1}\right) = 0$ (cf. (2.7)), and again we have (2.21).

3. Decent characters

J.A. Baker [1] called *decent* a character χ of a group G , if there exists an additive function $f : G \to \mathbb{R}$ such that

$$
\chi(x) = \exp(2\pi i f(x)) \quad (x \in G).
$$

He also noticed that a function φ satisfies the congruence (2.1) if and only if the mapping $\chi_{\varphi}: x \to \exp(2\pi i \varphi(x))$ is a character. It is also obvious that a solution φ of (2.1) is decent if and only if the corresponding character χ_{φ} is decent.

We are going now to express the results of the previous section in the language of characters. Let us first focus on rational characters. Put $\mathbb{Q}_+ :=$ $\mathbb{Q} \cap [0,\infty)$, let *T* stand for the unit circle, and start with the following.

Lemma 3.1

Let $(S, +)$ be a subsemigroup of $(\mathbb{Q}_+, +)$ such that $0 \in S$ and S is dense *in* \mathbb{Q}_+ . Then a character $\chi : S \to T$ is continuous at 0 *if and only if it admits the form*

 $\chi(x) = \exp(2\pi i c x)$ $(x \in S)$ (3.1)

where c is a real constant.

Proof. If χ has the form (3.1) then it is obviously continuous. To prove the converse, similarly as J.A. Baker did in [1; Lemma 2] (cf. also [5; (23.30)]) we observe that χ is uniformly continuous and extend it to a continuous function $\chi_1 : \mathbb{Q}_+ \to T$. It is clear that χ_1 is a character. Setting $\chi_2(x) = \chi_1(|x|)^{\text{sgn } x}$ for $x \in \mathbb{Q}$ we extend χ_1 to a continuous character of \mathbb{Q} . By Lemma 3 in [1] (cf. also $[5; (25.26)]$ we get our assertion.

To prove the forthcoming Proposition we will use the following result (cf. [9; Proposition 1]).

Lemma 3.2

Let $(S, +)$ *be a topological semigroup with neutral element e.* If $\chi : S \rightarrow T$ *is a character and* $\{1\}$ *is the only semigroup contained in c* $\{X(U)\}$ for a neigh*bourhood U of e then* χ *is continuous at e.*

We have

PROPOSITION 3.1

Let $(S,+)$ be a subsemigroup of $(\mathbb{Q}_+,+)$ such that S is dense in \mathbb{Q}_+ and $0 \in S$. A character $\chi : \mathbb{Q} \to T$ is decent if and only if for every $\xi \in \mathbb{Q}_+$ there *exists an* $\varepsilon > 0$ *such that the only semigroup contained in* $cl \chi(\xi(S \cap [0, \varepsilon)))$ *is* $\{1\}.$

Proof. The "only if" part easily follows from [1; Corollary in Section 4 on p. 323 and Lemma 3. To prove sufficiency fix $a \in \mathbb{Q}_+$ and consider the character $\chi_{\xi}: S \to T$ given by

$$
\chi_{\xi}(x)=\chi(\xi x).
$$

From our assumptions and Lemma 3.2 we infer that χ_{ξ} is continuous at 0. Hence by Lemma 3.1 there exists a constant $c(\xi) \in \mathbb{R}$ such that

$$
\chi(\xi x) = \exp(2\pi i c(\xi)x) \quad (\xi \in \mathbb{Q}_+, \ x \in S).
$$

Define $f : \mathbb{Q} \to \mathbb{R}$ by $f(\xi) = \text{sgn}(\xi)c(|\xi|)$. It is easy to check that we have indeed

$$
\chi(\xi x) = \exp(2\pi i f(\xi)x) \quad (\xi \in \mathbb{Q}, \ x \in S). \tag{3.2}
$$

Fix some rationals ξ and η . Then by (3.2) we obtain for every $x \in S$

$$
\exp(2\pi i (f(\xi+\eta)-f(\xi)-f(\eta))x)=\chi((\xi+\eta)x)\chi(\xi x)^{-1}\chi(\eta x)^{-1}=1
$$

whence

$$
(f(\xi+\eta)-f(\xi)-f(\eta))x\in\mathbb{Z} \quad (x\in S).
$$

Thus in view of density of S in \mathbb{Q}_+ we obtain

$$
f(\xi+\eta)=f(\xi)+f(\eta),
$$

which means that f is additive. Finally, fix an $x_0 \in S \setminus \{0\}$ and let r be an arbitrary rational. Write $r = \xi x_0$ for some $\xi \in \mathbb{Q}$. Then by (3.2) and additivity of f

$$
\chi(r)=\chi(\xi x_0)=\exp(2\pi i f(\xi)x_0)=\exp(2\pi i f(\xi x_0))=\exp(2\pi i f(r)),
$$

or χ is decent in view of additivity of f.

The above Proposition can be easily generalized to the case of linear rational spaces. Indeed, let χ be a character of a rational linear space V and let *B* be a Hamel base of *V*. Further, for every $b \in B$ define $\chi_b : \mathbb{Q} \to T$ by

$$
\chi_b(\xi)=\chi(\xi b)\quad(\xi\in\mathbb{Q}).
$$

Then χ_b is a character for every $b \in B$, and [1; Remark on p. 321] states that χ is decent if and only if χ_b is decent for every $b \in B$. Thus we can extend Proposition 3.1 to the following.

THEOREM 3.1

Let V be a rational linear space and let $\chi : V \to T$ *be a character. Further, let B be a Hamel base of V and for every b* \in *B let* S_b *be a dense subset of* \mathbb{Q}_+

such that $0 \in S_b$ *and* $(S_b, +)$ *is a subsemigroup of* $(\mathbb{Q}_+, +)$. Then χ *is decent if and only if for every* $b \in B$ *and every* $\xi \in \mathbb{Q}_+$ *there exists an* $\varepsilon > 0$ *such that the only semigroup contained in* $cl \chi(\xi(S_h \cap [0, \varepsilon))b)$ *is* $\{1\}$.

REMARK 3.1

Theorem 3.1 contains Theorem 2.2. To see this consider a sequence h_1, h_2, h_3, \ldots of positive integers with $h_n \geq 2$ for $n \geq 2$, put $H_n = h_1 \cdots h_n$ $(n \geq 1)$ and observe that the subset *S* of \mathbb{Q}_+ defined by

$$
S = \left\{ \frac{k}{H_m} : k \in \mathbb{N} \cup \{0\}, m \in \mathbb{N} \right\}
$$

is dense in \mathbb{Q}_+ , $0 \in S$, and $(S, +)$ is a subsemigroup of \mathbb{Q}_+ . Suppose that $\varphi: V \to \mathbb{R}$ is a solution of the congruence (2.1), $\tilde{\varphi}$ is defined as in Section 2. and $\chi : V \to T$ is a character defined by $\chi(x) = \exp(2\pi i \varphi(x))$. Moreover, assume that for every $a \in V$ there is an $N \in \mathbb{N}$ such that (2.8) is satisfied.

1. Let B be a Hamel base of V and for every $b \in B$ put $S_b = S$. Let $a = \xi b$, where *b* is an arbitrary chosen element of B and ξ is a fixed number from \mathbb{Q}_+ .

2. Put $\varepsilon = \frac{1}{H_{N+2}}$. It is now a matter of a simple calculation to check that $s \in S_b \cap [0, \varepsilon)$ if and only if there exist $n \geq 3$ and $k \in \{0, \ldots, h_{N+3} \cdots \}$ h_{N+n} – 1} such that

$$
s = \frac{k}{H_{N+n}}.\tag{3.3}
$$

3. Assume first that there is an $N \in \mathbb{N}$ such that (2.9) holds. Fix such an *N* and let $s \in S_b \cap [0, \varepsilon)$ be given by (3.3) for some $n \geq 3$ and $k \in$ $\{0,\ldots,h_{N+3}\cdots h_{N+n}-1\}$. Using the argument from part 4 of the proof of Theorem 2.2, and since $h_{N+r} \geq 2$ ($r \in \mathbb{N}$), we obtain

$$
0 \leq \tilde{\varphi}(s\xi b) = \tilde{\varphi}\left(\frac{ka}{H_{N+n}}\right) = \frac{k}{h_{N+1}\cdots h_{N+n}}\tilde{\varphi}\left(\frac{\xi b}{H_N}\right)
$$

$$
< \frac{1}{h_{N+1}h_{N+2}h_{N+3}} \leq \frac{1}{8}.
$$

This implies that the only semigroup of *T* contained in $cl \chi(\xi(S \cap [0,\varepsilon]))$ is $\{1\}$. as it is the only subsemigroup of *T* contained in the halfplane $\{z \in \mathbb{C} :$ $Re z \geqslant 0$.

In the case where there is an $N \in \mathbb{N}$ such that

$$
\tilde{\varphi}\left(\frac{-a}{H_n}\right) = h_{n+1}\tilde{\varphi}\left(\frac{-a}{H_{n+1}}\right) \quad (n \ge N)
$$

we have $0 \leq \varphi(-s\xi b) \leq \frac{1}{8}$ and, according to (2.7), $\varphi(s\xi b) \in \{0\} \cup (\frac{7}{8}, 1)$ for every $s \in S_b \cap [0,\varepsilon)$. This implies that $\{1\}$ is the only semigroup contained in cl $\chi(\xi(S\cap [0,\varepsilon))b)$.

4. Since *b* and ξ were chosen arbitrarily, by Theorem 3.1 we get decency of x, which is equivalent to decency of φ , as we observed at the beginning of this section.

5. Conversely, if φ is decent then so is the corresponding character χ . If $a = 0$ then (2.8) obviously holds. In the case where $a \neq 0$, let B be a Hamel base of *V* which contains *a.* Now in view of Theorem 3.1, Lemmas 3.2 and 3.1, we see that there exists a $c \in \mathbb{R}$ such that $\overline{\varphi}(\xi a) \equiv \xi c \ (\xi \in \mathbb{Q}_+).$ Hence we have either $\overline{\varphi}(\xi a) = \xi c$ or $\overline{\varphi}(-\xi a) = -\xi c$ for ξ positive and small enough. This implies (2.8).

Let us state now an analogue of Theorem 2.3 where conditions (A) - (E) are *translated* to the language of characters. To this aim let us introduce the following notation.

$$
T_{+} = \{ z \in T : \text{ Im } z \geq 0 \} \setminus \{ -1 \},
$$

\n
$$
T_{r} = \begin{cases} T, & \text{ if } r > \frac{1}{2}, \\ \{ z \in T : |z - 1| < |\exp(2\pi i r) - 1| \}, & \text{ if } 0 \leq r \leq \frac{1}{2}. \end{cases}
$$

THEOREM 3.2

Let $\chi : V \to T$ be a character. The decency of χ is equivalent to each of *the following conditions:*

(A') *For every* $a \in V$ *there is an* $\varepsilon > 0$ *such that*

$$
\chi(\xi a)\in T_+\quad(\xi\in\mathbb{Q},\ 0\leqslant\xi\leqslant\varepsilon)\quad\text{ or}\quad\chi(-\xi a)\in T_+\quad(\xi\in\mathbb{Q},\ 0\leqslant\xi\leqslant\varepsilon).
$$

(B') For every $a \in V$ there is an $N \in \mathbb{N}$ such that

$$
\chi\left(\frac{a}{2^n}\right) \in T_+ \quad (n \in \mathbb{N}, \ n \geq N) \quad \text{or} \quad \chi\left(\frac{-a}{2^n}\right) \in T_+ \quad (n \in \mathbb{N}, \ n \geq N).
$$

 (C') *For every* $a \in V$ *there is an* $N \in \mathbb{N}$ *such that*

$$
\chi\left(\frac{a}{2^n}\right) \in T_{\frac{1}{3}} \quad (n \in \mathbb{N}, \ n \geq N).
$$

(D') If $a \in V$ then there is a $D > 0$ such that

$$
\chi\left(\frac{a}{n}\right) \in T_{\frac{D}{n}} \cap T_+ \quad (n \in \mathbb{N}) \quad or \quad \chi\left(\frac{-a}{n}\right) \in T_{\frac{D}{n}} \cap T, \quad (n \in \mathbb{N}).
$$

 (E') *If* $a \in V$ then there exists a $D > 0$ such that

$$
\chi\left(\frac{a}{n}\right) \in T_{\frac{D}{n}} \quad (n \in \mathbb{N}).
$$

Remark 3.2

Let us note that the condition (C') slightly differs from (C) . In fact (C) is equivalent to

$$
\left\{\chi\left(\frac{a}{2^n}\right),\chi\left(\frac{-a}{2^n}\right)\right\}\cap (T_{\frac{1}{3}}\cap T_+) \neq \emptyset \quad (n\in\mathbb{N}, n\geq N).
$$

where $\chi(x) = \exp(2\pi i \overline{\varphi}(x))$ ($x \in V$). However, since χ is a character, we have $\chi(-x) = \chi(x)^{-1}$, and therefore if one of numbers $\chi\left(\frac{a}{2^n}\right)$, $\chi\left(\frac{-a}{2^n}\right)$ belongs to $T_{\frac{1}{3}}$ then so does the other one. Thus at least one of them must belong to T_{+} . A similar argument justifies that (E') is equivalent to (E) .

Remark 3.3

We have used above the fact that a character of a rational linear space is decent if and only if its restrictions to rays passing through elements of a fixed Hamel base B are decent. Therefore in Theorem 3.2 it is enough to assume each of the conditions $(A') - (E')$ for $a = \xi b$ where $\xi \in \mathbb{Q}$ and $b \in B$.

In view of [1; Corollary in Section 4 on p. 323] another condition equivalent to decency of a character χ of a rational linear space V is its continuity along (rational) rays, i.e., continuity of functions $\xi \to \chi(\xi a)$, mapping Q into *T* (for $a \in V$). Let us conclude with a result characterizing decency as continuity with respect to some topology in *V*. This topology is called *core-topology*, and it is defined as follows (cf., e.g., [7; Chapter I]). A point $x \in A \subset V$ is said to be *algebraically interior* to A iff for every $a \in V$ there exists an $\varepsilon > 0$ such that

$$
\xi a + x \in A
$$

for every $\xi \in (-\varepsilon, \varepsilon) \cap \mathbb{Q}$. By core A we denote the set of all points which are algebraically interior to A. We say that A is *algebraically open*, if core $A = A$. The family of all algebraically open subsets of *V* is a topology, usually called the *core-topology.* This is the finest topology in *V* such that with respect to this topology, and the natural topology in $\mathbb Q$, the mappings

$$
\xi \to \xi x + y
$$

of $\mathbb Q$ into *V* are continuous for every *x* and *y* in *V*. This characterization of the core-topology and the equality

$$
\chi(y)\chi(\xi x)=\chi(\xi x+y)
$$

yield immediately the announced characterization of decency.

Theorem 3.3

A character of a rational linear space is decent if and only if it is continuous with respect to the core-topology.

Acknowledgement

The first and the third author were supported by the Polish State Com mittee for Scientific Research Grant No. 2 РОЗА 033 11.

References

- [1] J.A . Baker, *On some mathematical characters,* Glasnik Mat. 25 (45) (1990), 319- 328.
- [2] J. Brzdęk, *The Cauchy and Jensen differences on semigroups,* Publ. Math. Debrecen 48 (1996), 117-136.
- [3] J. Brzdęk, *On approximately additive functions,* manuscript.
- [4] J.G . van der Corput, *Goniometrische functies gekarakteriseerd door een functionaalbetrekking,* Euclides **17** (1940), 55-75.
- [5] E. Hewitt, K.A. Ross, *Abstract Harmonic Analysis. Vol. I.* Springer-Verlag, Berlin - Göttingen - Heidelberg, 1963.
- [6] D.H. Hyers, G. Isac, Th.M. Rassias, *Stability of Functional Equations in Several Variables,* Birkhäuser, Boston - Basel - Berlin, 1998.
- [7] Z. Kominek, *Convex Functions in Linear Spaces.* Prace Naukowe Uniwersytetu Śląskiego w Katowicach **1087,** Uniwersytet Śląski, Katowice, 1989.
- [8] J. Ratz, *Remark at the Eighteenth International Symposium on Functional Equations (Waterloo and Scarborough. Ontario. Canada. August 26 September 6. 1980),* Proceedings of the Eighteenth International Symposium on Functional Equations, Centre for Information Theory. Faculty of Mathematics, University of Waterloo, Waterloo, Ontario, Canada, p. 30.
- [9] M. Sablik, *A functional congruence revisited,* Grazer Math. Ber. 316 (1992), 181-200.
- [10] J. Vietoris, *Zur Kennzeichnung des Sinus und verwandter Funktionen durch Funktionalgleichungen,* J. Reine Angew. Math. 186 (1944), 1-15.

Karol Baron Instytut Matematyki Uniwersytet Śląski 40-007 Katowice Poland

Maciej Sablik Instytut Matematyki Uniwersytet Śląski 40-007 Katowice Poland E-mail: mssablik@us.edu.pl

Peter Volkmann Mathematisches Institut I Universität Karlsruhe 76128 Karlsruhe Germany

Manuscript received: January 10, 2000 and in final form: April 26, 2000