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Abstract. All 2-point invariants of an arbitrary DeSitter manifold are
determined without any regularity assumption, especially those which
are additive on geodesics.

1. Introduction

Two functional equations play a role in this note: the functional equation
of 2-point invariants of a DeSitter manifold will be solved, and, moreover, the
functional equation of additivity along lines of such a manifold will be studied
within the set of solutions of the first equation. This then leads us to the
notion of distance in a DeSitter World over an arbitrary pre-Hilbert space X
of dimension at least 3. In the case dim A < oo the problems above are treated
in chapter 4 of the book [1]. However, further methods and ideas arc needed
in the present situation in comparison with the finite-dimensional case.

For the classical theory of DeSitters World see [3], [4], for modern devel-
opments see [5], [6], [7].

2. Points, motions, lines

Let X be a real pre-Hilbert space, i.e. a real vector space furnished with
an inner product
6:X XX -» R 6 (x,y) =: xy,

satisfying x2 > 0 for all x @ 0 in X. We assume that the dimension of X is at
least 3. Let t be a fixed element of X such that t2 = 1. Define
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H := t1:= {x € X \tx = 0}.

Then H ®Rt = X holds true (see section 2 of [2]). Since x - (tx) tis in H for
all x e X.
X = x+ xot with x€ H and xo €R

implies x = x —(tx) t and xq = tx. Define
S(X) {xe X \x2- xl = 1}

as the set of points of DeSitter’'s Manifold over X. The Lorentz-Minkowski
distance | (x,y) of x,y € X is defined (see [2]) by the expression

I(x,y) = (x-y)2- (x0- yo)2-

A Lorentz transformation of X is a mapping /1 from X into itself such that

I(x,y) = 1(X(x),\(x))

holds true for all x, y 6 X . In [2] all Lorentz transformations of X are determ-
ined.

The restriction of a surjective Lorentz transformation J1: X —» X on S (X)
will be called a motion of S (X) provided that /1(0) = 0. Motions of S (A)
must be bijective. We hence get the group A (A) of motions of 5(A).

The points a, b of S (A) are called separated if, and only if, b (f {a, -a).
Such a pair must be linearly independent. Otherwise an equation era = Rb
holds true with real a, @ which are not both 0. But this implies

a2=l(ra 0) = 1(Rb, 0) = R2,

ie. 3= aorfR ——a.
Suppose that a, b are points of 5(A) which are separated. Then every
ellipse, every euclidean line, every branch of a hyperbola in

{(a+ p\(, r,6 K}IM5(A) (1)
is called a line of 5 (A). All (a + ¢ in (1) are characterized by the equation
E+1v)2+ (1- 72*2= 1, (2

where 7 := 7 (a, b) := ab-aobo designates the pseudo-euclidean scalar product
of a,b. In the cases 72< 1, 72= 1, 72> 1, respectively, we get an ellipse (a
closed line), two euclidean lines (null-lines), two branches of a hyperbola (open
lines), respectively, of 5(A). The lines of 5 (A) are also called its geodesics.
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3. The functional equation of 2-point invariants

Suppose that W & 0 is a set and that
d:S (X) XS (X)->W
satisfies
d(x,y) = d(f (x).f (y)) 3)
for all motions f of S (X) and all x,y GS (X). Then d is called a 2-point

invariant of S (X).

Theorem 1
O (X) acts transitively on S(X). |If a,b and c,e are pairs of separated
points, then there exists S G [l (X) with 6(a) = C and O(b) = e if, and only if,

7@ D=7 (ce)

holds true.

Proof, a) In step c) of the proof of Theorem 3 in [2] we showed that to
x,y GX\{0} there exists a bijective Lorentz transformation 1 with I (0) = 0
and N1 (x) = y if, and only if, 1 (x,0) = | (y, 0). Suppose that x,y are points of
S (X). Then

1(x,00= 1= 1,0
holds true. There hence exists a motion $with 6 (x) = .

b) If a, b and c, e are pairs of separated points, and if » G (X) satisfies

S(a) = cand 5(6) = e, then

I (a,b) = I (c,e),
since d is a Lorentz transformation. Hence
(@a- b)2- (@0- bof = (c- e)2- (c0- e0)2,
ie. 7(a, b) —7 (c,e), in view of a, 6,c,e GS (X).

c) Let o, b and c, e be pairs of separated points satisfying 7 (a, b) = 7 (c, e).
Because of Theorem 1 in [2], Lorentz transformations of X fixing 0, must be
linear. Separated points x, y must thus be transformed into separated points
under motions. In view of step a) we hence may assume a = ¢ without loss of
generality, by observing

7)) =7(/(*),/bl) (4)
for x,y G S (X) and motions /. The situation now is that a,b and a,c are

pairs of separated points such that 7 (a, b) —7 (a,e). If h G H satisfies h1= 1
which especially implies h GC (X), then we even may assume that a = h, in



52 Walter Benz
view of step a). Then 7 (a,b) = 7 (a, e) reads hb = he, i.e. hb = he because of
h it We now consider the pre-Hilbert space

X0:= {x —(xh)h 1 XG X}.

Obviously, t G Xom Again, we would like to apply Theorem 3 of [2], but this
time for Xo and for the points

£:=b—(®h)h and 7:= e —(eh)h.
Observe

I(~0)=f-b2= (b-(bh)h)2-b 2
1- (bh)2= 1- (eh)2
1fo>0).

There hence exists a Lorentz transformation Ao of Xo satisfying Ao(0) = 0 and
Ao(h — (bh) h) —e —(eh) h. (5)

The problem now is to extend Ao to a Lorentz transformation A of X by
putting
A (Xx) Ao(X — (xh) h) + (xh) h

for all x G X . That A is an extension of Ao follows from
xh = 0 for all x G Xo-
Put Xh := x —(xh) h for x GX. Then
A (X) = Ao(xh) + (xh) h =: x\ + (xh) h.
Put [Ao(x1)]0=: x2. Then
I (A(X), A(y)) = ®i + (xh) h —ri —(yh) h)2- (x2- ¥2)2
= 1 (Ao(z/i),Ao(yl,)) + A
with A —2(r1—y\) h (xh —yh) + (xh —yh)2 = (xh —yh)2 since
x\ = A0(xh) G Xo
implies x\h = 0. Similarly, we gel
I (x,y) = I (xh,yn) + A.

ie. 1(x.y) = | (Xo(xh), Ao(yh)) + A — I (A(X), A(y)), and A must hence be a
Lorentz transformation of X. We finally would like to show

A()=h and A(b) = e
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In fact,
N(h) = AO(h - h2mh) + h2ah = AO(©) + h = h,
and
A(b) = Ao(b —(bh)h) + (bh) h = [e —(eh) /] + (eh) h = e,

in view of (5) and bh = eh.

We now would like to solve the functional equation (3) of 2-point invariants.

T heorem 2
Letg : M— W be afunction and let Wq,W\ be fixed elements of W. Then

Xy - x0yo) for X,y separated
0 for X = y (6)
\ for x = -y
with x,y G S (A) is a solution of (3). If, on the other hand,
d:S(X) XS (X) >W

solves (3), then there exists a function g : R — W and elements wo,w\ G W
such that (6) holds true.

Proof. Obviously, (6) solves (3) for all motions / and all x,y £ S (X), in
view of (4). Assume now that d : S (X) x S (X) — W s a solution of (3).
Take elements i,j GH withi2= 1 j2= 1 ij = 0. For k G K define g (k) by
means of

g(K) :=d(r ki +j + kt). 7)
Observe here rG 5 (X), ki+j + kt GS (A) and
7 (iki+j+ kt) =k (8

Moreover, put wo m= d(i,i) and w\ := d(i,—). If & G S (A), there exists
/ GA (A) with f (i) = x on account of Theorem 1. Hence

d(x,x) —d((f (i), f (i)) = d(r, 1) = wO.
Since / is linear, we also get
d(x. =d(f(r),/ (-r)) = d(r, -i) = w{.

Suppose now that x,y GS (A) are separated. If 7 (2,y) =: k, then, according
to (8) and Theorem 1, there exists / GA (A) satisfying

/ (i) = x and [/ (ki+j + kt) = vy.
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Hence d (oK, y) = d(f (r), / (ki +j + kt)) = d (i, ki +j + kt) = g (k), in view of
(7). Thus
doxy) = g(k) = g(70xy)) =4 (xr- xoYo).

4. The additivity equation

Since motions are linear, images of null-lines must be null-lines, and images
of closed lines, open lines must be closed lines, open lines, respectively.
Suppose that s : S (X) x S (X) —» R™ = {r £ R |r ™ 0} satisfies the
following property.
(A) If x,y are separated points on a line I, and if z £ | is between x,y, then

s(x,y) = s(x,z) + s(z,y) ©)

holds true.
Then s is called additive.
If | is null or open, the usual betweenness relation is meant. If | is closed,
then z is assumed to be an element of the smaller part of the ellipse in question
of the two parts defined by the points x,y £ I.

Theorem 3
Ifs:S(X) XS (X) — R”o is on additive 2-point invariant, then there
exist non-negative constants 77,I'2 such that

s(x,y) = 0, s(x,y) = nch-1(y(x,y)), sO0ky) = r2cos_1(7 (xy)),

provided >y are separated points on a null-line, an open line, a closed line,
respectively.

Here ch™la = R with a ~ 1 and R ~ 0 is defined by ch/3 = a. Similarly,
cos-la = B with R € [0,# and a G [—1, 1] means cosR = a.

Proof, a) Let a+ Rw := {a+ Aw]A £ R}, v ® 0, be a null-line. Hence
70,00=1 7(@,n =0 =7 (v.v). (10)
Any two distinct points of this line | must be separated. Moreover,
7@+ Ay;,a+ \>v) = 7 (0 + AU, a + Adw (11)

in the case Ai + A2 and A3 ¢ A4, in view of (10).
Suppose that >k ®y are on | and that z  {>x,y} is on | between >and vy.
Then (11) and Theorem 1 imply the existence of motions £i <52 satisfying

n', (oK)=, Si(y) = z, 62(x) = z, 62(y) = y-
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Hence s(x,y) = s(x,z) and s(x,y) = s(z,y). Thus s(x,y) = 0, in view of
.

b) Let (1) be an open line satisfying (2) with 7 (a,b) =: k. Up to a motion
we may assume a = iand b= ki+j + ktwithi,j GX, i2= 1, j2= 1 ij —0.
The two branches of (2) are given by

ch/imi + shflev and ch/le(—) + sh/lev
with 1 G K and
j + kt
V' VvIP~rT

Without loss of generality we may work with the first version, since in the
other case —i can be replaced by i. We hence get

p(A) :=ch/ler+ shnmv, AgK, (12)

with 7(r,r) = 1, 7(i,v) = 0, y(v,v) = —1. Two points p (Ai), p (J12) with
Ai ¢ A2 are separated. Moreover, in this case

7 [p (Ai), p (A2)) = ch (Ai —A2) > 1 (13)
holds true, (k > 1 need not to be true: if a,bin (1) are on different branches
of the underlying hyperbola, then k < - 1)

Let x,y be different points on (12). Because of 7 (x,y) = 7 (y,x) and
Theorem 1 there exists a motion that interchanges x and y. Hence s (x,y) =
s(y,x). We hence may assume x = p(\\) and y = p(A2) with Ai < A2
Theorem 2 implies

s(x,y) = ff(ch(Ai - A2)) ~ 0,
in view of (13). Put p{\) = g(ch\) for A~ 0. On account of (9) we get for
A2~ A3 N AL
v2(Ai - Xo) = P (Al- A3) + y?(Au - A2).
A standard procedure now leads to 4?(A) = rjA with a non-negative constant
77. Hence

s (x.y) = g (ch (A - A2)) = n(Ai - A2) = rich-1 (7 (x.y)),

on account of (13).

c) Let (1) be a closed line satisfying (2) with 7 (a,6) =: k. Mutatis
mutandis to the case b), we may work with the line I,
p (A) = cosAcei+ sinAsv, AGM, (14)
with
j + kt

vin~fc2'
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Hence 7 (r,r) = 1, 7(r,» = 0, 7 n,v) = 1. Take separated points x,y on the
line 1 with
x = p{Xi) and y = p{A2),

N2 < Ai, Ai - A2< F. Then
7 {p (A!), p(A2)) = cos (Ai - A2) €] - 1,1

Theorem 2 implies s(x,y) = g(cos(Ai - A2)) ~ 0. Put ip(X) = g (cos A) for
A G [0,/]. Again (9) together with a standard procedure leads to ip(A) = r2A
with a non-negative constant r2. Hence

s{x,y) = g (cos (A) - A2)) = r2(Ai - A2) = r2cos-1(7 (x,y)).

In the case ri —r2—1 we call s (x,y) DeSitter’s distance function.
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