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Zo l t a n  B o r o s

C h a r a c te r iz a tio n  o f tran sform ed  linear fu n ction s  
via sh ift invariances

A b stract. Transforms of linear functions in two variables are charac­
terized via translation like composite functional equations on restricted 
domain, under regularity assumptions of Cl type.

1. Introduction

In psychophysical theories of binocular space perception various formu­
lae are established for perceived egocentric distance and perceived egocentric 
direction in bipolar coordinates (i.e. in terms of the monocular directions re­
lative to the rotation centers of the eyes) in the horizontal plane at eye-level. 
These formulae are usually based on sets of experimental data but they are 
often presented bare of any theoretical justification. A  geometrically motiv­
ated theory of binocular space perception has been suggested by Luneburg [3]. 
In his model the perceived egocentric distance p(a , 0) >  0 and the perceived 
direction 0( a ,  0)  6 ] ~ § , § [ , defined on
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S  = { (a, 0 )  € R 2

are expressed by

p { a , 0 )  =  a - 0  and O ( a , 0 )  =  ^ ^ - .
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From these formulae, using basic arguments of elementary and analytic geo­
metry, one can derive that, in Luneburg’s model, the level sets of points with 
equal perceived egocentric distances are circles going through the centers of 
the eyes, while those of points with equal perceived egocentric directions are 
hyperbolae, which are asymptotically close to half lines with the appropriate 
physical direction.

In a recent attempt to give a qualitative characterization of Luneburg’s 
assumptions Heller [2] suggested the investigation of the model

p ( a , ß ) = f ( a ) - g ( ß )  and 0 ( a , ß )  =  +  ° { ß ) ,

where / ,  ff : ] —§ > § [ ”■> К  are strictly increasing and continuous. He also intro­
duced some psychophysical invariances, which are called shift-invariances (two 
of them are considered in the next paragraph in a slightly different presenta­
tion). Applying these invariance properties to Heller’s model one can obtain 
functional equations, which are solved in [1]. It turns out that none of these 
shift invariances alone but pairs of them force /  and g to be continuous affine 
functions. Thus a pair of these shift invariances and an additional assumption 
on symmetry reduce Heller’s model to Luneburg’s one.

In this paper we wish to initiate a generalization of Heller’s approach. We 
do not assume any specific formula for the perceived distance and the perceived 
direction. We consider these quantities as functions in two variables, satisfying 
some functional equations (induced by shift invariances). However, we do not 
assume any relation between these two functions, therefore it is natural to 
consider only one unknown function F  : S  —> R . Our aim is to prove that any 
F  satisfying the following shift invariance properties can be expressed via a 
linear function on S . Unfortunately, we need stronger regularity assumptions 
than those supposed in [1].

2. Functional equations induced by shift invariances

The following concepts are introduced in psychophysics.

D e f i n i t i o n  1

F  : S  —»• К  is а -shift invariant if

F ( a ,  ß) ^  F ( a ß' )  ^  F ( a  +  т, / ? K  F ( a ' +  t , 0 )  (la)

whenever (a,  13), (a +  r , /3), (a ', ß '), (a ' +  r, ß ') € S .
Analogously, F  : S  —► R  is ß -shift invariant if

F ( a ,  ß) Ź  F ( a ' , ß ') F  {a, ß  +  r) ^  F ( a ',  0  +  r) (lb)
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whenever (a ,ß ) , (а , ß  +  т), (а 1 ,ß ') ,  (а 1, ß' +  г) G S.

Now we reformulate these properties by means of functional equations. 

P roposition 1
F  : S  —> M is а -shift invariant if, and only if, there exists a function  Ф] 

in two variables such that the mapping x  Ф 1(ж,т) is strictly increasing for  
every г  6 ] — 7Г, 7t[ and

F ( a  +  T ,ß ) =  V 1(F ( a ,ß ) ,T )  (2a)

holds whenever (a , ß ), (a  +  r, ß) G S .
Similarly, F  is ß -shift invariant if, and only if, there exists a function  Ф2 

in two variables such that the mapping x  *->■ Ф2(х, r ) is strictly increasing for 
every T  G ] — 7Г, 7t [ and

F ( a ,ß  +  T) =  V 2( F ( a ,ß ) ,T )  (2b)

holds whenever (a , ß ) , (a , ß  +  т) G 5 .

Proof. Let us assume that F  : S  —>■ R  is a-shift invariant. Interchanging 
the roles of (a ,ß )  and (a ',ß ')  in (la ) we obtain

F ( a ,ß )  >  F ( a ',ß ')  * = ^ F ( a  +  r ,ß )  > F ( a '  +  T ,ß ')  (la*)

on the same domain. The properties (la ) and (la*) immediately imply

F { a , ß) =  F ( a ',  ß ') « = *  F  (a  +  r ,ß )  =  F  (of +  r, ß') (3)

whenever (a , ß ), (a  +  r, ß ), (а 1, ß 1), (а 1 +  т, ß ') G S . Now for every r  G ] — 7г, 7г[ 
let

X T =  { F ( a ,ß )  I ( a ,ß ) ,( a  +  T , ß ) & S )

and define

Ф х (х ,т ) =  F  (a  +  r ,ß )  (x  =  F  (a , ß) G Х т, т G] -  7г ,7г[).

It follows from (3) that the value of r) does not depend on the repre­
sentation x =  F ( a ,ß ) and the mapping x  i-> Ф ](х , r) is inject ive' for every 
г G] — 7г .7г[: while (la ) implies that it is increasing. The definition of Ф 1 
yields (2a). Conversely, if the functional equation (2a) is satisfied by some 
function Ф 1 which is strictly increasing in its first variable, we obviously have 
(la ).

The argument for the /З-shift invariant case is the same.
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3. Smooth shift-invariant functions

The simplest examples of simultaneously a- and /5-shift invariant functions 
are the restrictions of linear functions to the set S . Moreover, if F  : S  -»  R  
is a- and /5-shift invariant and /  : F ( S )  —> К  is strictly monotonie, then the 
composite function f  o F  is a -  and /5-shift invariant as well. In what follows 
we prove that under strong (but quite natural) regularity assumptions every 
a - and /5-shift invariant function F  can be decomposed in the form F  — f  o L, 
where L  is linear and /  is strictly monotonie.

T h e o r e m  1

Let F  : S  —> К  be continuously differentiable, a - and ß-shift invariant, and 
suppose that D \F {o t, ß )D 2F ( a ,  ß) ф 0 for every ( a , /5) € S . Then there exist 
a, b £ К  and a continuously differentiable, strictly monotonie function f  such 
that

F (o t,ß )  =  / ( a a  +  6/5) ((a , /5) G S ).

Proof. Let I  = ] — 7г/ 2, 7г/ 2[. Since D 2F ( a ,ß )  Ф 0 for every ( a , /5) £ S , 
the partial derivative D ^ F  : S  - t  R  is continuous, and S  is connected, the 
function D 2F  has to preserve the sign. Hence either £>2-Р(а, /5) >  0 for every 
( a , /5) £ 5  or D 2F ( a ,ß )  <  0 for every (a , /5) £ S  (let us note that also 
D \ F  has this property). Therefore F  is strictly monotonie in the second 
variable while keeping the first variable fixed (and vice versa). In particular, 
for every x £ F ( S )  and a  £ I  the equation F ( a ,ß ) =  x  is satisfied by at most 
one ß  =  фх (а ). As it is familiar from calculus, under our assumptions the 
domain of the implicit function фх is an open subset of the interval I ,  фх is 
differentiable, and

Ф 'М ) =  -
D \F ( a ,  фх {а)) 
D 2F ( a , фх {а)) (4)

for every a  in the domain of фх . It follows from (4) that ф'х is continuous and 
фх(а) Ф 0 for every a , hence the restriction of фх to any interval is strictly 
monotonie. Since F  is continuous, the graph of фх , which is actually equal to 
the set F ~ 1(x ), is closed in the subspace topology of S . Thus the domain of 
фх is a union of pairwise disjoint open intervals such that for any connected 
component ]v \, 1̂2[ we have ( i /^ lim a -^  <&r(o:)) £ d S  (i =  1, 2), where OS 
denotes the boundary of S  and the limit has to be considered only from above 
or from below, respectively.

The second step is to prove that the functions Ф 1 and Ф2 are continuously 
differentiable. YVe present the argument for Ф 1, using the notation introduced 
in the proof of Proposition 1. Let tq £ ] — 7r, 7r[ and то e x T0 be arbitrary. Due
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to the definition of X TQ there exists (a o,ßo) G S  for which («о +  Tin A)) 6 & 
and xq =  F (a o , ßo)- Let us define

h  = max{/30 -  ato,ßo ao - r0}, min I
7Г 7Г I f
- - a o , - - a o - T 0) [

and Ф (т) =  Ф^жо» т) ( t  € 7q). Then io is an open neighbourhood of 0 and

Ф (т) =  ^ i ( x 0,r )  =  ^ i ( F { a 0,ß o ),T ) =  F ( a 0 +  r,/30) G X TQ (r € / 0). (5)

It follows directly from (5) and from the assumptions on F  that the function Ф 
is continuously differentiable and Ф '(т) ф 0 for every r  G /о, hence Ф is strictly 
monotonie and, in particular, injective. Moreover, its inverse is defined on 
Ф ( /0), which is an open neigbourhood of xq =  Ф(0), and Ф -1 is continuously 
differentiable as well. For every x G Ф(/о) there exists a G I  such that 
a  -  otQ G I q and x  =  F ( a ,ß о) =  Ф (а  — ao), thus we have

^ i (t , t ) =  ^ i ( F ( a , /? 0) ,r )

=  F  { a  +  t , ß o )

~ F ( a 0 +  (a  -  a 0 +  r ) ,ß 0) (6)

=  Ф (а  — «о +  т)

=  Ф (Ф _ 1(а:) +  т)

with т chosen arbitrarily from an appropriate neighbourhood of 0. It follows 
from (6) and from the above listed properties of Ф that the function Ф] has 
continuous partial derivatives in a neighbourhood of (to , To), hence it is also 
continuously differentiable there. Applying (6) one can easily calculate the 
partial derivatives of T i  (and, analogously, those of Фг)-

In the third step we prove that ф'х(а ) does not depend on either x  or a. 
For this purpose let (ao,ßo), (c ti,ß i) G S , т =  ct\ -  a 0 and о =  ß\ — ßo■ 
Furthermore, let 6 >  0 be so small that we could define

and

Then

hi (a) =  F  (a  +  r ,ß 0 +  er) (a  G ]а0 -  ô, a 0 +  <5[ )

h2 {ß) — F ( a 0 +  t , ß +  о) (ß G]ßo -  6 ,ßo +  ô[).

hi {a) =  F  (a  +  r ,ß 0 +  о) =  <S>i(F{a,ß0 +  ег),т) =  Ф 1(Ф 2(Т,(а ,/?0), er), т),

hence we can calculate
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D 1F { a \ ,ß \ )
=  D\F(ao + r ,ß о  +  er)

=  K ( a 0)

=  Di'I'i(^2(^(ao,/3o),cr),r)D^2(-P’(ao,̂ o),CT)Z)iF(ü!o,/3o)-
Similarly,

h2{ß) =  F(otQ +  r ,ß  +  а) =  Ф 1(Ф 2( ^ ( а 0, ß), о ), т),
hence

D 2F (c t \ , /ii)

=  D 2F ( a 0 +  T ,ß 0 +  о)

=  h'2{ßо)

=  0 1 Ф 1(Ф2(^(ао,/?о),сг)> т)^ 1 Ф 2(^(ао,/Зо)1сг)-С)2^(ао,^о)-

Equations (7) and (8) imply

D \F { a i ,ß i )  _  D iF (a o ,ß o )

D 2F ( a u ß l ) ~  D 2F ( a 0,ß o y  U

which can be combined with equation (4) to obtain ф'х(а) =  c, where с € К  
does not depend on either x  or a.

Now let us consider (ao,ßo ), (a ii,ß i)  G S  such that ce*o — ßo =  cai — /?i. 
We may assume, without loss of generality, that ao ^  c*i. Let x =  F (a o ,ß o )- 
Let I x denote the union of the open intervals }u, q[ for which o;o G ]гл p[ and 
фх is defined on ];/, q[. Then I x is an open interval, ao G I x , and фх is defined 
on I x , but the numbers inf I x and sup I x do not belong to the domain of фх 
(in fact, Ix is one component of the domain of фх, which was described at the 
end of the first paragraph of the proof). From ф'х{а) =  c (a  G Ix) we have

фх (а) =  ca  +  dx (a  G I x ), (10)

where dx is a constant depending on x  and I x. In particular, the definition of 
x  yields ßo =  фх (а о) =  cao +  dx, whence

dx =  ßo -  ca0 =  ß\ -  c a i .

If a i ф / , . then ao <  s u p /, ^  (V). Let £ =  sup I ,  and q =  lim,, ф( о ).
Then (10) implies q =  c£ +  dx, hence (£. q) is an element of the segment with 
extremities (ao ,ßo ) and ( a ^ f t ) .  Since S  is convex, this yields (£,r?) G 5 , 
which contradicts (£ ,77) G d S  (obtained at the end of the first paragraph of 
the proof), since S  is open. Thus aq G I x . Then (10) yields

Фх{а i) =  cai + d x =  ß i,
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hence
F { c n ,ß i)  =  X =  F ( a 0,ßo).

So we have proved that F  is compatible with the equivalence relation defined 
on S  by

{oio,ßo) ~  ( a i , ß i )  <==* 0o -  ca0 =  ß \ -  с а х.

This result can be reformulated in such a way that the formula

f ( c a - 0 ) = F ( a , 0 )  ((a ,/? ) G S )  (11)

is a correct definition of the function / .  Since S  is connected and the line­
ar mapping (a , 0 ) (->• col — 0  is continuous, the domain of /  is an interval. 
Moreover, /  is continuously differentiable and differentiating (11) with respect 
to 0  we obtain

f '( c a  — 0 ) =  - D 2F ( a ,0 )  #  0,

hence /  is strictly monotonie. Thus we have proved the theorem with a =  c 
and 6 =  — 1.

R e m a r k  1
Our results remain true when the set S  is replaced by any open convex 

subset of M2.

P r o b l e m  1

It would be interesting to investigate the equations (2a)-(2b) under weaker 
regularity assumptions. According to author’s conjecture the continuous and 
(in each variable) strictly monotonie solutions should have the same form.
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