Zeszyt 204 Prace Matematyczne XVII 2000

KRZYSZTOF CIEPLIŃSKI

The rotation number of the composition of homeomorphisms

Dedicated, to Professor Zenon Moszner on his 70th birthday

Abstract. In this paper it is shown that if F and G are commuting orientation-preserving homeomorphisms of the unit circle, then

 $\alpha(F \circ G) = \alpha(F) + \alpha(G)$ (mod 1),

where $\alpha(F)$ denotes the rotation number of *F*.

Let S^1 be the unit circle with a positive orientation. In the sequel, F^n stands for the n-th iterate of the function *F .*

Write

 $t(x) := x + 1$ for all $x \in \mathbb{R}$

and observe that the following facts follow immediately by induction:

REMARK 1

If $f : \mathbb{R} \to \mathbb{R}$ is a bijection such that $f \circ t = t \circ f$, then

 $f^n \circ t^m = t^m \circ f^n$ for all $n, m \in \mathbb{Z}$.

LEMMA¹

If $f, g : \mathbb{R} \to \mathbb{R}$ *are bijections such that* $f \circ t = t \circ f$, $g \circ t = t \circ g$ *and* $f \circ q = t^k \circ q \circ f$ *for some* $k \in \mathbb{Z}$, *then*

(i)
$$
f^n \circ g = t^{kn} \circ g \circ f^n
$$
 for all $n \in \mathbb{Z}$,

(ii) $(f \circ q)^n = t^{\frac{n(n+1)}{2}k} \circ q^n \circ f^n$ for all $n \in \mathbb{N}$.

Remark 2

If $f : \mathbb{R} \to \mathbb{R}$ is a bijection such that $f \circ t = t \circ f$ and $f^{n}(x_0) = t^{m}(x_0)$ for some $n, m \in \mathbb{Z}, x_0 \in \mathbb{R}$, then

$$
f^{nk}(x_0) = t^{mk}(x_0) \quad \text{for all } k \in \mathbb{Z}.
$$

It is known (see for instance [1]) that for every homeomorphism $F : S^1 \rightarrow$ **S**¹ there exists a homeomorphism $f : \mathbb{R} \to \mathbb{R}$ such that $F(e^{2\pi ix}) = e^{2\pi i f(x)}$ for all $x \in \mathbb{R}$ and

 $f \circ t = t \circ f$, if f is strictly increasing

and

 $f \circ t = t^{-1} \circ f$, if f is strictly decreasing.

We will say that the function f represents the homeomorphism F . If f is strictly increasing we will say that the homeomorphism *F preserves orientation.*

If $F : S^1 \to S^1$ is an orientation-preserving homeomorphism represented by a function f then the number $\alpha(F) \in [0,1]$ defined by

 $\alpha(F) := \lim_{n \to \infty} \frac{1}{n} \pmod{1}, \quad x \in \mathbb{R}$

is said to be the rotation number of *F .* This limit always exists and does not depend on x and f .

Assume that $f : \mathbb{R} \to \mathbb{R}$ represents an orientation-preserving homeomorphism $F: S^1 \to S^1$ with an irrational rotation number. Since f and t are commuting homeomorphisms without fixed points, we see that for every $x \in \mathbb{R}$ there exists a unique sequence $\{s_k(x)\}_{k\in\mathbb{N}}\subset\mathbb{Z}$ such that

$$
t^{s_k(x)+1}(x) \geqslant f^k(x) > t^{s_k(x)}(x) \quad \text{for all } k \in \mathbb{N}.\tag{1}
$$

Moreover, there exists a finite non-zero limit

$$
\lim_{k\to\infty}\frac{s_k(x)}{k}=:\nu(t,f),
$$

which actually does not depend on x (see [3]). Let us mention here that another way of defining $\nu(t, f)$ can be found in [2].

Lemma 2

Let $f : \mathbb{R} \to \mathbb{R}$ represent an orientation-preserving homeomorphism $F: S^1 \to S^1$ *such that* $\alpha(F) \notin \mathbb{Q}$. Then

$$
\alpha(F) = \nu(t, f) \pmod{1}.
$$

Proof. Fix an $x \in \mathbb{R}$ and observe that from (1) we have

$$
\frac{x+s_k(x)+1}{k}\geqslant \frac{f^k(x)}{k}>\frac{x+s_k(x)}{k}\quad\text{for all }k\in\mathbb{N}\setminus\{0\}.
$$

Letting $k \longrightarrow \infty$ gives our assertion.

We can now prove our main result.

THEOREM 1

Let $F, G: S^1 \to S^1$ be commuting orientation-preserving homeomorph*isms. Then*

$$
\alpha(F \circ G) = \alpha(F) + \alpha(G) \pmod{1}.
$$
 (2)

Moreover, the homeomorphisms $f, q : \mathbb{R} \to \mathbb{R}$ which represent F and G, re*spectively, also commute.*

Proof. Since $f \circ q$ represents $F \circ G$ and $g \circ f$ represents $G \circ F$, there exists $a \; k \in \mathbb{Z}$ for which $f \circ q = t^k \circ q \circ f$.

We distinguish two cases.

1°. Either $\alpha(F)$ or $\alpha(G)$ is rational.

Since *F* and *G* commute, we can assume that $\alpha(F) \in \mathbb{Q}$. Therefore $f^{q}(x_0) = t^{r}(x_0)$ for some $q \in \mathbb{N} \setminus \{0\}$, $x_0 \in \mathbb{R}$ and $r \in \mathbb{Z}$, which gives $\alpha(F) = \frac{r}{a}$ (mod 1) (see for instance [1]). Moreover, Remark 2 yields

$$
f^{qn}(x_0) = t^{rn}(x_0) \quad \text{for all } n \in \mathbb{Z}.
$$
 (3)

Fix an $n \in \mathbb{N} \setminus \{0\}$. According to Lemma 1(ii), (3) and Remark 1, we have

$$
\frac{(f \circ g)^{qn}(x_0)}{qn} = \frac{\left(t^{\frac{qn(qn+1)}{2}k} \circ g^{qn} \circ f^{qn}\right)(x_0)}{qn}
$$

$$
= \frac{qn+1}{2}k + \frac{g^{qn}(t^{rn}(x_0))}{qn}
$$

$$
= \frac{qn+1}{2}k + \frac{t^{rn}(g^{qn}(x_0))}{qn}
$$

$$
= \frac{qn+1}{2}k + \frac{r}{q} + \frac{g^{qn}(x_0)}{qn}.
$$

Letting *n* tend to infinity and using the relations

$$
\lim_{n \to \infty} \frac{(f \circ g)^{qn}(x_0)}{qn} = \alpha(F \circ G) \pmod{1}, \quad \lim_{n \to \infty} \frac{g^{qn}(x_0)}{qn} = \alpha(G) \pmod{1}
$$
\nand $\frac{r}{q} = \alpha(F) \pmod{1}$, we deduce that $k = 0$ and (2) holds.

 2° . Both $\alpha(F)$ and $\alpha(G)$ are irrational.

Fix an $x_0 \in \mathbb{R}$ and let sequences $\{s_k(x_0)\}_{k \in \mathbb{N}}, \{p_k(x_0)\}_{k \in \mathbb{N}} \subset \mathbb{Z}$ be such that

$$
t^{s_k(x_0)+1}(x_0) \geqslant f^k(x_0) > t^{s_k(x_0)}(x_0) \quad \text{for all } k \in \mathbb{N},
$$

$$
t^{p_k(x_0)+1}(x_0) \geqslant g^k(x_0) > t^{p_k(x_0)}(x_0) \quad \text{for all } k \in \mathbb{N}.
$$

Lemma 1(ii) and Remark 1 now show that for a fixed $n \in \mathbb{N} \setminus \{0\}$ we have

$$
(f \circ g)^n(x_0) = \left(t^{\frac{n(n+1)}{2}k} \circ g^n \circ f^n\right)(x_0)
$$

\n
$$
\leq \left(t^{\frac{n(n+1)}{2}k} \circ g^n \circ t^{s_n(x_0)+1}\right)(x_0)
$$

\n
$$
= \left(t^{\frac{n(n+1)}{2}k+s_n(x_0)+1} \circ g^n\right)(x_0)
$$

\n
$$
\leq \left(t^{\frac{n(n+1)}{2}k+s_n(x_0)+1} \circ t^{p_n(x_0)+1}\right)(x_0)
$$

\n
$$
= t^{\frac{n(n+1)}{2}k+s_n(x_0)+p_n(x_0)+2}(x_0).
$$

In the same manner we can see that

$$
(f \circ g)^n(x_0) > t^{\frac{n(n+1)}{2}k + s_n(x_0) + p_n(x_0)}(x_0).
$$

These inequalities yield

$$
\frac{n+1}{2}k + \frac{s_n(x_0)}{n} + \frac{p_n(x_0)}{n} + \frac{x_0}{n} < \frac{(f \circ g)^n(x_0)}{n} \\ \leq \frac{n+1}{2}k + \frac{s_n(x_0)}{n} + \frac{p_n(x_0)}{n} + \frac{2}{n} + \frac{x_0}{n}.
$$

Since

$$
\lim_{n \to \infty} \frac{(f \circ g)^n(x_0)}{n} = \alpha(F \circ G) \pmod{1}, \quad \lim_{n \to \infty} \frac{s_n(x_0)}{n} = \nu(t, f)
$$

and

$$
\lim_{n\to\infty}\frac{p_n(x_0)}{n}=\nu(t,g),
$$

the last relation shows that $k = 0$ and

$$
\nu(t, f) + \nu(t, g) = \alpha(F \circ G) \pmod{1}
$$

Lemma 2 now leads to (2) .

As an immediate consequence of Theorem 1 we have the following **COROLLARY 1**

Let $F: \mathbf{S}^1 \to \mathbf{S}^1$ be an orientation-preserving homeomorphism. Then

$$
\alpha(F^{-1}) = \begin{cases} 0 & \text{if } \alpha(F) = 0 \\ 1 - \alpha(F) & \text{if } \alpha(F) \neq 0 \end{cases}
$$

References

- [1] I.P. Cornfeld, S.V. Fomin, Y .G . Sinai, *Ergodic Theory,* Springer Verlag. Berlin Heidelberg - New York, 1982.
- [2] W. Jarczyk, K. Łoskot, M .C. Zdun, *Commuting functions and simultaneous Abel equations,* Ann. Polon. Math. 60 (1994), 119-135.
- [3] M .C. Zdun, *Some remarks on the iterates of commuting functions,* in: European Conference on Iteration Theory (ECIT 91) (Lisbon, Portugal, 15-21 September 1991), edited by J.P. Lampreia, J. Llibre, C. Mira, J. Sousa Ramos and Gy. Targonski, World Scientific, Singapore - New Jersey - London - Hong Kong, 1992, 336-342.

Institute of Mathematics Pedagogical University Podchorążych 2 30-084 Kraków Poland E-mail: smciepli@cyf-kr.edu.pl *or* kciepli@wsp.krakow.pl

Manuscript received: November 24, 1999 and in final form: May 5, 2000