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Abstract. In this paper it is shown that if F and G are commuting
orientation-preserving homeomorphisms of the unit circle, then

a(F oG) = a(F) + a(G) (mod 1),

where a(F) denotes the rotation number of F.

Let S1 be the unit circle with a positive orientation. In the sequel, Fn
stands for the n-th iterate of the function F.
Write

t(x) :=r+1 forallx GR

and observe that the following facts follow immediately by induction:

Remark 1
If / : R —=R is a bijection such that / ot= to/, then

/" otm= tmofn forallnmG?Z.

Lemma 1
If/,g : R — R are bijections such that fot = tof,got. = tog and
fog = tkogof for some Kk G Z, then
(i) fnog= tknogo/" for alln G Z,

(i) (/og)n=1t 12 Ycognofnfor alln G N.
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Remark 2
If/ :R —» R is a bijection such that / ot = to/ and f n(xo) = tm(xo) for
some n,m € Z, xo € M, then

f nk{xo) = tmk(xo) for all fcG Z.

It is known (see for instance [1]) that for every homeomorphism F : S1—
S1 there exists a homeomorphism / :R -* R such that F(e2ntx) = e2nAx) for
all X£ R and
fot=tof, if/ isstrictly increasing

and

/ot =r'o/, if / is strictly decreasing.

We will say that the function / represents the homeomorphism F. If / is
strictly increasing we will say that the homeomorphism F preserves orienta-
tion.

If F :S1—-S1is an orientation-preserving homeomorphism represented
by a function / then the number a(F) £ [0,1) defined by

a(F) := nIlr}n00 N (mod 1), x £R

is said to be the rotation number of F. This limit always exists and does not
depend on x and /.

Assume that / : R -> R represents an orientation-preserving homeomorph-
ism F : S1—S1 with an irrational rotation number. Since / and t are com-
muting homeomorphisms without fixed points, we see that for every x £ R
there exists a unique sequence {sfc(x)}fe6N C Z such that

tSk™ +1(x) > f k(x) >tSkM(x) for all keN. (1)
Moreover, there exists a finite non-zero limit

. Sk(x)

lim

k-y00 k
which actually does not depend on x (see [3]). Let us mention here that
another way of defining is(t, f) can be found in [2].

(x> ).

Lemma 2
Let f : R — R represent an orientation-preserving homeomorphism
F :S1—S1 such that a(F) $ Q. Then

a(F) = v(t.f) (mod 1).
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Proof. Fix an x GK and observe that from (1) we have

X+ sh{x) + 1 f k{x) X + sk(x)
>
K ' K

for all k € N\ {0}.

Letting kK — » 00 gives our assertion.
We can now prove our main result.

Theorem 1
Let F,G :S1—-51 be commuting orientation-preserving homeomorph-

isms. Then

a(F 0G) = a(F) + a{G) (mod 1). )
Moreover, the homeomorphisms /, g : R -> M which represent F and G, re-
spectively, also commute.

Proof. Since fog represents F oG and go f represents G oF, there exists
afcez for which fog = tkogof.
We distinguish two cases.

1°. Either a(F) or a(G) is rational.

Since F and G commute, we can assume that a(F) G Q. Therefore
f g{xo) = tr{xo) for some q G N\ {0}, Xq G R and r G Z, which gives
a(F) = ~ (mod 1) (see for instance [1]). Moreover, Remark 2 yields

f gn(xo) = trn(xo) for all n G Z. 3)

Fix an n G N\ {0}. According to Lemma 1(ii), (3) and Remark 1, we have

(/°9T bl
an an
_gn+ 1, | ggn{tTn{xo))
” 2 k + gn
= gn + I h Jt™(gqn(x0))
2 gn
(n+ 1h+ r+ ggn(x0)
2 q gn

Letting n tend to infinity and using the relations

limL°Z M =a(FoG) (modl), 1imQ1M =za(G) N 1 |
n—00 gn n—yoo gn

and ~ = a(F) (mod 1), we deduce that k = 0 and (2) holds.
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2°. Both a(F) and ct(G) are irrational.
Fix an io 6 K and let sequences {sfc(xo)};fceN ,{Pfc(xo)}AeN C Z be such
that
N(xol+inro) > /*(x0) > tSkM {x0) for all kK £ N,

fPk{x0)+i (Xoj ™ gk(xo0) > tPk’Xo\x o) for all k £ N.

Lemma 1(ii) and Remark 1 now show that for a fixed n £ N\ {0} we have
(/lo#W = (f~*09o0/j (x,)
< ogn otsn(xo)+1j (Xo)

= (t"k+SnM +1 Qgn*

>

(tYinr 11b+°n(x0)+l 0 fPn(x0)+1* (Xo)
_ ~nrd Dfcsn(xo)+Pn(io)+2a0n
In the same manner we can see that
(/ os)n(x0) >

These inequalities yield

n+1 sn(x0)+, pn(xo)H, xO< (fog)n(xo)

_ﬁ_k H
n n n n
n+ 1 a,(z0) , Pn(xo) , 2 x0
2 n n n n
Since
IJ%(/’\ 9|_[ bl = a(™ o0G) (mod!) iim = ,(ti)
n->@ n
and
Pn(x0) _ -
hm et = (),
the last relation shows that A= 0 and
y{t, f) + = a(F 0G) (mod 1).

Lemma 2 now leads to (2).
As an immediate consequence of Theorem 1 we have the following

Corollary 1
Let F :S1—>51 be an orientation-preserving homeoinorphisin. Then

ifa(F) = 0

a(F-h= 1—a(F) ifa(F) o0
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