Zeszyt 204 Prace Matematyczne XVII 2000

ANTAL JÁRAI, CHE TAT NG AND WEINIAN ZHANG

A functional equation involving three means

Dedicated, to Professor Zenon Moszner on his 70th birthday

Abstract. The functional equation

$$
\frac{1}{n}\sum_{i=1}^{n} t(x_i) = h\left(\frac{1}{n}\sum_{i=1}^{n} x_i, f^{-1}\left(\frac{1}{n}\sum_{i=1}^{n} f(x_i)\right)\right),\,
$$

where f is given and the functions t and h are unknown, is solved under certain conditions for all fixed n.

In a personal communication Professor Udo Ebert (Universität Oldenburg, Germany) asked Professor Jânos Aczél about the solutions of the functional equation

$$
\frac{1}{n}\sum_{i=1}^{n}t(x_{i}) = h\left(\frac{1}{n}\sum_{i=1}^{n}x_{i}, f^{-1}\left(\frac{1}{n}\sum_{i=1}^{n}f(x_{i})\right)\right),\tag{1}
$$

where f is a given function defining a quasiarithmetic mean and the functions *t* and *h* are unknown. Indeed, his consideration about a problem of inequality measurement in economics resulted in a problem, which was formulated by Aczél in the form of the functional equation (1) above. We refer readers to [2] for other related works of Ebert where quasiarithmetic means are often used. We wish to thank Aczél for his coordinations and suggestions on this paper.

In what follows $I, J \subset \mathbb{R}$ are intervals, and f is a one-to-one continuous function mapping *I* onto *J*. Let $\mathbf{x} = (x_1, x_2, \ldots, x_n)$, and let

Mathematics Subject Classification (2000): Primary 39B22, Secondary 92G05.

This research has been supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada Grants OGP 0002972 and OGP 0008212.

$$
a(\mathbf{x}) := \frac{1}{n} \sum_{i=1}^{n} x_i
$$

and

$$
b(\mathbf{x}) := f^{-1}\left(\frac{f(x_1) + f(x_2) + \cdots + f(x_n)}{n}\right)
$$

denote the arithmetic mean and the quasiarithmetic mean generated by f of the sequence $\mathbf{x} = (x_1, x_2, \dots, x_n)$. Using the notation

 $t(\mathbf{x}) = (t(x_1), t(x_2), \dots, t(x_n)),$

equation (1) can be written in the form

$$
a(t(\mathbf{x})) = h(a(\mathbf{x}), b(\mathbf{x})), \quad \mathbf{x} \in I^n.
$$
 (2)

Although the mission is to find pairs of real valued functions *t* and *h* satisfying (1), our emphasis is on the function £, while treating *h* as an auxiliary function. Because of this, when we say "t is a solution of (1) ", it means "t satisfies (1) " for some function h ["], without elaborating on what h is explicitly.

Let us start with some simple observations.

REMARKS

- (i) The solutions (t, h) form a linear space, i.e. if (t_1, h_1) and (t_2, h_2) are solutions (of (1)), so is any linear combination $(c_1t_1 + c_2t_2, c_1h_1 + c_2h_2)$.
- (ii) The constant map $t = 1$, the identity map $t(x) = x$, and $t = f$ are particular solutions (with appropriate *h).*
- (iii) An additive function *A* (i.e. satisfying the Cauchy equation $A(x + y) =$ $A(x) + A(y)$ is a solution, i.e. $t = A$ restricted to the interval I is a solution. Thus discontinuous solution *t* exists.
- (iv) If (1) is satisfied by *t* for some $n = n_0$, then it is satisfied by *t* for all lower $n < n_0$. (Here, *h* may change according to *n*.)
- (v) If $n = 1$, any function t is a solution.
- (vi) If f is affine on I, then $a(x) = b(x)$ for all $x \in Iⁿ$, and equation (2) is reduced to the well-known Pexider equation when $n \geq 2$, (cf. [1]). Hence we shall suppose that the given function f is not affine.

In the proof of our main result the following general uniqueness theorem will be applied:

THEOREM 1 $([3],$ Theorem 1.0)

Let I and K be intervals of \mathbb{R} . Let $T: I \times K \to \mathbb{R}$ be a continuous function. *If the functional equation*

$$
F(x) + G(y) = H(T(x, y)), \quad x \in I, \ y \in K \tag{3}
$$

has a particular solution (F_0, G_0, H_0) *with continuous nonconstant* F_0 , G_0 , *then the general continuous solution of* (3) *is given by*

$$
F = \alpha F_0 + \beta_1, \quad G = \alpha G_0 + \beta_2, \quad H = \alpha H_0 + \beta_1 + \beta_2 \tag{4}
$$

where α , β_1 , β_2 *are constants.*

We are now ready to give the main result:

Theorem 2

If t is a continuous solution of (1) *for some fixed n* \geq 4, *then it is given by* $t(x) = c_1 f(x) + c_2 x + c_3$ *where* c_1 , c_2 , c_3 *are constants. Conversely, every such t is a continuous solution of* (1) *for all fixed n.*

Proof. In view of observations (i) and (ii), the converse statement is clear. In view of (iv) we may now suppose $n = 4$. Let $x, y \in I$ be fixed temporarily. From (1) we get

$$
[t(x+u) + t(x-u)] + [t(y+v) + t(y-v)]
$$

= $4h\left(\frac{x+y}{2}, f^{-1}\left(\frac{f(x+u) + f(x-u) + f(y+v) + f(y-v)}{4}\right)\right)$ (5)
=: $H(f(x+u) + f(x-u) + f(y+v) + f(y-v))$
for all u, v such that $x+u, x-u, y+v, y-v \in I$.

This equation is of the form (3) where

$$
T(u,v) := f(x+u) + f(x-u) + f(y+v) + f(y-v).
$$

Clearly the triple $F_0(u) := f(x+u) + f(x-u)$, $G_0(v) := f(y+v) + f(y-v)$ and $H_0 :=$ identity map is a solution of (3) with continuous F_0 and G_0 . On the other hand (5) asserts that the triple $F(u) := t(x + u) + t(x - u)$ and $G(v) := t(y + v) + t(y - v)$ and *H* is another solution.

Assume now that x and y are such that $f(x + u) + f(x - u)$ and $f(y + v)$ v) + $f(y - v)$ are not constant functions in u and v respectively, and apply the above uniqueness theorem, we conclude that there exist constants $\alpha(x, y)$, $\beta_1(x,y)$ and $\beta_2(x,y)$ such that

$$
t(x + u) + t(x - u) = \alpha(x, y)[f(x + u) + f(x - u)] + \beta_1(x, y)
$$

\n
$$
t(y + v) + t(y - v) = \alpha(x, y)[f(y + v) + f(y - v)] + \beta_2(x, y)
$$

\nfor all u, v provided the arguments
\n
$$
x + u, x - u, y + v, y - v \text{ are in } I.
$$
\n(6)

In (6), from the first line we get that α depends only on x and from the second line we get that α depends only on *y*. Similarly β_1 depends on *x* only and β_2 depends on *y* only. Hence α is independent of *x* and *y*; i.e. $\alpha(x, y) = \alpha$ say, and $\beta_1(x,y) = \beta_1(x)$, $\beta_2(x,y) = \beta_2(y)$. Further comparison of the two lines leads to $\beta_1 = \beta_2 = \beta$ say. So equation (6) can be summarized as

$$
t(x + u) + t(x - u) = \alpha[f(x + u) + f(x - u)] + \beta(x)
$$

for all u with $x + u, x - u \in I$ (7)

for all *x* such that $f(x + u) + f(x - u)$ is not constant in *u*. (Since, by Remark (vi), f is not affine, there exists such x where $f(x + u) + f(x - u)$ is not constant in u and we are not speaking in a vacuum.) On the other hand, when x is such that $f(x + u) + f(x - u)$ is constant in u, it follows from (5) that $t(x + u) + t(x - u)$ is constant in u too. Thus (7) can be extended to cover such x. That is, where $f(x+u) + f(x-u)$ and $t(x+u) + t(x-u)$ are both constant in *u*, we take (7) as the definition of $\beta(x)$.

Now (7) holds for all *x* without exception in *I*. Let $S = t - \alpha f$ and (7) takes the form

$$
S(x+u)+S(x-u)=\beta(x).
$$

Setting $u = 0$ we obtain $\beta(x) = 2S(x)$ and we obtain the Jensen equation

$$
S(x+u) + S(x-u) = 2S(x), \quad x, x+u, x-u \in I. \tag{8}
$$

As *S* is continuous, it is affine

$$
S(x) = c_2 x + c_3. \tag{9}
$$

Thus $(t - \alpha f)(x) = c_2x + c_3$. This proves that with $c_1 = \alpha$ we have $t(x) =$ $c_1 f(x) + c_2 x + c_3$ as asserted.

To treat the case $n = 3$ we shall use stronger conditions.

PROPOSITION 1

Suppose that f is continuously differentiable with non-vanishing derivative and not affine on any subinterval of I. Then for a function $t: I \to \mathbb{R}$ there *exists a continuously differentiable function* $h: I \times I \rightarrow \mathbb{R}$ *such that the functional equation* (2) *is satisfied for some fixed* $n \geq 3$ *if, and only if, there exist constants* c_1 , c_2 , c_3 *such that* $t(x) = c_1 f(x) + c_2 x + c_3$.

Proof. The "if" part is obvious. To the "only if" part suppose that (2) holds with continuously differentiable *h*. We may suppose that $n = 3$. Because f, f^{-1} and h are continuously differentiable, we obtain that t is also continuously differentiable. Derivating both sides of equation (2) we obtain that

$$
t'(x) = \partial_1 h (a(x, y, z), b(x, y, z)) + \partial_2 h (a(x, y, z), b(x, y, z)) \frac{f'(x)}{f'(b(x, y, z))}
$$
(10)

for all $x, y, z \in I$. First we shall prove that each $x_0 \in I$ has a neighbour**hood, such that for each** *x* **from this neighbourhood there exist continu**ously differentiable functions φ and ψ such that $x \mapsto a(x, \varphi(x), \psi(x))$ and $x \mapsto b(x, \varphi(x), \psi(x))$ are constant. Such neighbourhood can be found by the **implicit function theorem.** Let us choose y_0 and z_0 such that $f'(y_0) \neq f'(z_0)$ be satisfied. Let $u = a(x_0, y_0, z_0)$, $v = b(x_0, y_0, z_0)$, and let us apply the implicit **function theorem for the equation system**

$$
3u = x + y + z,
$$

\n
$$
3f(v) = f(x) + f(y) + f(z),
$$

to express y and z as a function of x and so to obtain φ **and** ψ **.** Now, let us **substitute in equation** (10) — which is valid for any $x, y, z \in I$ — the values $y = \varphi(x)$ and $z = \psi(x)$. Then we obtain the equation

$$
t'(x)=\alpha f'(x)+\beta,
$$

where $\beta = \partial_1 h(u, v)$ and $\alpha = \frac{\partial_2 h(u, v)}{f'(v)}$. This equation is valid on a neighbourhood of x_0 . Now, this equation implies, that there exists a constant γ such that $t(x) = \alpha f(x) + \beta x + \gamma$ on a neighbourhood of x_0 . The constants α, β and γ may depend on x_0 , but we shall prove that they do not.

Suppose that $t(x) = \alpha_1 f(x) + \beta_1 x + \gamma_1$ on some subinterval I_1 of *I* and $t(x) = \alpha_2 f(x) + \beta_2 x + \gamma_2$ on another subinterval I_2 of *I*. Suppose, that I_1 and I_2 are not disjoint. If $\alpha_1 \neq \alpha_2$, then this means that f is locally affine, a contradiction. Hence $\alpha_1 = \alpha_2$ and so $\beta_1 = \beta_2$ and $\gamma_1 = \gamma_2$.

Now if I_1 and I_2 are disjoint, then choosing a chain of subintervals con**necting them we obtain that** $\alpha_1 = \alpha_2$ **,** $\beta_1 = \beta_2$ **and** $\gamma_1 = \gamma_2$ **. So we have proved** that α , β and γ do not depend on x_0 .

In the case $n = 2$ arbitrary functions may appear as solutions.

Proposition 2

Suppose that f is strictly convex or strictly concave on I and $n = 2$ *. Then to an arbitrary function* $t: I \to \mathbb{R}$ *there exists a (unique) function* $h: I \times I \to \mathbb{R}$ *such that the functional equation* (2) *is satisfied.*

Proof. We shall prove that the mapping $k : (x, y) \mapsto (a(x, y), b(x, y))$ is one-to-one on the set $\{(x,y): x, y \in I, x \leq y\}$. Suppose, to the contrary, **that this is not the case.** Then there are $x_1 < x_2 \leq u \leq y_2 < y_1$ such that

 $a(x_1, y_1) = u = a(x_2, y_2)$ and $b(x_1, y_1) = v = b(x_2, y_2)$. This means that $x_1 + y_1 = 2u = x_2 + y_2$ and $f(x_1) + f(y_1) = 2f(v) = f(x_2) + f(y_2)$. Hence

$$
\frac{f(x_2)-f(x_1)}{x_2-x_1}=\frac{f(y_1)-f(y_2)}{y_1-y_2}
$$

for $x_1 < x_2 \leq u \leq y_2 < y_1$. But this is a contradiction to the assumption that / is strictly convex or strictly concave.

Now for an arbitrary *t*, let us define $h(u, v)$ equal to $\frac{1}{2}[t(w) + t(z)]$, where $(w, z) = k^{-1} (u_n v)$. Then for any $x, y \in I$ we have

$$
2h(a(x, y), b(x, y)) = t(\min\{x, y\}) + t(\max\{x, y\}) = t(x) + t(y).
$$

REMARK

If f is not strictly convex nor strictly concave then t cannot in general be arbitrary. For example, if $f(x) = x^3$ for $x \in I = \mathbb{R}$, then the mapping $k:(x,y)\mapsto (a(x,y), b(x,y))$ is not one-to-one on the set $\{(x,y): x,y\in I, x\leq \theta\}$ y}, because all pairs $(x, -x)$ are mapped into $(0, 0)$. Hence with $c = 2h(0, 0)$, the condition $t(x) + t(-x) \equiv c$ has to be satisfied. Conversely, because k is one-to-one on the set $\{(x,y) : x, y \in I, x \leq y, x \neq -y\}$, if $t(x) + t(-x) \equiv c$ for all $x \in \mathbb{R}$ is satisfied, then defining $2h(u, v)$ equal to $t(w) + t(z)$, where $(w, z) = k^{-1} (u, v)$, for any $x, y \in I$ we have

$$
2h(a(x, y), b(x, y)) = t(\min\{x, y\}) + t(\max\{x, y\}) = t(x) + t(y).
$$

References

- [1] J. Aczél, *Lectures on Functional Equations and their Applications*, Academic Press, New York - London, 1966.
- [2] U. Ebert, *Linear Inequality Concepts and Social Welfare,* London School of Economics, Suntory and Toyota International Centres for Economics and Related Disciplines, Discussion Paper Series No. DARP 33, 1997.
- [3] C.T. Ng, *On the functional equation* $f(x) + \sum_{i=1}^{n} g_i(y_i) = h(T(x, y_1, y_2, \ldots, y_n)),$ Ann. Polon. Math. 27 (1973), 329-336.

Antal Jârai Dept, of Numerical Analysis Eötvös Lorând University H-1117 Budapest Pâzmdny Péter sétdny 1/D Hungary E-mail: ajarai@moon.inf.elte.hu

Che Tat Ng Dept, of Pure Mathematics University of Waterloo Waterloo, Ontario Canada N2L 3G1 E-mail: ctng@math.uwaterloo.ca

Weinian Zhang Dept, of Mathematics Sichuan University East Area, Chengdu 610064 P R. China E-mail: nic2601@scu.edu.cn

Manuscript received: November 25, 1999 and in final form: April 18, 2000