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A b stract. The functional equation

1
n

П

where /  is given and the functions t and h are unknown, is solved under 
certain conditions for all fixed n.

In a personal communication Professor Udo Ebert (Universität Oldenburg, 
Germany) asked Professor Jânos Aczél about the solutions of the functional 
equation

where /  is a given function defining a quasiarithmetic mean and the functions 
t and h are unknown. Indeed, his consideration about a problem of inequality 
measurement in economics resulted in a problem, which was formulated by 
Aczél in the form of the functional equation (1) above. We refer readers to [2] 
for other related works of Ebert where quasiarithmetic means are often used. 
We wish to thank Aczél for his coordinations and suggestions on this paper.

In what follows I ,  J  С Ш are intervals, and /  is a one-to-one continuous 
function mapping I  onto J .  Let x  =  x n), and let
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and

b ( x )  : = r l
f ( x i )  +  f { x 2) +  ■■■ +  f ( x n)

n

denote the arithmetic mean and the quasiarithmetic mean generated by /  of 
the sequence x  =  { x \ , x 2, • • • , x n). Using the notation

t ( x )  =  (t(x  i ) ,  t(x 2) , . . . ,  t (xn)),

equation (1) can be written in the form

a ( £ ( x ) )  =  h ( a ( x ) ,  6 ( x ) ) ,  x  G I n. (2)
Although the mission is to find pairs of real valued functions t and h satisfying
(1), our emphasis is on the function £, while treating h as an auxiliary function. 
Because of this, when we say “£ is a solution of (1)” , it means “£ satisfies (1) 
for some function h” , without elaborating on what h is explicitly.

Let us start with some simple observations.

Remarks

(i) The solutions (£, h) form a linear space, i.e. if { t \ , h\ )  and (t2 , h 2 ) are 
solutions (of (1)), so is any linear combination (ci£i +  c2t2 ,c \h \  + 02/12).

(ii) The constant map t =  1, the identity map t(x) =  x,  and t =  f  are 
particular solutions (with appropriate h).

(iii) An additive function A  (i.e. satisfying the Cauchy equation A( x  +  y) =  
A( x)  +  A( y) )  is a solution, i.e. t — A  restricted to the interval /  is a 
solution. Thus discontinuous solution t exists.

(iv) If  (1) is satisfied by t for some n =  щ ,  then it is satisfied by t for all 
lower n <  no- (Here, h may change according to n.)

(v) If n  =  1, any function £ is a solution.

(vi) If /  is affine on 7, then a(x) =  b(x) for all x  G 7", and equation (2) is 
reduced to the well-known Pexider equation when n  ^  2, (cf. [1]). Hence 
we shall suppose that the given function /  is not affine.

In the proof of our main result the following general uniqueness theorem 
will be applied:

T heorem 1 ([3], Theorem 1.0)
Let I  and К  be intervals o /K . L e tT  : I x K  -A R  be a continuous function. 

I f  the functional equation
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F ( x )  +  G( y)  =  H ( T ( x , y )), x £  I,  y £ К  (3)

has a particular solution (F q,G o, H q) with continuous nonconstant Fo, G o, 
then the general continuous solution of (3) is given by

F  =  aFo +  /?i, G  =  aGo +  Д 2, H  — aHo +  ß\ +  /З2 (4)

where a , ß \, /З2 иге constants.

We are now ready to give the main result:

Theorem 2
I f  t is a continuous solution of (1) for some fixed n  ^  4, then it is given 

by t(x) =  c \ f ( x )  -f  C2X 4- C3 where c \, C2 , С3 are constants. Conversely, every 
such t is a continuous solution of (1) for all fixed n.

Proof. In view of observations (i) and (ii), the converse statement is clear. 
In view of (iv) we may now suppose n  =  4. Let x, у £ I  be fixed temporarily. 
From (1) we get

[t(x +  u) +  t(x -  it)] +  [t(y +  v) +  t(y -  v)]

U  ( x +  y  , - l  (  f { x  +  u)  +  f ( x  - u) +  f ( y  +  v) +  f ( y  - v ) \ \

=  4 h { — f  { ------------------------------------3------------------------------------) )  (5)

= :  H ( f { x  +  u) +  f ( x  -  u) +  f ( y  +  v) +  f ( y  -  v))

for all u, v such that x +  u,  x — u, y +  v,  y — v £ I.

This equation is of the form (3) where

T( u,  v) :=  f ( x  +  u) +  f ( x  -  u) +  f ( y  +  v) +  f ( y  -  v).

Clearly the triple F 0 (u)  :=  f ( x  +  u) +  f ( x  -  u),  G 0 (v) :=  f ( y  +  v) +  f ( y  -  v)
and H q :=  identity map is a solution of (3) with continuous F q and Go- On
the other hand (5) asserts that the triple F (u )  :=  t(x  +  u) +  t(x  — u) and 
G (v ) :=  t(y  +  v) +  t(y  — v) and H  is another solution.

Assume now that x  and у are such that f ( x  +  u) +  f ( x  — it) and f ( y  +  
v) +  f ( y  -  v) are not constant functions in it and v respectively, and apply 
the above uniqueness theorem, we conclude that there exist constants a(x,  y), 
ßi ( x , y )  and /?2{x, y)  such that

t(x +  it) +  t{x -  it) =  a( x,  y ) [ f ( x  +  it) +  f ( x  -  it)] +  ß\  (x, y) 

t{y +  v) +  t(y - v )  =  a( x,  y) [ f {y +  v) +  f { y  - v ) } +  f t ( z ,  y)

for all it, v provided the arguments 

x -j-it , x — it, y +  v,  у — v are in I.
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In (6), from the first line we get that a  depends only on x  and from the second 
line we get that a  depends only on y. Similarly ß\  depends on x  only and ß2 

depends on у only. Hence a  is independent of x  and y\  i.e. a ( x , y) =  a  say, 
and ß \ ( x , y )  =  ßi{x) ,  /?2( x, y)  =  /02(у)- Further comparison of the two lines 
leads to ß\  =  /З2 =  ß  say. So equation (6) can be summarized as

t(x +  u) +  t(x -  u) =  a [ f ( x  +  u)  +  f { x  -  it)] +  ß(x)  

for all и with x  +  u , x  — и £ I

for all x  such that f [ x  +  u) +  f ( x  — u)  is not constant in u. (Since, by Remark
(vi), /  is not affine, there exists such x  where f ( x  +  u) +  f ( x  — u)  is not 
constant in и and we are not speaking in a vacuum.) On the other hand, 
when x  is such that f ( x  +  u) +  f ( x  — u) is constant in и , it follows from (5) 
that t (x +  u)  +  t(x -  u) is constant in и too. Thus (7) can be extended to 
cover such x.  Th at is, where f ( x  +  u) +  f { x  — u) and t(x +  u) +  t(x — u) are 
both constant in u,  we take (7) as the definition of ß{x).

Now (7) holds for all x  without exception in I .  Let S  t -  a f  and (7) 
takes the form

S (x  +  u) +  S (x  — u) =  ß{x).

Setting ti =  0 w e obtain ß(x)  =  2S( x)  and we obtain the Jensen equation

S ( x  +  u) +  S ( x  — u) — 2S( x) ,  x,  x +  u, x — и € / .  (8)

As S  is continuous, it is affine

S{x)  =  c2x +  c3. (9)

Thus (t — a f ) ( x )  =  ('2x +  c3. This proves that with ci =  rv we have t(x)  — 
c \ f ( x )  +  C21 +  c;3 as asserted.

To treat the case n =  3 we shall use stronger conditions.

P r o p o s it io n  1

Suppose that f  is continuously differentiable with non-vanishing derivative 
and not affine on any subinterval of I .  Then for a function t : I  —> R  there 
exists a continuously differentiable function h : I  x I  —> R  such that the func­
tional equation (2) is satisfied for some fixed n ^  3 if, and only if, there exist 
constants c i, c2, C3 such that t(x) =  c \ f { x )  +  c2x +  C3.

Proof. Th e “if” part is obvious. To the “only i f ’ part suppose that (2) 
holds with continuously differentiable h. We may suppose that n =  3. Be­
cause / ,  f ~ l and h are continuously differentiable, we obtain that t is also 
continuously differentiable. Derivating both sides of equation (2) we obtain 
that
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t '(x )  =  dih  (a(x,  y,  z) , b(x,  y,  z))

+ d2h(a{x,y,z)M*,V,*)) f , J £ l z)) <10)

for all x , y , z  G I.  First we shall prove that each xq € I  has a neighbour­
hood, such that for each x  from this neighbourhood there exist continu­
ously differentiable functions ip and ip such that x  >-» a (x,  <p(x), ip(x)) and 
x b (x , (p(x), ip(x)) are constant. Such neighbourhood can be found by the 
implicit function theorem. Let us choose yo and zq such that f ' (yo)  ф f'{zo) be 
satisfied. Let и = cl{xq , yo, z q ) ,  v  =  b(xo,yo,  zo), and let us apply the implicit 
function theorem for the equation system

3u =  x +  у +  z,

3 f ( v )  =  f ( x )  +  f ( y )  +  f ( z ) ,

to express у  and г  as a function of x  and so to obtain y> and ip. Now, let us 
substitute in equation (10) — which is valid for any x , y , z  G I  — the values 
y =  <p(x) and г  = ip(x). Then we obtain the equation

t'(x ) =  a f ' ( x )  + ß ,

where ß  = d \h (u ,v )  and a  =  • This equation is valid on a neighbour­
hood of x q . N o w , this equation implies, that there exists a constant 7 such 
that t(x) — a f ( x )  +  ßx +  7 on a neighbourhood of ж о .  The constants a,  ß  
and 7 may depend on xq, but we shall prove that they do not.

Suppose that t(x)  = ot \ f (x)  + ß\ x  + 71 on some subinterval I\ of /  and 
t(x) =  а -if (x) +  ßzx + 72 on another subinterval /2 of I . Suppose, that I\ 
and /2 are not disjoint. If a\ Ф a2, then this means that /  is locally affine, a 
contradiction. Hence ai = 02 and so ß\ — /?2 and 71 = 72-

Now if 11 and /2 are disjoint, then choosing a chain of subintervals con­
necting them we obtain that ou = «2, ß\ = /З2 and 71 = 72. So we have proved 
that a, ß  and 7 do not depend on x q .

In the case n =  2 arbitrary functions may appear as solutions. 

Proposition 2
Suppose that f  is strictly convex or strictly concave on I  and n — 2. Then 

to an arbitrary function t : I  —> R  there exists a (unique)  function h : I x l  - > 1  
such that the functional equation (2) is satisfied.

Proof. We shall prove that the mapping к : (x ,y ) (a(x,  y), b(x,  y))  is
one-to-one on the set { ( ж , у)  : x,  y G I, x  ^ y}.  Suppose, to the contrary, 
that this is not the case. Then there are 27 < X2 ^ и ^ у г  < 2/1 such that
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a( x i , y i )  =  и =  а( х2 ,У2 ) and b( x \ , y \ )  =  v =  b(x2 , y 2). This means that 
xi  +  yi =  2u =  x 2 +  y2 and f { x i) +  / ( y i )  =  2f ( v )  =  f ( x 2) +  f { y 2). Hence

f ( x2) -  f {x  1) _  f(yi )  -  / Ы
3 -2  ~  ® 1  2 /1  -  2 /2

for x\  <  x 2 ^  и ^  y2 <  yi .  But this is a contradiction to the assumption that 
/  is strictly convex or strictly concave.

Now for an arbitrary t, let us define h(u, v)  equal to \[t{w ) +  t(z )\, where 
(w, z) =  A:-1 (u,4u). Then for any x, у 6 I  we have

2 h { a ( x , y ) , b ( x , y ) )  =  f(m in {x ,y}) +  t(m ax{x ,y}) =  t(x)  +  t(y).  

R e m a r k

If /  is not strictly convex nor strictly concave then t cannot in general 
be arbitrary. For example, if f ( x )  =  x 3 for x £ I  =  R , then the mapping 
к : ( x , y)  h-> ( a( x , y ) , b(x , y)) is not one-to-one on the set { (x , y)  : x,  y G / ,  x ^  
y},  because all pairs (x,  —x)  are mapped into (0 ,0 ). Hence with c =  2h(0,0) ,  
the condition t(x)  +  t ( —x) =  c has to be satisfied. Conversely, because к is 
one-to-one on the set { ( x , y)  : i , y e l , i ^ y ,  x Ф — y}, if t(x)  +  t (—x)  =  c 
for all x  G M is satisfied, then defining 2h( u, v)  equal to t{w) +  t(z),  where 
(w , z ) =  к-1 (u, v) ,  for any x , y  £ I  we have

2h (a(x,  y), b(x,  y)) =  t (min{x, y}) +  t(m ax{x, y}) =  t(x)  +  <(y). 
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