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A b stract. Applying the method of invariants ( “first integrals” ), an ex­
plicit form of the general solution of Dido’s functional equation 2f(2x) =

termined. The general solution depends on an arbitrary positive and 
bounded 1-periodic function. There is a unique solution having a given 
finite and positive limit at infinity. This improves a result proved by a 
different method in a paper of the first two authors.

1. Introduction

The Dido functional equation

where /  : (a , oc) —> (0, сю) and a  >  0 is fixed, appears in connection with 
the ancient isoperimetric problem of Dido (cf. [1]). According to the legend, 
Queen Dido of Carthage could get such an amount of land that a bull’s hide 
would cover. Smartly cutting the hide into one long strip, she intuitively 
solved the isoperimetric problem: starting with a regular triangle, say, she 
observed that the area would increase noticeably upon doubling the number 
of vertices by halving the sides of the initial triangle (obtaining a regular 
hexagon). Repeating this process of halving the sides of consecutive regular n-
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f (x )  +  2 +  related to the ancient isoperimetric problem, is de-

X > a, (1)
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gons, she enlarged the area at each step. This procedure leads to the functional 
equation (1). (For details cf. [1].)

To find the explicit form of the general solution of equation (1), we apply 
the method of invariants described in [2]. According to this method, we ad­
join to the functional equation (1) a self-mapping, the so-called “characteristic 
map” (cf. [2]), of the first quadrant of the plane. The graph of every solution, 
as a subset of the first quadrant, is invariant with respect to the character­
istic map, i.e. the graph consists of a family of trajectories of this map. In 
order to get all invariant sets which “give” (i.e. correspond to) solutions of 
the functional equation, it is sufficient to find a “complete collection” of inde­
pendent invariant functions —  in our case, two such functions. This allows to 
determine the general solution in explicit form (cf. Theorem 1).

As an immediate corollary we obtain Theorem 2 which says that every 
solution q  of equation (1) satisfying the condition

lim q ( x ) =  a (a >  0, fixed)
X—>oo

must be of the form
. . 1 1 ,

q ( x )  =  — cot — , X G (a , oo).
X a x

This improves the main result of [1] where the solution д is assumed to 
satisfy a stronger asymptotic type regularity condition at infinity.

2. Motivation for the Dido equation and preliminary remarks

We present a sketch of the geometrical reasoning showing how the Dido 
functional equation appears in connection with the oldest variational problem. 
(For more details cf. [1].)

Remark 1
Consider a right-angled triangle with sides of length a,  b,  c, such that 

max(a, b) <  c. Construct an isosceles triangle in the following way: modify 
the sides of length b and c to an arbitrary common value b' =  c'; denote the 
length of the new base side by a', and by m the length of the height of the 
isosceles triangle, orthogonal to the base side of length a ' . Then (Lemma 1 in 

[1])
b +  c ,

m  =  —- — in a =  a.
2

Considering regular polygons of order n  € N2 :=  N \{ 1 }  with the same fixed 
perimeter P ,  and denoting by rn the radius of the inner circle, by R n the 
radius of the outer circle, and by sn(— £ )  the length of any segment, we get
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Г2п
rn R n

and Rn =  sjrl + ( y )  = y/rl + Ąn ■

These two relations imply that

2^2n =  rn T

Setting

n + [ —
2 n

n G N2 .

/• 1 \ 2r„
/ ( n )  :=  - p - ,

we can write this recurrence in the form

2/ ( 2n) =  / ( n )  +  t / / ( n )2 +  n G N 2 . (2)

Extending the domain of /  to (a, 00) where a  >  0 is a suitably chosen 
number, and replacing /  by the corresponding function g : (0 ,00) —> (0,00), 
we get the Dido functional equation

2 g(2x) =  g(x) +  W g(x )2 +  x  6 (a, 00).

In the proof of Theorem 1, for the construction of an invariant function 
we will need a trigonometric identity for the function arccot presented in the 
following

Remark 2
The function cot is a one-to-one mapping of (0 ,7r) onto (—00, 00), and, in 

particular, a mapping of (0, | ) onto (0 ,00). Consequently, its inverse, arccot : 
( —00, 00) —> (0, 7г), maps (0, 00) onto (0, | ). Since the function sin is positive 
in (0, 7t), we have

x cos x  +  1 1 /— 5----------
cot — = ----;------  = cot X +  —---- =  cot X + V  cot2 X  + 1 , X  G (0, 7г).

2 sina: sina:
Taking into account that arccot((0, oo)) =  (0, | ) , we get the identity

arccot ( w +  \ J w 1 +  1  ̂ =  ^ arccot w, w G (0, oo).

3. General solution

The general solution of the Dido functional equation is described by the 
following

Theorem 1
Let a  >  0 be arbitrarily fixed. Then a function g : (a , oo) —»■ (0, oo) satisfies 

the Dido functional equation (1) i f  and only i f
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. , 1 
д(х) =  — cot

1 ( \ n x

x P ( ï ï 2
X e  (a , oo),

where p  : M —> (0, oo) is a positive 1 -periodic function such that 

P{x) <  ^  • 2X for X e  (x0, x0 +  1], x 0 =

(3)

(4)

Proof. Suppose that д : (a , oo) ->• (0, oo) satisfies the functional equation 
(1). Multiplying this equation by x  gives

2 x q (2 x ) =  x q (x ) +  \ /]x p (x )]2 +  1, x  >  a.

Hence, putting w (x) :=  x g (x ), we obtain

w (2x) =  u>(x) +  -у/[гс(х)]2 +  1, x >  a. (5)

Define a map S  : (0, oo)2 —> (0, oo)2 by

S (x ,w )  =  (2x ,w  +  \ / w 2 +  1  j  , x, w e  ( 0 ,  00), ( 6 )

and put

S i ( x )  =  2x , S^iw) =  w +  у /  w2 +  1 .

The map 5  is one-to-one, (0, 00) x (0 ,00) ->  (0, 00) x (l ,o o ). If the function 
x w (x), x >  a , is a solution of equation (5), then its graph, as a curve in 
(0, oo)2, is invariant with respect to the map S  =  (5 i , S 2), i-e. it has to consist 
of the trajectories { S n (x ,w (x ))  : x  € (a , 00), n 6 N }.

Define a two-place function J \  : (0 ,00)2 -> M  by

J i ( x ,  w) =  x • arccot w, x, w >  0.

Since, in view of Remark 2 and the definition of S 2 ,

„  1
arccot ° 02  =  -  arccot, 

z

we have, for all x, w >  0,

( J i  о S )(x ,w )  =  J i ( S i ( x ) ,  S 2 {w)) =  2x ■ arccot (^ (г с ) )  =  J i ( x ,w ) ,

which means that the function J i  is 5-invariant.
Thus, the set J \  (x, w) =  c is a curve invariant with respect to the map 5  

(briefly, 5-invariant) which “gives” the solution w (x) — cot ^ of equation (5), 
for any constant c €  (0, | a ) (so that w >  0). But not every 5-invariant curve 
in (0, oo)2 can be obtained as a level curve of the function J \ .
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As a second invariant function for the map 5 , it is possible to take any func­
tion J 2 depending only on the first variable. Then, according to the definition 
of 5 ,

Тг(2x) =  J 2 (x ), X >  0,

and this implies that J 2 is 5-invariant if and only if

M x ,  w) =  po x , w  >  0, (7)

where po : К  —> (0, oo) is some 1-periodic function.
It is obvious that for an arbitrary function Ф : (0, oo)2 —> К  the function 

Ф о ( J b  J 2) is also 5-invariant. It can be shown that every 5-invariant curve 
can be represented in the form Ф о ( J lt ,/2)(x , w) =  0 (in the same way, every 
trajectory of 5  can be given by the intersection of a level curve Ji (x, w) = c\  

and a level curve J 2 (гг) =  c2 where C \ , C2 are some constants).
“Resolving” the equation Ф (21, 22) =  0 with respect to the first argument, 

we get
J \  (x, w) =  <p о J 2 (x)

where ip : (0 ,00) —> (0, 00) is an arbitrary function. We can rewrite the last 
equation in the following form

(In 2;
- — -

In 2

where p  = <p о  p0 is an arbitrary 1-periodic function. In this manner we get a 
representation for an arbitrary invariant curve of the map 5 .

This allows us to give the corresponding representation for solutions of 
equation (5). If  w(x)  is a solution of equation (5) then

w(x)  =  cot x >  а

where p  is a 1-periodic function given by the formula

p(x) =  2X ■ arccot w(2x ) for x  G (Xo, Xq + 1], Xq =
In a

Tn2 '

The relation w(x)  = xg(x )  gives the representation formula for the solution 
g of the Dido equation (1). Since w(x) >  0 for all x >  a, the function p  must 
be such that

x  > a,

and consequently (4) holds. This ends the “only if” part of the proof. Since 
the “if” part is easy to verify, the proof is completed.
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Remark 3
For each а  >  0 there exists a lower bound for solutions of the Dido equation 

(1) on the domain x  >  a , namely, the piecewise continuous function g*(x) =  
j  cot for x  G (2n _ lO!, 2na], n =  1 , 2 , . . .  .

For any solution д : (a , +oo) -»  (0, oo) of (1) we have

ß{x) >  g t (x).

for all x >  a.

Remark 4
Both the Dido equation (1) and equation (5) have no positive solutions 

defined on (0, oo). This is explained by the fact that the map S  has no “full” 
trajectories, i.e. sets of the form { S n(x, w) : n G Z } , contained in (0, oo)2; 
namely, for every a  >  0 there exists an integer m  >  0 such that S ~ m((a , oo) x 
(0, oo)) £  (0, oo)2.

Remark 5
There is full analogy between the notion of invariant function of a map 

and the notion of first integral (as a function preserving a fixed value along 
every solution) from the theory of ordinary differential equations. The inva­
riant functions J \  and J 2 may be also referred to as first integrals of the map 
S  (cf. [2]). This analogy, as is seen from the proof of Theorem 1, can be 
continued: the relation between a functional equation and its characteristic 
map is similar to the relation between a partial differential equation and the 
system of ordinary differential equations for its characteristics.

4. Regular solutions at infinity

Applying Theorem 1 we obtain the following 

Theorem 2
Let a  >  0 be arbitrarily fixed. Suppose that д : (о , oo) —> (0, ос) satisfies 

the Dido functional equation (1). I f  fo r  some a >  0

lim q ( x ) =  a, (8)
x-»oo

then
, , 1 1 ,

q(x) =  -  cot —  . x G ( о .  о с ) .  
x  a x

This function actually satisfies equation (1) in the interval (0 . 0c) if

na

(9)
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Moreover, i f

then

а =
тта

p (a + ) :=  lim g(x) = 0.
X - > Q  +

Proof. Taking for the periodic function p the constant i  in Theorem 1 
gives formula (9). The remaining statements are easy to verify.

Remark 6
Theorem 2 improves the main result of [1] where, instead of (8), it is 

assumed that for some а >  0 and q >  0,

g(x) =  а +  o(x q) as i  ->  oo.

5. Remarks about the Dido recurrence

Modifying in an obvious way the arguments used in the proof of Theorem 1, 
we get the following

Theorem 3
Let f  : N2 —> [0 ,00) satisfy the recurrence (2). If, for some a >  0,

lim / ( n )  =  a,
n-юс

then

f ( n )  =  -  cot — . та G N2 • 
n an

Moreover, f  satisfies (2) in N2 i f  a ^  A, and, i f  a =  £ then / ( 2 )  =  0. 
Furthermore, i f  / ( 2 )  =  0, then

/(та) <  - ,  та G N2 ,
7Г

and

/ ( 0) =  lim /(та) =
n —ЮС 7Г

R emark 7
According to the geometrical interpretation of the values /(та) in Remark 1, 

the condition / ( 2) =  0 means that a regular polygon of order 2 has, by defin­
ition, a vanishing inner radius.
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