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A b stract. We present numerous new characterizations of F[ip] : R —> R, 
given bv

00 1
m i x )  =  £  - kv{2kx ),

k= 0 L

where y? : IR —)■ M is continuous, 1-periodic and even. For these charac
terizations we use a set of functional equations for F[^\ together with 
appropriate regularity assumptions. Many of those series F[ip] of Knopp, 
Behrend and Mikolas type are prominent continuous nowhere differen
tiable functions.

1. H is to r ic a l b a ck gro u n d

Let ip : IR —>■ R  continuous and 1-periodic, a , ß  positive real numbers and 
let G[ip: a . ß] : R  —> R  be defined by

G[iP;a,ß](x)
k=0

Functions of this type have been investigated by many authors. For instance, 
in the works of Baouche and Dubuc [1] 1994, Behrend [2] 1949, Billingsley
[3] 1982, Cater [4] 1984, Hardy [8] 1916, Hata and Yamaguti [9] 1984, Knopp 
[13] 1918, Mikolas [14] 1956, Schnitzer [16] 1995, Takagi [17] 1903, van der
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Waerden [18] 1930, Weierstrass [19] 1872, various functions G [ip \a ,ß \ for par
ticular generating functions ip have been proved to be continuous but nowhere 
differentiable {end).

By the last property we understand that G[ip\ a ,ß ]  has no finite derivative 
at any point. Note that some authors like Knopp [13] consider functions which 
have no derivative, finite or infinite, at any point.

First Knopp, later Behrend and Mikolas presented large classes of genera
ting functions ip for which they succeeded to state sufficient conditions on a , 
ß  guaranteeing the end property of G[ip\ a , ß\.

The particular choice ip{x) =  Д (х ) :=  dist (x, Z ) yields

OO

G [ A ; a , / 3 ] ( * ) = 5 > *  A (ß kx).
k=0

(7[Д; а , ß) is end for 0 <  а  <  1, ß £  N, a ß  fi 1.
A  further specification, namely a  =  ß — 2, gives the Takagi function

[17]
0°

T (x )  :=  С [ Д ; р ] ( г ) = ^ ^ Д ( 2 М ,
k=0 Z

which is treated in more or less detail in most of the papers [1] to [17], some
times without an explicit reference to Takagi. Van der Waerden’s [18] fa
mous end function V  is as well generated by the distance function Д : V  =  
G [ b ±  10].

Another particular choice of tp, namely ip\{x) =  cos2-7ra: or ip2 {%) =  sin27rx 
produces Weierstrass [19] type functions

OO

G[ipi; a , ß \(x) =  У '  a k cos{2-Kßkx ), 
k= о

OO

G[ip2 \ a , ß]{x) =  a k sin(27T/3fcx). 
fc=o

By a well known result of Hardy [8], these functions are end for 0 <  a  <  1 
and a ß  fi \ [ß  not necessarily an integer).

Th e main subject of this paper are characterizations by functional equa
tions for a suitable class of functions G[ip\ a , ß] of Knopp, Behrend and Mikolas 
type.

As we shall see in Section 2, we get an especially rich system of those 
functional equations if we put a  =  ß  =  2 and assume that ip belongs to the 
real vector space
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and define JC to be the vector space of all functions F[tp\, <p £ H .
In particular, for tp =  A  we get F[<p\ =  T , for <p(x) =  cos27rz we get 

F[<^](x) =  W (x ) =  Y2 T=0 2~k cos(2n2kx) and for (p(x) =  sin27rx we get 
F[<p](x) =  W*{x)  =  ^ = 0 2 - k sin{2 n 2kx).

The Takagi function T  and the Weierstrass functions W,  W* are used in 
the sequel as important examples and counterexamples.

In Section 2 we derive a system E  of functional equations for F  [ip] £ 1C. 
For a systematical treatment of characterizations of F[ip] (the main purpose 
of this paper) it is helpful to exhibit all dependences within the system E .  
This is done in Section 2 as well.

In Section 3 we first present all possible characterizations of a given F[tp\ £ 
К  as a bounded respectively a continuous respectively a bounded and con
tinuous solution of suitable subsets of E_. Finally we give a large number 
of new characterizations with more subtle regularity assumptions and verify 
non-characterizations by providing counterexamples.

2. Functional equations for F [ i p ]  Ç. К

It is quite straightforward to check that every F[ip\ satisfies the following 
system E_ of functional equations on the whole real line:

(5) F [ x  +  1) -  F ( x )  =  0,

(6) F ( - x ) - F ( x )  =  0,

(7) F (1  - x )  -  F{ x )  =  0.

If some /  : M —> R  other than F[<p\ satisfies equations (1) to (7) then
g :=  f  — F[ip] satisfies on M the corresponding homogeneous system E :

FL :=  {ip : К  —> R; (p continuous, 1-periodic, even}. 

Now let F[ip\ :=  G[ip\ ^,2],  that is

fc=o

(1) F { x )  -  2 F  (I)  =  -2 (p  (f),

(2) F ( x ) - 2 F ( ^ )  =  - 2 V ( s j i ) ,

(3) F ( f ) - F ( ^ I ) = ¥J( f ) - ^ ( ^ i ) ,

(4) F ( x )  -  F  ( f  ) -  F  ( ф )  =  - i p  ( f )  - i p

(1) g(x)  — 2g ( f )  =  0,

(2) g(x)  -  2g ( ^ )  =  0,
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(3) < ? ( § ) - < ? № ) =  о,

(4) * ( * ) - »  ( § ) - $ № ) =  о,

(5) д(х +  1) -  д{х) =  О,

(6) д ( - х )  -  д(х)  =  О,

(7) с/(1 -  х) -  д(х)  =  О.

Conversely, if g satisfies some equation (n) out of (1) to (7), then /  :=  g +  
F [<f] satisfies (n). Therefore, the discussion of the homogeneous system gives 
full insight in structural properties of K. without referring to fixed elements 
F[ip\ of 1C.

Particular equations of ( I ) - (7), respectively ( l ) - ( 7) ,  have been thoroughly 
investigated. (1) and (2) are Schröder type equations, Ц ) was examined by 
de Rham  [15] for — A , (3) is a Nörlund type difference equation, (4) a 
replicativity equation (Kairies [10]), the geometrical meaning of (5), (6) and 
(7) is obvious. The pair Ц ) , (2) is a system which was discussed in detail by 
Girgensohn [6], [7]. The system (1) to (4) has been investigated for =  Д  by 
Kairies [11], a pre-form already by Darsow, Prank and Kairies [5].

Our next goal is a systematic investigation of the whole system (1) to (7): 
E .  The equations of E  are not independent from each other. For example, it is 
easily seen that any two of the equations (5), (6), (7) imply the remaining one. 
We want to exhibit all such dependences within E .  To do so, we introduce a 
well adapted special notation:

Assume that g satisfies some “subset” S  of equations from E  and a pre
scribed regularity property p for which we allow four choices: a (no regularity 
assumption at all), 6 (bounded), c (continuous), d (bounded and continuous). 
Then we denote by Sp  the largest “subset” of equations from E  which is as 
well satisfied by g. To keep notations short we accept abbreviations as S  С  E  
or p G (a , 6, c, d} and write, say, 5  =  (1, 2, 3) instead of S  =  {(1),  (2), (3)}.

In the subsequent Propositions 1 to 6 we describe S p  for any given non
empty S  C  E  and any p G {a, 6, c, d}. This complete and explicit collection is 
given here for the convenience of the reader.

P r o po sitio n  1
a) ( l ) a  = (1), (2)o =  (2), (3)a =: (3 ,5), (4)a :=  (4)

(5)a = (5), (6)a =  (6), (7)a =: (7)-

b) (1)6 = (2)6 =  E , (3)6 = (3,5), (4)6 = (4),
(5)6 = (5), (6)6 = (6), (7)6 = (7)-

c) ( l ) c  = (1), (2 )c =  (2), (3 )c = (3,5), (4)c == (4),
(5)c = (5), (6)c =  (6), (7 )c = (7).
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d) ( l ) d = ( 2 ) d  =  E , (3)d  =  (3, 5), (4)d  =  (4, 5), 
(5)d=(5), (6)d=(6), {7)d =  (7).

P roposition 2
a) ( 1 ,2)a =  (1 ,3 )o =  ( l ,4 )a  =  ( l ,5 )a  =  (1 ,2 , 3 ,4 ,5 ) ,

(1, 6)a =  (1, 6),
(1,7 )a =  E ,
(2.3) a = (2,4)a = (2,5)a = (1,2,3,4,5),
(2, 6)a =  (2, 7)a =  E ,
(3.4) o =  (1,2,3,4,5),
(3.5) a = (3.5),
(3.6) o =  (3,7)o =  (3,5,6,7),
(4.5) o = (4,5),
(4.6) o =  (4, 5, 6, 7),
(4.7) o =  (4,7),
(5,6)a =  (5, 7)a = (6,7)a =  (5,6,7).

b) (1, k)b =  (2, m)6 =  E  for 2 ^  к ^  7, 3 ^  m  ^  7,
(3.4) 6 = E1,
(3.5) 6 = (3,5),
(3.6) 6 = (3,7)6 = (3,5, 6, 7),
(4.5) 6 =  (4,5),
(4.6) 6 = (4,5, 6, 7),
(4.7) 6 = (4,7),
(5.6) 6 = (5,7)6 = (6,7)6 = (5,6,7).

c) (1, k)c  =  E  for 2 ^  к ^  5,
(1.6) c =  (1,6),
(1.7) c = £?,
(2,m)c =  E  for  3 ^  m ^  7,
(3, 4)c = E ,
(3.5) c =  (3,5),
(3, 6)c = (3, 7)c = (3,5, 6, 7),
(4.5) c =  (4,5),
(4.6) c =  (4,7)c =  (4,5,6,7),
(5.6) c = (5,7)c = (6,7)c = (5,6,7).

d) (1, k)d  =  (2, m )d  =  E  for 2 ^  к ^  7, 3 ^  m ^  7,
(3.4) d =  Я ,
(3, b)d  =  (3,5),
(3.6) d = (3,7)d =  (3,5,6,7),
(4.5) d =  (4,5),
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(4.6) d = (4,7)d  = (4,5,6,7),
(5 .6 ) d =  (5 ,7 )d =  (6 , 7)d =  (5 ,6 , 7).

Hans-Heinrich Kairies

P r o p o s it i o n  3

a) (1,2,6)a = (1,2, 7)a -  (1,3,6)a = (1,3, 7)a = (l,4,6)a = (1,4, 7)a
=  (1 ,5 ,6)a =  (1,5,7)a =  ( l ,6 ,7 ) o  = (2 ,3 ,6)a =  (2 ,3 ,7 )o
-  ( 2 ,4 ,6)a =  (2 ,4 ,7 )o  =  (2 ,5 ,6 )o  =  (2 ,5 ,7 )o  =  (2 ,6 ,7 )o
=  (3 ,4 ,6 )o  =  ( 3 ,4 ,7)a =  E ,

(1,2,3)a = (1, 2,4)a = (l,2,5)a = (1,3,4)а =  (1,3,5)o = (l,4,5)a
= (2,3,4)a = (2,3,5)a -  (2,4,5)o -  (3,4,5)a = (1,2,3,4,5),

(3, 5, 6)a = (3, 5, 7)a = (3,6, 7)o = (3, 5, 6,7),
(4,5, 6)a = (4, 5, 7)a = (4,6,7)a = (4,5, 6, 7),
(5,6,7)a = (5,6,7).

b) (1,2,3)p =  (1,2, A)p =  (1,2, b)p =  (1,3,4) p  =  (1,3,5)p =  (l,4,5)p
= (2, 3,4)p = (2, 3, 5)p =  (2,4, 5)p =  (3,4, 5)p =  E ,

(3, 5,6)p =  (3,5, 7)p =  (3,6, 7)p -  (3,5,6,7),
(4.5.6 ) p =  (4,5, 7)p  =  (4,6,7)p =  (4,5,6, 7),
(5.6.7) p = (5,6,7)
fo r  every p 6 {5, c, d}.

P r o p o s it i o n  4

a) (1,2, 3,4)a = (l,2,3.5)a = (l,2,4,5)a = (l,3,4,5)a = (2,3.4.5)a
=  ( 1, 2,3 ,4 ,5 ) ,

(3, 5, 6, 7)a =  (3, 5, 6, 7), (4,5, 6, 7)a =  (4, 5,6, 7); 
for every other S  with four elements we have Sa  =  E .

b) (1,2,3,4)p =  (1,2,3,5)p = (1,2,4,5)p =  (1,3,4,5)p = (2,3,4,5)p = E ,
(3.5.6.7) p — (3,5,6,7),
(4.5.6.7) p = (4,5,6,7)
for every p £ {b ,c ,d } .

Proposition 5
a) ( 1, 2, 3 ,4 ,5)a =  (1, 2,3 ,4 ,5 ) ;

for every other S  with five elements we have Sa  =  E .

b) (1, 2, 3,4 ,5)p =  E  for every p £ {b .c .d } .

P r o p o s it io n  6

Let card 5 ^ 6 .  Then Sp  =  E  for every p £ {a, b, c, d}.

In the following Lemma 1 we collect some facts which are useful for proving 
the above stated propositions.
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L e m m a  1

a) Let e (A ,p) :=  (A +  p)g{x) — 2Ag (| ) -  2pg Assume that g : Ш —>
M satisfies =  0 and e ( \ 2 ,P 2 ) =  0 for linearly independent

( \ 2 ,P 2) € K 2- Then g satisfies e(A ,/i) =  0 for every (A, p) G К 2. 
In particular, any two equations out of (1) to (4) imply the remaining 
two.

b) Let h(x) g(x  +  1). Then h satisfies equation (1) i f  and only i f  g 
satisfies equation (2).

c) Assume that G  satisfies equation (4) on К  and let u (x) :=  G (x  +  1) — 
G (x ) . Then u(x) = и ( | ) holds for every i E l

d) Assume that и : К  —> К  satisfies u(x) — и (| ) for every x G R  and 
assume that G  is a solution of (4) on the interval [0, 1) which is extended 
to the whole real line by G (x  +  1) =  G {x) +  u (x). Then G  satisfies (4) 
for every i G l .

e) For any S  С  E  and any p G {a, b, c, d} the solution set

L ( S ,p ) :=  {g : R  —> R ; g has property p and satisfies S }  

is a real vector space.

Th e proof of Propositions 1 to 6 and of Lemma 1 shall not be given here. 
Instead of this we refer the reader to the work of Kairies [12] 1999, where a 
part of the results is proved and provide just a few examples:

(4)d  =  (4 ,5 ). Assume that g is a continuous and bounded solution of (4) 
and let u (x) :=  g ( x + l ) —g(x ). By Lemma lc , u(x) =  и (| ) for every x  G K. As 
и is continuous and bounded as well, necessarily и is a constant function with 
value 7 : 14 =  7 I. A  summation of the equations g(x +  к +  1 ) - g { x  +  k) =  u (x  +  
к), 0 ^  к ^  n — 1, gives g (x  +  n) — g(x) =  n'y for any n G N. The boundedness 
of g implies 7 =  0. Hence g(x  +  1) — g(x) =  0 for every x  G R . On the 
other hand, the replicative function given by W *(x ) =  X X o 2 k sin(27r2fca;) 
provides a bounded and continuous solution of (4) and (5) but it satisfies none 
of the remaining equations out of E .

( l ,5 )a  =  (1 ,2 , 3 ,4 , 5). (1) and (5) imply (2): g(x) =  g{x  +  1) =  2 g { ^ - ) .  
(1) and (2) imply (1,2,3,4) by Lemma la . On the other hand, it is routine 
to check that any discontinuous additive function A : К  —» R  with /1(1) = 0  
satisfies (1) to (5) but not (6), (7).

(4 ,7 )a  =  (4 ,7 ). Let g(x) :=  W (x) =  Y^kLo 2_fc cos(27r2fcx) for 0 ^  x <  1 
and g (x  +  1) — g(x) =  sgnx for x  G К. The replicative function W  satisfies
(4) on [0,1). B y  Lemma Id , the extension via g(x  +  1) — g(x) — sgnx, i 6 l ,
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satisfies (4) on the whole real line. We have g(x) =  W (x )  on [0,1], g(x) =  
l f ( i ) + n o n  (n ,n  +  l] a n d ÿ (i)  =  1Г(а:)+ггоп  [—n, — n +  1), n € N. Therefore 
g also satisfies (7) but none of the remaining equations from E .

The knowledge of the p-generating sets (sets S  with S p  =  E )  is basic for 
the first part of Section 3. These sets can be collected from Propositions 1 to
6. We list the minimal ones in the following

Theorem 1
a) A ll minimal a-generating sets are (1 ,7 ), (2 ,6 ), (2 ,7 ), (1 ,3 ,6 ) , (1 ,4 ,6 ) , 

(1 ,5 ,6 ) , (3 ,4 ,6 ) , (3 ,4 ,7 ) .

b) A ll minimal b-generating sets are (1), (2), (3 ,4 ).

c) A ll minimal c-generating sets are (1 ,2 ), (1 ,3 ), (1 ,4 ), (1 ,5 ), (1 ,7 ), (2 ,3 ), 
(2 ,4 ), (2 ,5 ), (2 ,6 ), (2 ,7 ), (3 ,4 ).

d) A ll minimal d-generating sets are (1), (2), (3 ,4 ).

Remark 1
a) No proper subset of a minimal generating set is generating. The gener

ating sets are the supersets of the listed minimal generating sets.

b) A  detailed analysis of the proof of Theorem lb  and c shows:

(I) Every bounded solution of either (1) or (2) or (3,4) is necessarily 
the zero function o.

(II) Every continuous solution of either (1,2) or (1,3) or (1,4) or (1,5) or
(1,7) or (2,3) or (2,4) or (2,5) or (2,6) or (2,7) or (3,4) is necessarily
o.

c) Let A  : R  ->  R  be an additive, discontinuous function with A ( l )  =  0. 
Then |A| satisfies all the equations (1) to (7) [I owe this observation 
to J .  Brzdęk, oral communication]. Consequently, the solution space 
L (S , a) from Lemma le  has infinite dimension for every S  C  E .  However, 
our results also show that many of the L (S ,p )  degenerate to the zero 
space if p G { 6, c, d}. For example, L (S ,b ) =  {o} for every 6-generating 
set S , L (S ,c )  =  {o } for every c-generating set S .

3. C h a r a c te r iz a tio n s  o f  F[tp\ 6  /С

A  characterization of some F[np\ G IC by functional equations from (1) to 
(7) without any regularity assumption is impossible by Remark lc.

So we start with the previously considered regularity types p G {6, c, d} 
and give as an introductory example characterizations of Takagi’s T (x ) =  

2 ~ * A (2 kx) and of the Weierstrass function W  given by
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OO

W (x) =  2~k cos(27r2fcx).
fc=o

RecaW that these functions are particular F  [уз] G £  with уз(х) =  Д (х ), 
respectively уз(х) =  cos 27rx.

Proposition 7
I) Assume that f  : R  —> К  is bounded and satisfies / ( x )  -  2 /  =

2 Д  ( I )  -  1, respectively f ( x )  -  2 /  (^ ^ -)  =  2cos7rx for every x  G К. 
Then f  — T , respectively f  =  W .

II) Assume that f  : E  —>• R  is continuous, 1-periodic and satisfies / ( x )  — 
2 / ( | )  =  —2 Д ( | ) ,  respectively f ( x )  — 2 /  ( f )  =  — 2cos7rx for every 
x G K. Then f  = T ,  respectively f  =  W .

Proof. I) g ■= f  -  T , respectively g f  -  W  is bounded and satisfies (2).
By Remark lb  (I), g is necessarily the zero function o.

II) g :=  /  — T ,  respectively g :=  /  -  VP is continuous and satisfies (1) and
(5). By Remark lb (II) , g is necessarily the zero function o.

The same reasoning applies to any arbitrary F[<p] G К. and to every state
ment from the exhaustive collection in Remark lb  and yields

Theorem 2
Assume that f  : Ш —> Ш is bounded and G 'H. Then f  =  F[gĄ iff either

(I) or (2) or (3 .4 ) holds.
Any superset o f either Ц )  or (2) or (3,4) is characteristic as well.
No other subset of (1) to (7) is b-characteristic.

Proof, g f  — F  [уз] is bounded and satisfies either (1) or (2) or (3,4). 
B y Remark lb (I ) , necessarily g =  о .  Clearly any superset of (1) or (2) 

or (3,4) has о  as its only bounded solution. Every other subset of E  has 
a nonzero bounded solution, a fact which can be documented by means of 
counterexamples.

Theorem 3
Assume that f  : M —> M is continuous and ip Ç.'H. Then f  =  F  [уз] iff  either 

(1, 2) or (1 ,3 ) or (1 ,4 ) or (1 ,5 ) or (1 ,7 ) or (2 ,3 ) or (2 ,4) or (2 ,5 ) or (2, 6) 
or (2, 7) or (3 ,4 ) holds.

Any superset of either (1 ,2 ) or . . .  or (3 ,4 ) is characteristic as well.
No other subset of (1) to (7) is c-characteristic.
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Proof, g f  — F [p \  is continuous and satisfies (1,2) or (1,3) or . . .  or 
(3,4).

By Remark lb (II) , necessarily g =  o. Any superset of (1,2) or (1,3) or . . .  
or (3,4) has о  as its only continuous solution. Every other subset of E  has 
a nonzero continuous solution, a fact which can be documented by means of 
counterexamples.

Remark 2
a) Some of the above characterizations are well known for particular choices 

of ip. For instance, Theorem 2 with equation (1) and <p =  A  gives the 
famous de Rham  [15] characterization of Takagi’s T .

b) If  there is a characterization of some F[<p] £ /С as a bounded and continu
ous solution of an appropriate subset of (1) to (7) then this characteriz
ation remains true if the continuity assumption is dropped. This follows 
from a comparison of statements b) and d) of Theorem 1 (continuity on 
top of boundedness has no characterizing power).

c) A  replacement of “/  : R —> R bounded” in Theorem 2 by “/  is bounded 
on ( —oo,a] for some a € R and / ' ( 0) exists” would immediately rule out 
the end functions /  =  F [p \  6 /С and therefore never lead to a general 
characterization theorem for all functions F[<p\ £ 1C. However, the situ
ation changes, if we start from the previously considered statements (I) 
and (II) from Remark lb , which were fundamental for our characteri
zations. We reformulate them in an explicit version which is useful for 
subsequent considerations.

(B ) a) g bounded on R and (1) imply g — о.

b) g bounded on R  and (2) imply g — о.

c) g bounded on R  and (3,4) imply g =  o.

(C ) g continuous on R  and either a) (1,2), b) (1,3), c) (1,4), d) (1,5),
e) (2,3), f) (2,4), g) (2,5), h) (3,4), i) (1,7), j)  (2,6), k) (2,7)
imply g =  о.

Now a replacement of ug bounded on R ” in (B ), a) by ug is bounded on 
( —oo,a] for some a £ R  and g '(0) exists” makes sense and in fact, as we 
shall see in a moment, the implication ug =  o” remains true after this 
specific replacement.

d) The following considerations are concerned with the problem: To what 
extent is it possible to modify or to weaken the assumptions “g bounded 
on R ” in (B) respectively “g continuous on R ” in (C ) such that the 
implication “p =  o” still remains true? Here are some answers.
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P r o p o s i t i o n  8

a) “g bounded on R ” in (B )-a) can be replaced by any statement out of

1) g bounded on ( —oo, a] U [b, oo) fo r  some a ,b  G M,

2) g bounded on ( —oo,a] for some a G К  and g '(0) € R ,

3) g bounded on [6, oo) for some b € К  and g '(0) G R ,

4) g '(0) = 0 .

However, it cannot be replaced by any one of

5) g bounded in ( —oo, a] for some a G R  and g continuous on R ,

6) g bounded in [b, oo) for some b G R  and g continuous on R ,

7) g bounded on ( —oo, a] and bounded a.e. on [a, oo) for some a G R ,

8) g bounded on [b, oo) and bounded a.e. on (—oo,b] fo r  some b G R ,

9) g analytic and monotonie and convex.

b) “g bounded on R ” in (B )-b ) can be replaced by any one of 1),

2') g bounded on ( —oo,a] for some a G R  and g '( l )  G R ,

3') g bounded on [b, oo) for some b G R  and g'( 1) G R ,

4') g '( 1) =  0.

However, it cannot be replaced by any one o f 5), 6), 7), 8) or 9).

c) “g bounded on R ” in (B )-c) can be replaced by any one of 1), 2), 2 ’), 3),
3 ’), 4), 4 ’), 5), 6), 7), 8) or 9) and by any one of

10) |g| attains it maximum at some £ G R ,

П )  g is bounded on some nonvoid open set T  C  R ,

12) g is continuous in some C €  R .

However, it cannot be replaced by any one of

13) g is bounded below,

14) g is bounded above.

Proof, а) 1). (1) implies g(2nx) =  2ng(x) for every x  G R , n G N and 
3(0) =  0. By hypothesis, there is a 7 G R +  such that \g(z)\ ^  7 for z G ( - 00, a] 
and for z G [b, 00). Consequently, for every x Ф 0 there is an no G N such that 
|g(x)| =  |<7(2nx)| • 2~n ^  7 ■ 2-n  holds, whenever n ^  щ . Hence g (x ) =  0.

4). If g(x) =  a  for some x ф 0, all the difference quotients ,

n G N, have the value f , as g(2~nx) =  2~ng(x) and g(0) =  0. Hence a =
g'{0 )x  =  0 and g has to be the zero function.

2 ) . As in 1) we have g(x) =  0 for x  ^  0. So necessarily g '(0) =  0 and by 
4) we get g =  о.

3 ) . Use the same argument as in 2).
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5 ) . Counterexample: g (x ) :=  0 for x  ^  0, g{x) :=  x  for x  >  0.
6)  . Counterexample: g{x) :=  x  for x  ^  0, g(x) :=  0 for x >  0.
7 ) . Counterexample: g{2m) :=  2m for m  6 Z , <7(2:) :=  0 otherwise.
8)  . Counterexample: <?(—2m) :=  2m for m € Z , <7(2:) :=  0 otherwise.
9) . Counterexample: <7(2:) :=  x.

b) Use Lemma lb  and a).

c) Recall that (3,4) imply (1) to (5). B y a) and b), any of the conditions
I) to 9),

2') to 4') together with (3,4) implies g =  о.
10) . Assume that 7 :=  max{|^(a:)|; x  G K } is attained at £ G К. Since g

is ^-periodic, there is an £0 € [0, |) with |<?(£o)| =  7 - Because of (3) and (4) 
we have |<7(2£o)| =  |<7(£o) +  g (Co +  | =  27, which is only possible for 7 =  0.
Hence g =  о.

11) . Assume that 1*7(2;) | ^  ß  for x  G T . As g is ^-periodic, we may assume 
that I(7(2:) I ^  ß  holds for x  G h  C [0,1), I \  a closed interval of length 2~k 
(with some к G N ). Because of g(2x) — g{x) +  g (x +  ^) we get |ÿ(x)| ^  2/3 

for x  G I 2 , h  a closed interval of length 2_ f̂c_1\  Continuing this way, we 
conclude that \g(x)\ ^  2k~ 1ß  for x  G h ,  h  a closed interval of length By 
^-periodicity, g is bounded on R , hence g — о.

12) . Note that g is bounded on some open neighbourhood of £ and apply
I I )  .

13, 14). Let A : R  —> R  denote some discontinuous additive function 
with A ( l )  =  0. Then the functions |A|, — |A| are bounded below respectively 
bounded above and satisfy (3) as well as (4).

P roposition 9
“g continuous on R ” in  (C ) can be replaced for every of the cases a) to k) 

by any one of the statements 1), 2), 2’), 3), 3 ’), 4), 4 ’), 5), 6), 7), 8), 9), 10), 
11) or 12) but in none o f these cases by 13) or by 14).

Proof. Note that the pairs in (C ) a) to h) each imply the equations (1) 
to (5). So in any of these cases we are exactly in the same situation as in 
Proposition 8, Part c) and the assertions are proved as before. The pairs 
in (C ) i), j)  and k) each imply even the full set (1) to (7). Therefore the 
replacement of “g continuous on R ” by one of 1) or . . .  or 12) is possible as 
well for i), j)  and k). The counterexamples |A| and -|A| given at the end of 
the proof of Proposition 8 work as well in the cases i), j)  and k), because |A| 
and —|A| both satisfy the full set (1) to (7).

All the conditions 1), 5), 6), 7), 8), 11), 12), 13), 14) from Proposition 
8 for g can be reformulated for f  — g +  F[ip\, F[ip\ G IC, yielding several
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modifications and improvements of Theorems 2 and 3 (together with some 
additional non-characterization statements). We finish our paper with just 
one example, namely the substitution of condition 11) into Theorem 3. This 
gives numerous new characterizations of the elements F[ip\ of the vector space 
/С being Knopp, Behrend and Mikolas type functions.

T h e o r e m  4
Assume that /  : R  —t R  is bounded on some nonvoid open set U  C  R  and 

<p E 7-L. Then f  =  F[<p\ if f  either (1,2) or (1,3) or (1,4) or (1,5) or (1,7) or 
(2,3) or (2,4) or (2,5) or (2,6) or (2,7) or (3,4) holds.

To show the reader at least one of these new characterizations in its explicit 
form, we restate the essential part of the very last statement of Theorem 4: 

Let <p £ TL and assume that f  : R  —> К  is bounded on some nonvoid open 
set U  С  К  and satisfies

W  f  (§ )  -  f  ( Ц 1 ) =  V ( i )  -  V ( Ц 1 ) as well as

(Ś) / ( * )  - / ( § ) - /  № )  =  - V  ( f )  -  *> № )

for every i £ l .
Then necessarily f ( x )  =  ^2<kL0 ‘2~kip(2kx) for every i € R .
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