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G y u la  MAKSA

T h e  gen eralized  a sso cia tiv ity  equ ation  revisited

Dedicated, to Professor Zenon Moszner 
on his 70th birthday

A b stract. In this note we solve the generalized associativity equation in 
the real case supposing that the unknown functions are continuous and 
strictly monotonie in each variable. We do not suppose surjectivity of 
any kind.

1. Introduction

In Aczél [1] and also in Aczél-Belousov-Hosszu [3] the generalized associa­
tivity equation

F ( G ( x , y ) , z ) = H ( x , K ( y , z ) )  (1)

is solved on quasigroups and the result is specialised, by using the classical 
result of Aczél [2], [1] on the real continuous cancellative semigroups (see also 
Craigen-Pâles [4]), to real continuous case. Because of the quasigroup technics 
surjectivity assumptions were made. In Taylor [7] equation (1) is solved on 
generalized groupoids supposing surjectivity and other solvability conditions. 
Therefore some important functions (like simple addition on restricted domain 
and some mean values) are excluded from the investigations.

In this note we do not suppose surjectivity of any kind. We suppose 
however that the functions in (1) are real-valued, defined on the cartesian 
product of real intervals and that they are continuous and strictly monotonie 
in each variable. We follow the method used in Maksa [5] for solving the ge­
neralized bisymmetry equation, namely first we solve the simpler associativity 
equation
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A( u  +  v , w)  =  B ( u , v  +  w) (2)

and next we reduce (1) to (2) by using a result of von Stengel [6].
The set of all real numbers will be denoted by R . By a real interval we shall 

mean a subinterval of positive length of R . A real valued function f  will be 
called C M  function  or simply /  £ C M  if /  is defined on the Cartesian product 
of finitely many real intervals and if it is continuous and strictly monotonie in 
each real variable (not necesseraly in the same direction). If U  and F  are real 
intervals then, obviously, U +  V  =  {u Ą- v : u £ U, t) 6  У }  is a real interval 
again.

2. A simple asssociativity equation

In this section we solve equation (2) by proving the following 

L e m m a  1
Let U, V , and W be real intervals, A  : (U + V )  x W  —> R , В  : U x  ( F + I F )  —» 

M, and suppose that (2) holds for all u £ U , v £ V , and w £ W . Then there 
exists a i p : U + V  +  W  —> R  such that

A(p,q)  =  <p{p +  q) (3)

for a l l p £ U  +  V , q £ W  and

B { t , s )  =  <p{t +  s) (4)

for all t £  U , s £ V  +  W . Furthermore, i f  A  £ C M  or В  £ C M  then ip £ C M , 
too.

Proof. First we suppose that U , V , and W  are compact real intervals: 
U  =  [ « i , « 2]> F  =  [wi, V2], and IF  =  Choose the intervals

W w  =  [wlk , W2 k] i к =  1, ■ ■ • i N  ( 1 <  N,  N  is an integer)

such that

and

max (w2 к -  wik)  < v 2 -  vi,

N

( J  I F W =  W,
k=1

W\k < Wik+i < W2k < w2k+\ (A; =  1 , . . .  ,7V -  1).

For fixed к £ { 1 , . . . ,  TV} and i £  {1,2}  define

( 5 )

(6)

¥>»*(£) =  A(Ç  -  wik,w ik), i £ U  +  V  +  wlk-

(7)
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Then, by (2)
<Pik{t T  s) =  A {t +  s -  wik,w ik) =  B ( t , s )  (8)

for all t €  U  and s G V  +  wlk- This shows that

<Pik{t +  s) =  (p2 k(t +  s) (9)

if t G U  and s G (V + w \  j t ) n( V +  w2 k)- Since (5) holds (V +  w\  * . )n(V +  W2 k) =  
[ni +  W2k,v2 +  Wi k] and so

U  +  ( ( V  +  Wik) П ( V  +  w2 k)) -  {U +  V  +  wik)  П (U  +  V  +  w2 к)•

Thus, by (9),

m ( 0  =  m ( £ )  if е е  ( и +  v +  w l k ) n ( u +  v +  w2k)

and k G { 1 , . . . ,  TV}. Therefore the definition of the function ipk {k is fixed in 
{ 1 , . . .  , TV}) given by

, ,  _ ( < P i k { 0  if e € U  +  V  +  wik,

^  ~ { < P 2 k ( 0  i î t ; e u  +  v  +  w2k

is correct. The function ipk is defined on U +  V  +  since, by (5), (U  +  V  +  
w2 k) U ( U  +  V  +  w2 k) =  U  +  V  +  W^k\  Furthermore (9) implies that

<Pk(t +  s) =  B ( t , s )  (10)

for all t G U,  s G V  +  W^k\  and A: G {1 .........TV}.
This shows that <pk( 0  =  Wfc+i(£) if

e G ( и  +  V  +  n ( и  +  V  +  W^k+1A  and As G {1..... T V - 1 } .

This, (6) and (7) imply that the function <p is well-defined by

</?(£) =  <Pk(0 if e e U  +  V  +  for some к G { 1 , . . .  , TV},

<p\ U  +  V  +  W - t M .  and, by (10), we obtain (4).
To prove (3) let p  G U  +  V  and q G W . Then p — и +  v for some и G U  

and v e  V.  Thus, by (2) and (4) we get

A(p, q) =  A (u  +  v,q)  =  B( u ,  v +  q)

=  ip(u +  (v +  q)) =  ip((u +  v) +  q)

=  <p (p  +  q),

i.e. (3) holds, too.
Finally we drop the requirement of compactness of U , V , and W . There 

are sequences (Un), (Vn), and (Wn) of compact real intervals such that
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Un C  Un+ i ,  Vn c  Vn+\i Wn c  w n+1

for all natural numbers n  and
oo

u = \ J u n, V
П — 1

I K
n = l

oo
and W  = ( j  Wn.

71=1

We have proved that, for all fixed n

A(p,  q) =  Фп(р +  q) and B ( t , s )  =  $ n{t +  s) (11)

whenever p  G Un +  Vn, q G Wn, t G Un, s G Vn +  W n for some Фп : Un +
Vn +  Wn —> M. B y (11) the restriction of Фп+1  to Un +  Vn +  is Фп
therefore the function p  is well-defined by p  =  (J^L j (be; p(£) =  Фп(£) if
£ G Un +  17п +  Wn), p  : U  +  V  +  W  — and (3) and (4) follow from (11).

It is clear from the construction of p  that p  E C M  if A £ C M  or В  £ C M .

It is obvious that the functions A  and В  given by (3) and (4), respectively, 
with any p  : U  +  V  +  W  —>■ IR, satisfy (2).

3. The main result

In this section we prove our main result by using our lemma and a con­
sequence of Theorem 21 in von Stengel [6] (see also Maksa [5]).

T h e o r e m  1

Let X , Y , Z  be real intervals, G  : X  x Y  —> R , K  : Y  x Z  R  be C M  
functions with G { X , Y )  =  J \ ,  K { Y , Z )  — J 2- Let furthermore F  : J \  x Z  —> К 
and H  : X  x J 2 —> R  be also C M  functions and suppose that (1) holds for  
all x  G X , y G Y , and z £ Z . Then there exist C M  functions ip : I  Ш, 
Pi : J t —» К (г =  1,2) ,  a : X  —> R,  b : Y  —> R,  and c : Z  - »  К  such that

F { a , z )  =  p { p \ ( a )  +  ф ) ) , (12a)

G{ x , y )  =  p f l (a(x) +  b{y)), (12b)

H ( x , ß )  =  p{a{x) +  p 2 (ß)), (12c)

K { y , z )  =  p ^ { b ( y )  +  c{z)) (12d)

hold for all a E  J \ ,  z E Z , x E X , y E Y ,  and ß  G J 2.

Proof. It follows from von Stengel [6] (Theorem 21) that there exist C M  
functions a : X  —> R, b : Y  —» M, c : Z  —» R, and d : a ( X )  +  b(Y)  +  c(Z)  —> M 
such that

F { G ( x , y ) , z )  =  H { x , K ( y , z ) )  =  d(a(x) +  b(y) +  ф ) ) (13)
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for all X G X , y 6 Y , and z G Z. Let first z =  zo €  Z  and next x  =  Xq G X  be 
fixed in (13) and define the functions f i  : J i  ->  M (г =  1, 2) by

f i { a )  =  F ( a , z 0) and f 2 (ß) =  H { x 0, ß)

(a  G J i ,  ß  G J 2), respectively. Then /1 and /2 are C M  functions and (13) 
implies (12b) and (12d) with the C M  functions tpi and ip2 defined by

<Fi(<a) =  d ~ 1( f i ( a ) )  -  c ( z q )  for a  € J i

and
<Pi(ß) =  d ^ i M ß ) )  -  a{x0) for ß e  J 2, 

respectively. To prove (12a) and (12c), write the form G  and К  given in (12b) 
and (12d), respectively into (1). Hence we get that

F i V i ' H x )  +  4 y ) ) , z )  =  Н{х,<р2 1(Ь(у) + c ( z ) ) )  (14)

holds for all x  € X ,  y £ Y,  and z G Z.  W ith the definitions U  =  a( X) ,  
V  =  b(V) ,  W  =  c(Z) ,

M p , q) =  - F V r 1^ ) ^ - 1 ^ ) )  for p e  и  +  V, q e w

and
B( t ,  s) =  # ( a - 1 (f), </?2 4 s )) for t G U, s G V  +  W

equation (14) implies equation (2). Thus, applying Lemma 1, we have that 
there exists a C M  function : I  —> R  ( /  =  U  +  V  +  W)  such that

F W \ l ( p ) x ~ l {q)) =  q>(p +  7) for p g U  +  V, q e  W

and
H ( a ~ 1(t),  4 s ) )  =  <p(t +  s) for t e  U, s 6  V  +  W

which obviously imply (12a) and (12c), respectively.

It can easily be checked that the C M  functions F ,  G , Я ,  and К  defined by 
(12a-d) indeed are solutions of (1).
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