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Abstract. There is investigated a nonlinear convolution operator
Tf=K*f+Pf

in modular function spaces Lp(G), with application to approximation of
functions / in L°p(G).1

1. One of the leading problems in the theory of Fourier series is the problem
of approximation of 27r-periodic functions, Lebesgue integrable in the interval
—7r, 77 by means of linear, singular integral operators of the form

* - y)f{y)dy-

For example, in case of the first arithmetic means of partial sums of Fourier
series of a function /, (Ffn)~_1 is the Fejér kernel

< sin “nu
n{u) =
w 2nn sin |un

and the singularity conditions mean that

Knudu+¢ wpy du->0 an-—00
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for every 0 < 6 < n and

1 forn=1,2,...

(see e.g. [3]). In further investigations, these problems were extended in three
directions:

(a) The interval [—, & was replaced by a locally compact abelian group G
with Haar measure //; the most important examples besides the interval
[—m, T are G = M= (—cto, 00) with the operation of addition, G = =
[0, 00) with the operation of multiplication and d/a= y, and G = Z
the group of all integers with the operation of addition.

(b) The set N = {1,2,...} of indices was replaced by an abstract set W of

- . Y .
indices with convergence — » generated by a filter W of subsets of W,
this enables a unique treatment of the “discrete” and the “continuous”
case.

(c) The kernel (Kn)*=I is replaced by a kernel (Kw)weWi where Kw: G X
K — E do not need to be linear with respect to the second variable (see
[1], HD-
In this paper we shall investigate the case when the integral operators
consist of a linear part and of a nonlinear perturbation.

Let G be an abelian, locally compact Hausdorfftopological group with ope-
ration +: G x G —» G and with Haar measure /a The a-algebra of measurable
sets will be denoted by E. Let L°(G) be the space of all measurable, finite
/i-a.e. functions /: G -> R, where K is the extended real line, and let L1(G) be
the subspace of all /r-integrable functions / € L°(G) with equality /r-a.e.; we
write 1I/]}i= fG dn(t). In the theory of linear operators a special role is

played by the convolution operator K */, defined by
(K*H)(x) = [ Kx =y)f(y)dj(y) = [ K()f(t+ x)dfi(t)
Jg Jg
for x 6 G, f,K € LI(G), where K{x) = K(-x). Recently, there was consi-
dered also a nonlinear version of the convolution operator of the form

(TF)(x)= f K{t, f(t + x)) dfi(t)
Jg

(see, e.g. [1], [4]). We shall investigate here the case when the nonlinear
operator T is a sum of a linear convolution operator K */ and a perturbation
operator P of the form
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(Pf)(x) = f k(t,f(t+ x))dp(t),
JG

(TH(x) = (K *f)(x) + (Pf)(x) (€]
for p-a.e. X G G. We suppose that K: G — R and k: G x K — K are kernel
functions, i.e. K G L°(G), -ftT(O) =0 and k(-,u) G L°(G) for n G K, k(t,-)
is continuous for t G G, k(t,0) = 0 for t G G. We call K the linear kernel
function, and Kk — the perturbated kernel function.

Let 0 < L G LI(G), p(t) = Let ipp G x R®» —» R}, where Rq =
[0, 00), ip(-,u) is measurable on G for all u ~ 0, ip(t,-) is continuous and
nondecreasing, ip(t,0) = 0, ip(t,u) > 0 for u > 0, ip(t,u) -> oo as w-too for
all t GG. The perturbated kernel function K is called (L, ip)o-Lipschitz, if

|/:(t,u)] ™ L(t)ip(t,u) forallte G, u~ 0.

The domain DomT of the operator T is defined as the set of all functions
/ G L°(G) such that (Tf){x) exists for p-a.e. x G G and T f is a measurable
function on G.

2. Let p be a modular on L°(G), i.e. a functional p: L°(G) — R* = [0, 00]
satisfying the conditions:

P(0) = 0, pu) >0 for/ ¢ O, p(-f) = p(f)
and
p(af + Bg) ~ p(f) + p(g) for f,g GL°(G), a,B"0, a+ RBR=1.
If, additionally,
p{af + Bg) » otp(f) + Bp{g) for f,g GL°(G) and a.B ~ 0, a-1-/0= 1,

we say that p is a convex modular.

Every norm [J* Jon a linear subspace L' of L°(G) defines a convex modular
p on L°(G) by means of the conditions p(f) — W] if/ G L\ p(f) = oo if
/ GL°(G)\L"

The standard example of a modular (convex modular) is provided by the
formula p(f) = fG <p{\f(t)\) dp(t), where <2(0) = 0 and ip is a homeomorphism
(a convex homemorphism) of Rq onto itself, and leads to an Orlicz space
L*(G).

Turning back to the general case, a convex modular p on L°(G) defines a
modular space

Lp(G) = {/ GL°(G): p{\f) < oo for some /1 > 0},
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which is a linear normed space with the norm
Wip=infju >0 p~0 ~ 1],

generated by the modular p. In the case of a normed space with norm |- ||
the modular p(-) = || =] defines again the norm [ b= l* |l In the case of
the above mentioned Orlicz convex modular, there holds L°p(G) = LV(G). In
a general modular space, convergence ||h]p -4 0 is equivalent to the condition
p(Xfn) — 0 for every A > 0. If p(A/,,) —»0 for some A > 0, we say that (fn) is
p-convergent to 0 and we write fn 0. For further information concerning
modulars, see e.g. [5].

There will be needed some definitions concerning modulars. We say that
a modular p on L°(G) is:

(a) monotone, if from f,g GL°(G), [I ™ lgl, follows p(f) ~ p{9),

(b) finite, if for every set A 6 £ of finite measure p there holds xa G Lp(G),
where xa is the characteristic function of the set A,

(c) absolutely finite, if it is finite and if for every e > 0 and every A> 0
there exists a 6 > 0 such that for every set B G £ of measure g(B) < 6
there holds the inequality p(\xB) < £,

(d) J-convex, if the inequality

P ™ RodhE D

holds for every nonnegative p € L X(G) such that ||p]li = 1 and every
measurable h: G x G —» Kd',

(e) absolutely continuous, if for every / G L°(G) such that p(f) < oo there
hold the following conditions:

1) for every e > 0 there exists A G£ such that p(A) < oo and
pUXg\a) < e,
2) for every e > 0O there exists 6 > 0 such that for every B G £ with

p(B) < 6 there holds p(fxe) < £,

(f) subbounded, if there exist constants C ~ 1and ho > 0 such that p{f{t+-))
N p(Cf) + ho for all / GL°(G) and t G G,

(g) T-subbounded, if there exist a constant C ~ 1 and a function h G L°°(G)
tending to 0 as t — 0 in the sense of the topology in G, satisfying the
inequality p{f(t + ¢)) ~ p{Cf) + h(t) forall/ GL°(G) and t G G.
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Let p and 7 be two modulars on L°(G) and let ip be the function from the
(L, ip)o -Lipschitz condition.

We say that {p,d, T)} is a properly directed triple, if there is a set Go € E
of measure p(Go) = 0 such that for every number 1 G (0,1) there exists a
number C\ G (0,1) satisfying the inequality

p[CiD{t, [FC)DI < TI(XF(-))

foralli GG\ GOand F G L°(G).

The following example explains the motivation. Let p be the Orlicz mod-
ular defined by means of a convex homeomorphism (p Kg —» K( and let
ip: —> Rjj" be the inverse of a0 Since ip is concave, it follows p(A7/>(|F()]) »
r/(XF(-)) for 0 < A< 1, F G F°(G), if we take 7{F) = fG\F(t)\dp(t). Hence
{p, ip, T} is a properly directed triple with C\ = A. Let us remark that for a
given A, the set of numbers C\ is an interval I\ of the form I\ = (0, <G with
0< N~ 1or I\ = (0,5 with 0 < 6\ < 1. Writing C\ we shall have in mind
an arbitrary number C\ € I\.

3. We start with the following

Embedding theorem

Let p and 7/ be two convex modulars on L°(G), subbounded with constants
C , ho and C", Hqg, respectively; moreover, let p be monotone and J-convex.
Let the linear kernel function K belong to L1(G) and let the perturbated kernel
function k be (L,ip)o-Lipschitz with L G L1(G). Suppose that {p, ip,r]} is a
properly directed triple, and let the operator T be given by (1). Let0 < A< 1

and 0 < a @ *min~" e Then for every function f G L°p+r)(G) N
DomT there holds the inequality

p(aTf) ~ N[p{\C'f) + TAAG"/) + h0 + ht)}.

Proof. Since p is monotone, convex and subbounded with constants C ,
ho0, so taking a > 0 so small that 26 |IIF]1~ A2 with 0 < A~ 1 we obtain

p(2a(K */))x f LW ~p(2a\\K\W ~ + -)]) dp{t)

<Wh b +w
< A[p{\C'f) + hO].

Since k is (L, ip)o-Lipschitz, {p, ip,ri} is properly directed and 7/is convex and
subbounded with constants C", h", we get
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p(20tPf) § [ ifp~p[2al L] iVv>(t, \f(t + -)\)dfi{t)

KL w J Ix2f{t+))NML)
AA[r](\C"f) + h'o\,

if 2a]JL]]i »~ C\2. By convexity of p, we obtain

p(<*Tf) $ \[p(2a(K *f) + p(2aPf)}

< NA[p(AC7) + r/(NC"7) + N, + /$.
From the above Theorem one may conclude, immediately:

Corollary
Under assumptions of the Embedding Theorem, T maps L°p+T](G)n Dom T
into L°p(G) and is continuous at 0 in sense of the (p + r])-convergence.

4, Let p be a modular on L°(G) and let if be a basis of *-measurable
neighbourhoods of the zero element 0 G G. Then the map

wp: L°(G) XW->K +
d( fined by
Wp(f,U) = supp(/(t + ¢ - /(*)) for/ € L°(G), U eU
teu

is called the p-modulus of continuity. There holds the following Lemma (see
[2], Theorem 2):

Lemma
Let p be a monotone, absolutely finite, absolutely continuous and r-sub-
bounded modular on L°(G). Then for every f € L°p(G) there exists a constant
A > 0 such that
up(Xf.u)no

in the sense ofU.

Approximation theorem

Let p be a convex, monotone, subbounded with constants C', h0 and
J-convex modular on L°(G) and let p be a T-subbounded with constant C"
and function h" modular on L°(G). Let the linear kernel function K belong to
L X(G) and let the perturbated kernel function k be (L,ip)o-Lipschitz. Moreover,
let {p,~, 7} be a properly directed triple. Let 0 < A< 1, 0 < 2a]|L]]i ~ C\,
UEH and f € L&V(G) N DomT. Then there holds the inequality
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Pa(Tf —/)) s? Jo;p@al IK|11/,C/)

+ 1[p(BaC"\\K\\1f) + h(Q] [ P-dp (t)
4 Jg\u

+ N+vvig + 1o -
%bI(AC/) h'If] 2thfg\u |y|/I|Pi dp(t)

+ \p[4a{\K\i - D7,

wirere = supessh"(t).
teu

Proof. By convexity of p, we have for every a > 0
p(a(Tf- /7)) ~ \p[2oc(K */-/)] + \p(2aPf).
Applying the identity
{K*f-H{x)=1 + x) - f{x)) dp(t) + (AT - \)f(x),

Jg

convexity and monotonicity of p, we obtain

pl2a(K*f-f)]1~\ji + \j2,

where
Jx=p (NajG\K(t)\W{t + -)-f(-)\dp{t)y J2 = p(da(\\K\1-1)f).

Since p is J-convex and subbounded, we obtain for every U GU

Ji ifec +e)-/(*)!] Mt)
s X /(t+ - /() M)
+ 1 P p [ 8pr],/(1+ -)XK <)
2Jg\u NA i
+\ [ W r- ™ ow N
2Jg\u \\«k H

\K (t)\
dp(t).
LG\ 11711

<wp(W, K\wn/un) + p@C\N\NIP) + Tho

187
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@

(6)
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Moreover, since p is monotone and J-convex, the permutated kernel K is
(L, tp)o-Lipschitz, {p, ip,g} is a directed triple and rj is r-subbounded with
constant C" and function h", so we obtain for U £ U, 0< /1< 1 and 0 <
2alIL]l. $ C\

g{2o0tPf) ~ jjO-p[2a\\L\\iip (t,\f(t + )] do{t)

~gxerf) + [ h*(t)dp(t) + [ §~-h"(t) dg(t)
Ju 1I-Mli Jg\u M

Np(AC"H) + h+ hQ f TrrTp dp{t).
Jg\u N
Taking together the last inequality and inequalities (3), (4), (5) and (6) we
obtain the inequality (2).

5. We take now a family T = (Tw)wely of operators Tw, filtered by means
of a filter W of subsets of the set W of indices w. Thus we have

(Twh)(x) = (Kw=*f)(x) + (Pwf)(x)

for p-a.e. X £ G (the exceptional set of measure zero is supposed to be inde-
pendent of the index w).

The family /C = (Kw)w*w of linear kernel functions is called a linear kernel,
and the family K = (kw)wew is called a perturbated kernel. The domain Dom T
of T is defined as Dom T = NMWaw DomT”. We say that K is (£, ip)o-Lipschitz
for C = {Lw)WE\v, if kw are (Lw, ip)o-Lipschitz for all w £ W. Convergence in

the sense of the filter W will be denoted by —WK
We say that the linear kernel K is singular, if the set {]]iCu]]i: w £ W) is
bounded and

\Kw(t\dp(t) 1 o

M'fjﬂ"l(l]g\u

for every U £ U. is called strongly singular, if it is singular and satisfies the

w
I ™ 1
We say that the perturbated (L, ip)o-Lipschitz kernel K is singular, if the set
{W,.4i: w £ W) is bounded and

condition

Lw(t) dp(f) 0.
windsgu

w
Now, we formulate a theorem concerning the p-convergence Twf — >/.
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Convergence theorem

Let p be a convex, monotone, absolutely finite, absolutely continuous,
T-subbounded and J-convex modular on L°(G). Let p be a T-subbounded mo-
dular on L°(G). Let K = {Kw)wew be a strongly singular linear kernel and
let K. = (kw)\WEw be an (L,ip)o-Lipschitz, singular perturbated kernel. Let
{p,ip,T]} be a properly directed triple and let f G Lp+J)(G) M DomT. Then
there exists a A > 0 such that

p[4 Twf - /)] A O

Proof. We apply inequality (2) with Tw, Kw and Lw in place of T, K and
L, respectively. Let K = sup”~” [lA.lli, L = sup”cjy |IL.Ili. Let e > O
be arbitrary. Since / G L~(G), we may find a /1 such that 0 < /1 < 1 and
p(XC"f) < Since / & Lp(G), we have p(8aC'K f) < oo for sufficiently
small a > 0; we may also assume that 2aL ~ C\. Moreover, by the Lemma,
we may take a so small that ojp(4aKf,U) —» 0 in the sense of U, i.e. there
exists a U eld depending on e such that

op(daKf, U) < e.

Since T] is T-subbounded, we may choose the set U so small that h", < We
fix the set U. Now, since /C and K are singular, there exists a set W\ ¢ W
such that

\p(8aC'Kf) + h0] [ dp(t) < e
Jg\u 11 v |2

and

jt /e 1
b F IrlNJn) dp(t) < e

JG\WU Iwiulll 4
for w G W\. We obtain

p(a(Twf - /)) < + ~pla(] 1A|1- 1)7]

forw G W\. Since/ G L°p(G), there exists a /10 > 0 such that p(A0/) < e. Since

/C is strongly singular, we have H/CJli - 1 — »0. Hence there exists a set W2 ¢
W such that 4q |[[i"u;]li —1 ™ 20 for w G W2, and so p[4a(||A'ulli - 1)/] <e
for w ¢ W2- Taking W = W\ N1 W2, we thus obtain p(a(Twf - /)) < e for
w G W. This ends the proof.
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