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E n tire  so lu tio n s o f a fu n ctio n al equ ation

Dedicated, to Professor Zenon Moszner 
on the occasion of his 70th birthday

A b stract. The aim of the present note is to show that all entire solutions 
/  : C  — ¥ C , of order less than 4, of the equation

\f(s + it)f(s - i t )I = |/(s)2 -  f(it)21, s ,t G Ж

are given by f ( z)  — az and f ( z)  =  a sin bz, where a, b are arbitrary 
complex constants. This is a partial solution of the problem posed by 
Themistocles M. Rassias [3] (see also [4]).

1. It is known that all entire solutions of the functional equation

f { z  +  w ) f ( z  - w )  =  f ( z )2 -  f ( w ) 2, z, w e C  (1)

are of the form

(i) f { z )  — az or (ii) f ( z )  =  asinbz,

where a, b 6 C  (cf. e.g. [1]). If  we replace in (1) the complex variables z and w 
by s and it (s , t G К) and we take the absolute values in the resulting equation, 
then we obtain the functional equation

|/(s +  i t ) f ( s  -  i<)| =  | /(s)2 -  f ( i t ) 2\. (2)

So functions (i) and (ii) are entire solutions of (2). We conjecture that there 
are no other entire solutions of this equation. We can prove only the following:

T h e o r e m  1

The only entire solutions of order p, p <  4, of equation (2) are given by 
(i) and (ii).
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2 . O f course, if /  satisfies equation (2) then / ( 0 )  =  0. It is clear that the
function _____

F ( z )  : =  f ( z )  (3)
is entire if and only if /  is entire. We denote by f l the set of all entire func
tions /  such that their power series expansions Х ^ о апг"  bave only real 
coefficients. To prove the theorem we need the following lemmas.

Lemma 1 (cf. [6])
Assume that an entire function f  has only a finite number of zeros located 

at the points z \ ,  z2, ■ ■ ■, zn. Then all entire solutions g which satisfy

IsOOl =  1/001 f o r a l l s e R

are given by

g{z) =  f ( z )

where p 6 fl and Wj € {z j , Zj } ,

(z -  wi) ■ ■ ■ {z -  wn) j v(z) 
(z -  zi) ■■■ {z -  zn) 

j  £ n}.

(4)

(5)

Let f  ф 0 be an entire function having a zero of multiplicity m ^  0 at 0 
and let

z i , z 2, . . .

be the sequence of all zeros of /  different from 0, where fc-fold zero is supposed 
to be repeated к times in the sequence. We suppose that the zeros are ordered 
according to increasing absolute values. The Weierstrass Factorization Theo
rem states that there exists an entire function having zeros at zn, n  € N and a 
zero of multiplicity m  at 0 and having no other zeros. If {gn} is a sequence of 
non-negative integers such that the series ]C ^ L il;^ T n+1 converges uniformly 
on compact sets, then the product

I ( z )  =  zm f [ E ( - , p n) ,  (6)
nVl V*n )

where E ( z , 0) =  1 — z and E ( z , p) =  (1 — z) exp ^  H------+  у  ) ,  p  € N,

satisfies the above conditions. Moreover the product converges absolutely. It 
is clear that the quotient ^ is an entire function without zeros (see [5], p. 298).

Lemma 2 (cf. [6])
Assume that an entire function f  Ф 0 has an m-fold zero at 0 and an

other zeros are the elements of the sequence {zn}. Then all entire functions g 
satisfying equation (4) are of the form

9{z)=нг)Ш еЫ,)'
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where p  G O, I  is given by formula (6) whereas J  has the form

J ( z )  =  zm f [ E ( — ^ n) ,  (7)
n = l  ' Wn '

where wn G {zn ,zü},  n G N.

L e m m a  3  (cf. [6])

Under hypotheses of Lemma 2 all entire functions g satysfying the equation 

\ f ( i t) \  — |5(*<)| for all t G К

are of the form

9 W = / ( z ) # r e « W +i' W ,
1 (z J

where q ,r  G Г2, q ,r  are odd and even, respectively, whereas I  and J  are given 
by formulas (6) and (7), respectively, where wn G {zn , —z^}, n  G N.

L e m m a  4

I f  f  is an entire solution of  (2) then f 2 is even and / ( 0 )  =  0.

Proof. The second fact is obvious. Put

<P =  f 2-
By (2)

M s )  -  I =  |/(* +  -  i t )I =  \ f {s  -  ( - i t ) ) f { s  +  H * ))|

=  M s ) -  4 > ( -i t )I

for all s , t  G R . Squaring the both sides of the equality |< (̂s) -  ip(it)\ =  
M s ) -  < p ( - i t ) I yields

(<p(s) -  <p(it)) (Ф(з) -  Ф (-г * ))  =  (p(s)  -  <p(-it)) (Ф(з) -  Ф ( й ) ) ,

where Ф(г)  :=  tp(z). According to the Identity Theorem we obtain

(p{z) -  p(w))  {Ф(г) -  Ф ( - т ) )  =  (<p(z) -  <p(-w))  (Ф (г) -  Ф (м )) (8)

for all z ,w  G C . Since y?(0) =  Ф(0) =  0, relation (8) implies <p(w)Ф (—ю) =  
<p(—т)Ф(ю), whence by (8)

ip(z) [Ф(ги) — Ф (—u;)] =  Ф(г) [p{w) — p { —w ) \ . (9)

If <£>(s) =  p ( —s) for s G R  then ip(z) =  <p(—z) for all z G C  and Lemma 4 
follows. Thus suppose that for some so G R , </>(so) Ф p { ~ So)- It is enough to 
show that this case does not occur. Setting w =  so in (9) we infer

Ф (z) — cip(z) for all г  G С , (10)

where с : =  • We observe that the complex numbers p(so) — <p(— so)



242 Andrzej Smajdor and Wilhelmina Smajdor

and Ф(во) — Ф (—so) are conjugate so |c| =  1. Since /  is a solution of equation 
(2), we have

M « ) -  v H I 2 =  M *  +  **)v(s -  i t )I =  |v(s +  it)(f(s -  *t)|
=  \<p(s +  й )Ф  (s +  *t)|.

By (10) we have also

М *)Ф(*)1 =  M * )l2-

Thus (11) goes into

M s )  -  v H )  ( $ ( s )  -  * ( - « * ) )  =  \ Ф  +  i t ) I 2

=  ip(s +  й )Ф  (s — it)

for s , i € l .  Again by the Identity Theorem we obtain

(<p(z) — <p(w)) (Ф(г) — Ф ( —го)) =  <p(z + г о ) Ф (z — го) 

for all z, w € C , whence by (10) we get

(ip(z) -  <p(w)) (<p(z) -  <p(-w)) =  ip(z +  w)<p(z -  w). (12)

Write

Ф )  =  2  М * ) -¥ > ( - •* ) ] ,  г е С .

Now we observe that гг satisfies equation (1). In fact, by (12)

7Г(z +  w )n(z  — w) — ~ М г  +  w) -  <p{—z -  wj\[<p(z — го) — <p(-z  +  го)]

=  +  w)(p(z — w) — ip(z +  w)tp(—z +  го)

-  ip(—z -  w)ip(z -  w) +  <p(-z -  w)ip(—z +  го)]

=  \ [ { Ф )  -  v H )  ( v ( * )  -  v ( - w ) )

-  ( v H  -  v ( * ) )  ( v H  -  v ( H )

-  ( v ( - « 0  -  v ( - * ) )  ( v ( - H  -  v W )

+  M - * )  -  v ( - H )  ( v ( H  -  v H ) ]

= J [ Ф ) 2 -  v H 2 -  <f(-w)2 + ip{-z)2 

+ 2ip(w)(p{-w) -  2tp(z)ip{-zj\

=  гт(г)2 — 7г(го)2.

Thus гг satisfies (1), whence (i) n(z)  =  az or (ii) n(z) =  asinbz ,  where a, b 
are some complex constants such that a ^ O  and 6 / 0 .  Define an even entire 
function by
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* i(* )  =  \  [4>(z) +  4>(-z)\-

When (i) holds, ip(z) — n\ (z) +  az. Differentiating both sides of the equality 
f ( z ) 2 =  7Гi (z) 4- az and setting z =  0  in the resulting equality we obtain 
7Tj(0) =  —a, which is impossible since is even and а Ф 0. Similarly, in 
the case (ii) differentiating the equality f { z )2 =  ni (z)  +  asinhz yields the 
condition 7г' (0) =  —ab, which again leads us to a contradiction.

Let ai :=  / '( 0 ) .  It is clear that -F'(O) =  Щ, where F  is given by (3). The 
methods used in the next lemma are due to Hiroshi Haruki (cf. e.g. [2]).

Lemma 5
I f  f  is an entire solution of equation (2), F  is given by (3) and a\ =  / ' ( 0), 

then f  is odd and the equality

\ax\2f {2 z )F { 2 z )  =  4 f ( z ) F ( z ) f ' ( z ) F ' ( z )  (13)

holds in C . Moreover, i f  f  ф 0, then ax Ф 0.

Proof. We may assume that f  ф 0. Since /  is a solution of (2), we have

f { s  +  i t ) f ( s  +  i t ) f { s  -  i t ) f ( s  -  it) =  ( / ( s )2 -  / ( i f ) 2) ( / ( s )2 -  / ( i t ) 2)

for all s, t G R. Hence by (3), Lemma 4 and the eveness of F 2 (/ 2 is even if 
and only if so is F 2) we obtain

f ( s  +  i t ) F ( s  -  i t ) f  (s -  i t ) F ( s  +  it) =  ( f ( s )2 -  / ( i t ) 2) ( F ( s )2 -  F { i t ) 2) , 

whence

f ( z  +  w ) F ( z  -  w ) f { z  -  w ) F ( z  +  w) =  (/(гг)2 -  /(г о )2) ( F ( z )2 -  F ( w ) 2)

for z , w  6 C . Dividing the last equality by (z +  w)2(z — w )2 and passing to 
the limit as z — > w we obtain

f ' ( 0 ) F ' ( 0 ) f { 2 w ) F { 2 w)  = 4  f ( w ) F { w ) f ' ( w ) F ' ( w ) .  (14)

Since the ring of all entire functions has no divisors of zero and /  ф 0, by (14), 
it follows that oq ф 0.

To end the proof it suffices to establish the oddness of the function / .  
We can find a disc D  centered at 0 such that the function ip(z) :=  is

holomorphic in it (both functions f ( z )  and f ( —z) have an 1-fold zero at 0, so 
tp{0) =  —1). The equality ip2 =  l  in D  results from Lemma 4. Consequently 
ip =  1 or ip =  — 1 in D ,  i.e., f ( z )  =  f { —z) or f ( —z) =  —f { z )  in D.  In virtue 
of the Identity Theorem /  is even or odd. Since ai =  / '( 0 )  ф 0, f  must be 
odd.
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L e m m a  6
I f  f  is an entire solution of equation (2) then there exists an entire function  

p belonging to Q such that

2f ' ( z ) f { z ) =a1f(2z)eî \  (15)

where a\  =  / ' ( 0).

Proof. Setting in formula (13) z =  s, s G R , we get

|а1|2/(25) 7 Щ  = 4/(5)7ы / ,(5)77Ы ,
i.e.,

I ° i / ( 2s)| =  2| /( s ) / , (s)|. (16)

A t first, suppose that /  has a finite number of zeros. Assuming that zo is 
a zero of /  we obtain that so is 2zq or 2zq, according to Lemma 5. Again by
this lemma, 4zo or 4z<j is a zero of /  and so on. Thus in this case /  must have
exactly one zero zq =  0, of multiplicity 1. In virtue of Lemma 1 we can find 
p  G Г2 such that

2 f ( z ) f ' ( z ) = a lf(2z)ei* z\

Now assume that /  ф 0 has an infinite number of zeros. Let all zeros of the 
function f ( 2 z )  different from zero be elements of the sequence {zn}. Applying 
Lemma 2 we can find p  €  fi such that

2 / W / '( 2 )  =  a , / ( 2 z ) ^ 4 e « 2>, (17)
l ( z)

where I  and J  are given by (6) and (7), respectively, m  =  1, wn €  {zn,z^} ,  
n G N. Taking z =  it (t 6 IR) in formula (13) we obtain

\a i f ( 2 it)\ =  2 \ f ( i t ) f ' ( i t ) \ .

Lemma 3 says that there exist un e  {zn, — z^} and q ,r  G Ü such that

2f ( z ) f ' ( z ) = a i f ( 2 z ) à & e M +irV ,
l {z)

where I  is given by (6) (m =  1) and

OO , \
J i { z )  =  z Ц Е ^ , р п)  ■

The products J  and J \  would be different only if there exists a zero of one of 
them that is not a zero of the other. But the both products have the same 
zeros, namely the zeros of the function 2 / / ' ,  so J  =  J \ .  Therefore, without 
loss of generality, we may assume that wn =  un for every n. We claim that
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wn — zn for all n  G N. Suppose the contrary: wn ф zn for some n. Then 
wn =  z^  and zn ф R . On the other hand, since wn — un — —z^, we would 
obtain zn =  0, which is impossible. Consequently I ( z )  =  J ( z ) ,  whence (15) 
follows. Finally, let us observe that /  =  0 satisfies equation (15) with an 
arbitrary entire function p.

Lemma 7
All odd entire solutions of the equation

a i f { 2 z) =  2 f ( z ) f ' { z )  (18)

such that / ( 0 )  =  0 and / '(O ) =  ai are of the form

(i) f { z )  =  a \ z  or (ii) f ( z )  =  as'mbz, 

where a and b are complex constants such that ab =  a \.

Proof. Let /  be an odd entire solution of (18). We may assume that 
/  Ф 0. Then / ' ( 0) =  ai ф 0. Write

/ ( * )  =  ^ a 2n+ \z 2 rc+ l (19)
n=0

We have by (18)

n=0
ai ^ a 2„ + i(2 z )2n+1 =  ] T a i a 2 „ + i22n+V n+1

n=0

=  2 ( +  l )a2n+\Z
2 n

Kn=0
E

\ n = 0
d2n+lZ 2 n + l

Equating the coefficients of z2n+1 (n =  0,1,  2 , . . . )  we infer that

П

22n+1aia2„+i = 2 ^ ( 2 к + l)a2fe+ia2(n-fc)+i • (20)
A:=0

It is easy to see that the coefficient аз may be arbitrarily chosen. Let n =  2.
By (20)

25a ia5 =  2(a ia5 +  3a| +  5asai).

Hence
(25 — 12) axas =  6a2.

Thus
62 a? 

as =  ry — • 5! ai
(21)

By induction we shall show that
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Ci2k+1 =  /0Ł6. тм ~ ё г  for all A: G N, к ź  2. (22)
(2к +  1)! aj

For к — 2, (22) reduces to (21). Assume that (22) is true for к E {2___ _ n},
where n ^  2 is a positive integer. We have by (20)

o2n-f-3_
z a ia 2n+3

=  2

=  2

aić*2n+3 +  ] ^ ( 2  к +  l)a2k+\d2n+3-2k +  (2n +  3)o2n+30l

6fc a£ 6n+1_A:

fc=i

(2n +  4)aia2n+3 +  £ < 2* +  ‘ >
n-f 1 —A:

к— 1 (2fc +  1)! a*-1 (2n +  3 — 2k)\ a " _fc

Hence

[22n+3 -  4(n +  2)] aia2„+3
n+l n 1 1

=  2 ^ 3 _ 6 n+1 V  — __________ - _______
a”-1 ^  (2fc)!(2n +  3 -2 A ; ) !

o a£+ 16n+1 1 - A / 2 n  +  3 \

a"-1 (2n +  3)! j“  \  2k )

QU+lgn+i

лп - 1 (2n +  3)!

2n + 3  y-fj q \  2n +3  Q

Е / 2n +  3 \ V—> I Zti +  3

(  j  )  +  £
j = о  V  J '  j = 0

2 -  2(2n +  3)

.n+l 6n+i
n— 1

1
(2n +  3)!

[22n+3 -  4n -  8] .

Consequently
6n+1a£+1

^271+3 fn , o \ l  Tl Î(2n +  З ) !^

i.e., we have obtained (22) for к =  n +  1. The induction completes the proof 
of (22).

We have proved that every odd entire solution different from zero of (18) 
is given by formula (19), where 02n+i are expressed by (22) for к =  n  ^  2. 
The coefficient аз may be chosen arbitrarily. If  аз =  0 then / (z) =  a iz ,  i.e., 
/  is of the form (i). O f course, this function is a solution of equation (18). 
Consider the case аз ^  0 and take complex numbers a and b such that
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Then û2n+i

ai =  ab and аз =  — ̂ ab3.
о

=  (2n+i) !a ( ~ l ) nfr2n+1 f ° r аИ «  € N. Consequently

°° °° /  I \7l
f ( z )  = a b z  +  ' ^ / a2n+iz 2n+l =  abz +  a +  (fez)2n+1

n = l  n = l  '

=  a sin tar,

i.e., the function /  is of the form (ii). Since ab — <ц, f  clearly satisfies equation 

(18).

L em m a  8

Assume that an odd entire function f  Ф 0 is a solution of equation (15), 
where /(0) = 0, ax = /'(0) and p is an entire function. Then p is even, 
e*p(°) =  1 and p " (0 ) =  0.

Proof. Since /  is odd, f  is even. Thus the function eip^  must be even. 
Differentiating the equality eip^  =  eip(~z  ̂ we obtain p'(z) — —p ' ( —z),  whence 
the even ess o f  p  follows. Thus pW (0) =  0 for all odd  positive integers. Differ
entiating (15) and setting г  =  0 we see that etp^  =  1. Write

q(z) =  e ^ \  h =  2 f f ' = ( f 2)'  and g(z) =  a i f ( 2 z).

Since p'(0) =  0 to prove that p"(0) =  0 it is enough to show that q"(0) =  0. 
Differentiating the equality h =  qg three times we get

h'"(z) =  g '" (z )q(z) +  3 g"(z)q '(z) +  3 g'{z)q” (z) +  g(z)q'"{z).

Setting 2 =  0 and applying conditions g(0) =  ^"(0) =  0, g" '(0) =  h '"(0) =  
8a i / ' " ( 0), g '(0) =  2af we get

8a ! / w(0) =  8a i / ' " ( 0) +  6a?g"(0),

whence q” (0 ) =  0 follows.

3. Proof of the Theorem

Let /  /  0 be an entire solution of equation (2). By Lemmas 4 and 5 we 
know that / ( 0 )  =  0, / ' ( 0) =  ai ф 0 and /  is odd. Assume that the order p of 
/  belongs to the interval [0,4). Write

M ( r , f )  =  max \ f (z) \ .
\z\=r

It is easily seen that M (r , / ( 2  ■ )) =  M (2r, / )  and M (r , / 2) =  (M (r , / ) ) 2. Since
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p =  lim su p l0S(1°,e M ( r ' / ) )  
г—>oo log r

(cf. [5], p. 320), we see that the orders of / ( 2  • ) and f 2 axe also equal to p. It 
is known that orders of an entire function and its derivative are the same (cf. 
[5], p. 323). Consequently the orders of functions a \ f { 2 -)  and 2 f f  =  (/ 2)'  
are equal to p. B y Lemma 6 there exists an entire function p such that /  is a 
solution of equation (15), i.e.,

2 f ' ( z ) f { z )  =  eip{z) 

a xf { 2 z)

Hence the order of the function eip^  does not exceed p (see [5, Theorem 
(10.19), Ch . 7]). Hadamard’s Theorem states that p is a polynomial of degree 
^  p (see [5, Theorem (10.1), Ch. 7]). Consequently the degree of p is less than
4. In virtue of Lemma 8, p is even and p"(0) =  0, so the polynomial p must 
be a constant. On the other hand ei p =  1. Thus /  is an odd entire solution 
of equation (18). Now our theorem results from Lemma 7.
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