ROCZNIK NAUKOWO-DYDAKTYCZNY AKADEMII PEDAGOGICZNEJ W KRAKOWIE
Zeszyt 204 Prace Matematyczne XVII 2000

Andrzej Smajdor and Wilhelmina Smajdor

Entire solutions of a functional equation

Dedicated, to Professor Zenon Moszner
on the occasion of his 70th birthday

Abstract. The aim ofthe present note is to show that all entire solutions
/| :C —¥C, of order less than 4, of the equation

V(s Hit)f(s -it)l = J/(s)2- f(it)21 s,tG XK

are given by f(z) —az and f(z) = asinbz, where a, b are arbitrary
complex constants. This is a partial solution of the problem posed by
Themistocles M. Rassias [3] (see also [4]).

1. It is known that all entire solutions of the functional equation
f{z + w)f(z -w) = f(z)2- f(w)2, z,weC 1)
are of the form
(i) f{z) —az or (ii) f(z) = asinbz,
where a, b 6 C (cf. e.g. [1]). If we replace in (1) the complex variables z and w
by s and it (s,t G K) and we take the absolute values in the resulting equation,
then we obtain the functional equation

/(s + it)f(s - iQ] = |/(s)2- f(it)2\ (2)

So functions (i) and (ii) are entire solutions of (2). We conjecture that there
are no other entire solutions of this equation. We can prove only the following:

Theorem 1
The only entire solutions of order p, p < 4, of equation (2) are given by
(i) and (ii).
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2. Of course, if / satisfies equation (2) then /(0) = 0. It is clear that the
function

F(2) := f(2) ©)
is entire if and only if / is entire. We denote by fl the set of all entire func-

tions / such that their power series expansions X ™~ o anr" bave only real
coefficients. To prove the theorem we need the following lemmas.

Lemma 1 (cf. [6])
Assume that an entire function f has only a finite humber of zeros located
at the points z\, z2, mmm, zn. Then all entire solutions g which satisfy

Isool = 1/001 forallseR )

are given by
(z - wi) mmm{z - wn)j v(2)

9{z) = f(2) )

(z- zi) mm{z - zn)
where p 6 fl and Wj € {zj.Zj}, | £ n}.

Let f ¢ O be an entire function having a zero of multiplicity m ~ 0 at 0

and let
zi,z22,...

be the sequence of all zeros of / different from 0, where fc-fold zero is supposed
to be repeated k times in the sequence. We suppose that the zeros are ordered
according to increasing absolute values. The Weierstrass Factorization Theo-
rem states that there exists an entire function having zeros at zn, n € N and a
zero of multiplicity m at 0 and having no other zeros. If {gn} is a sequence of
non-negative integers such that the series JCALil;~ATNtl converges uniformly
on compact sets, then the product

I(z) =zmf[E (-,p n), (6)

nVl  V*n )
where E(z,0) = 1—z and E(z,p) = (1 —z) exp N H-—+ vy ), p €N,
satisfies the above conditions. Moreover the product converges absolutely. It
is clear that the quotient ~ is an entire function without zeros (see [5], p. 298).

Lemma 2 (cf. [6])

Assume that an entire function f ® 0 has an m-fold zero at 0 and an-
other zeros are the elements of the sequence {zn}. Then all entire functions g
satisfying equation (4) are of the form

9{z)=Hr)Wl ebl,)"
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where p G O, | is given by formula (6) whereas J has the form
W(z) =zmf[E (— " n), )
n=1 " Wn '

where wn G {zn,zi}, n G N.

Lemma 3 (cf. [6])
Under hypotheses of Lemma 2 all entire functions g satysfying the equation

\f(it)\ — |5(<)] for all t GK
are of the form
9 W :/(z)ﬁ(ztj«WH'W,

where q,r G 2, q,r are odd and even, respectively, whereas | and J are given
by formulas (6) and (7), respectively, where wn G {zn, —z”}, n G N.

Lemma 4
If f is an entire solution of (2) then f2 is even and /(0) = O.

Proof. The second fact is obvious. Put
P= f2-
By (2)
Ms) - = |/(* + - i)l = \f{s - (-it))f{s + H*))]
= M s) - 4>(-it)l
for all s,t G R. Squaring the both sides of the equality |<\s) - ip(it)\ =
M s) - <p(-it)l yields
(<p(s) - <p(iD) (P(3) - D (-r*)) = (p(s) - <p(-it)) (D(3) - P (i),
where ®(r) := tp(z). According to the Identity Theorem we obtain
(p{2) - p(W)) {®(r) - @(-T)) = (P(2) - <p(-w)) (¥(r) - ®(m)) (8

for all z,w G C. Since y?(0) = ®(0)
<p(—T )P (10), whence by (8)

0, relation (8) implies <p(w)® (—0) =

ip(2) [®(rn) — & (—u)] = @(r) [p{w) —p{—w)\. ©)

If <€(s) = p(—s) for s G R then ip(z) = <p(—=z) for all z G C and Lemma 4
follows. Thus suppose that for some so GR, </>(s0) ® p{~So)- It is enough to
show that this case does not occur. Setting w = so in (9) we infer

®(z) —cip(z) forallr GC, (10)

where ¢ := * We observe that the complex numbers p(so) —<[(—so)
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and ®(Bo) —® (—so0) are conjugate so | = 1. Since / is a solution of equation
(2), we have

M«) - vH I12= M * + **)y(s - it)l = |v(s + it)(f(s - *t)]
= \<p(s + n)P (s + *t)].

By (10) we have also
M*)®(*)1 = M *)I2-
Thus (11) goes into

Mos) - v H ) ($(s) - *(-«*)) = \® + it)n
= ip(s + H)® (s —it)

for s,i€1. Again by the Identity Theorem we obtain
(<p(2) —<p(w)) (®(r) —4(—H)) = <p(z +10)0(z —0)
for all z, w € C, whence by (10) we get
(ip(z) - <pw)) (<p(2) - <p(-w)) = ip(z + w)<p(z - w). (12
Write
® ) = 2M *)-¥>(-+*)], recC.

Now we observe that rr satisfies equation (1). In fact, by (12)
Tz + w)n(z —w) —~M 1 + w) - <p{—z - wj\[<p(z —ro) —<p(-z + r0)]

= + w)(p(z —w) —ip(z + w)tp(—=z + ro)

- ip(—z - wW)ip(z - w) + <p(-z - w)ip(—z + ro)]

SA{@) - v i) (v (t) v
(v H v (F)) (v H v (R
el v ) (v ()
L N L L

=J[od)2- VH 2- <f(-w)2 + ip{-2)2
+ 2ip(w)(p{-w) - 2tp(2)ip{-zj\

= r1(r)2 —7r(ro)2.

Thus m satisfies (1), whence (i) n(z) = az or (ii) n(z) = asinbz, where a, b

are some complex constants such that a~O and 6 /0. Define an even entire
function by
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*1(*) =\ [4>(2) + 4>(-2)\-
When (i) holds, ip(z) —n\(z) + az. Differentiating both sides of the equality
f(z)2 = Ti(z) 4-az and setting z = 0 in the resulting equality we obtain
Tj(0) = —a, which is impossible since is even and a ® 0. Similarly, in
the case (ii) differentiating the equality f{z)2 = ni(z) + asinhz yields the
condition # (0) = —ab, which again leads us to a contradiction.

Let ai := /'(0). It is clear that -F'(O) = L, where F is given by (3). The
methods used in the next lemma are due to Hiroshi Haruki (cf. e.g. [2]).

Lemma 5
If f is an entire solution of equation (2), F is given by (3) and a\ = /'(0),
then f is odd and the equality

\ax\2f{2z)F{2z) = 4f(z)F(z)f'(z)F'(z) (13)
holds in C. Moreover, if f ¢ 0, then ax ® 0.
Proof. We may assume that f ¢ 0. Since / is a solution of (2), we have
f{s + it)f(s + it)f{s - it)f(s - it) = (/(s)2- /(if)2) (/(s)2- /I(it)2)

for all s,t G R. Hence by (3), Lemma 4 and the eveness of F2 (/ 2 is even if
and only if so is F 2) we obtain

f(s + it)F(s - it)f(s- it)F(s + it) = (f(s)2- /(it)2) (F(s)2- F{it)2),
whence
f(z + w)F(z - w)f{z - w)F(z + w) = (/(rr)2- /(ro)2) (F(z)2- F(w)2)

for z,w 6 C. Dividing the last equality by (z + w)2(z —w)2 and passing to
the limit as z — >w we obtain

' (0)F'(0)f{2w)F{2w) =4 f(w)F{w)f (wW)F'(w). (14)

Since the ring of all entire functions has no divisors of zero and / ¢ 0, by (14),
it follows that og ¢ O.

To end the proof it suffices to establish the oddness of the function /.
We can find a disc D centered at 0 such that the function ip(z) := is
holomorphic in it (both functions f(z) and f(—z) have an l-fold zero at 0, so
tp{0) = —1). The equality ip2 = | in D results from Lemma 4. Consequently
ip= lorip= —1inD, ie, f(z) = f{—2) or f(—z) = —f{z) in D. In virtue
of the ldentity Theorem / is even or odd. Since ai = /'(0) ¢ 0, f must be
odd.



244 Andrzej Smajdor and Wilhelmina Smajdor

Lemma 6
Iff is an entire solution of equation (2) then there exists an entire function
p belonging to Q such that

2f'(z)f{z)=alf(2z)ei™ \ (15)
where a\ = /'(0).

Proof. Setting in formula (13) z = s, s G R, we get

BL2(25) 7 L =4G)%s 1,7,

1°i/(29)] = 21/(s)/.(s)]. (16)

At first, suppose that / has a finite number of zeros. Assuming that zo is
a zero of /we obtain that so is 2zq or 2zq, according toLemma 5.Again by
this lemma, 4zo or 4z<jis a zero of / and so on. Thus inthis case/ must have
exactly one zero zq = 0, of multiplicity 1. In virtue of Lemma 1 we can find
p G 2 such that

2f(z)f' (z)=alf(2z)ei* 2\

Now assume that / ¢ O has an infinite number of zeros. Let all zeros of the
function f(2z) different from zero be elements of the sequence {zn}. Applying
Lemma 2 we can find p € fi such that

2/W ['(2) = a,/(22)|’\4e«2>, 7
(2)
where | and J are given by (6) and (7), respectively, m = 1, wn € {zn,z"},
n G N. Taking z = it (t 6 IR) in formula (13) we obtain
\aif (2it)\ = 2\f(it)f'(it)\.

Lemma 3 says that there exist un e {zn,—z”} and q,r G U such that
2f(z)f'(z):aif(22)i€1{&) eM +irv,
z

where | is given by (6) (m = 1) and
o \
Ji{z) =zU E ~ ,pn)m

The products J and J\ would be different only if there exists a zero of one of
them that is not a zero of the other. But the both products have the same
zeros, namely the zeros of the function 2//', so J = J\. Therefore, without
loss of generality, we may assume that wn = un for every n. We claim that
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wn — zn for all n G N. Suppose the contrary: wn ¢ zn for some n. Then

wn = z~ and zn ¢ R. On the other hand, since wn — un — —z”", we would
obtain zn = 0, which is impossible. Consequently 1(z) = J(z), whence (15)
follows. Finally, let us observe that / = 0 satisfies equation (15) with an

arbitrary entire function p.

Lemma 7
All odd entire solutions of the equation
aif{2z) = 2f(z)f'{z) (18)
such that /(0) = 0 and /'(O) = ai are of the form
(i) f{z) = a\z or (i) f(z) = as'mbz,

where a and b are complex constants such that ab = a\.

Proof. Let / be an odd entire solution of (18). We may assume that
/ ® 0. Then /'(0) = ai ¢p 0. Write

/(%) = ~ a 2ne\z2 2" (19)
n=0

We have by (18)

ai ™ a 2,+i(2z)2n+l = JTaia2,+i22n+V n+l
n=0 n=0

=24 + Daznn\z®  E dznaiz?"!
k=0 =0

Equating the coefficients of z2n+1 (n = 0,1, 2,...) we infer that

n

22n+laia2,,+i = 2~ (2 K+ l)a2fetia2(n-fco)+ (20)

A:=0
It is easy to see that the coefficient a3 may be arbitrarily chosen. Let n = 2.
By (20)

25aiab= 2(aiab+ 3a] + 5asai).

Hence
(25 —12) axas = 6a2.
Thus
62 a?
as = By zi* (21)

By induction we shall show that
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OZ‘H.: {9*.264 BY' ajé r forall AGN, Kz 2. (22)

For k — 2, (22) reduces to (21). Assume that (22) is true for K E {2___ _n},
where n ™ 2 is a positive integer. We have by (20)

9" 3ia2n+3
= 2 ai¢*2nt3 + ]7 (2 Kk + Da2k+\d2n+3-2k + (2n + 3)o2n+30I
fc=i
-2 ) 6t at 6n+1 A: nfl-A
- ¢ (en+ 4)aiazn+3 + i_<12 T 70fc+ ra*l 2n + 3 —2K)\ a" fc
Hence
[Z2+3- 4n + 2] aiali3
n+l n 1 1
=273 _6Mmlv  — -
a’- A (2FO)T(2n F 37ZA)]T
oaf+ 16n+1 1 -A/2n + 3\
a"-1 @n+ 3\ 2k )
QU+Ign+i
nn-lo2n o+ 3)!
=l /ygn + 3(\\ 2{1/3 | Zti + SQ
E 2- 2(2n + 3)

BRI
N+l Bn+i

1 on+ 3 [22n+3 - 4n - 8].

Consequently

6n+laf+l )
n271+3 &n " §\j!/\“'

i.e., we have obtained (22) for k = n + 1. The induction completes the proof
of (22).

We have proved that every odd entire solution different from zero of (18)
is given by formula (19), where 02n+i are expressed by (22) for k = n ~ 2.
The coefficient a3 may be chosen arbitrarily. If a3 = 0 then / (z) = aiz, i.e,
/ is of the form (i). Of course, this function is a solution of equation (18).
Consider the case a3 ™ 0 and take complex numbers a and b such that
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ai = ab and a3 = —"ab3.
0
Then 0Zn+i = (Zn+i)la(~1)nfi2n+l f°r all « € N. Consequently

00 °ce [ I\
f(z) =abz + '~ /a2n+iz2n+l = abz + a + (fez)2n+l
n=lI n=l -

= asintar,

i.e., the function / is of the form (ii). Since ab —<u, f clearly satisfies equation
(18).

Lemma 8

Assume that an odd entire function f ® 0 is a solution of equation (15),
where /(0) = 0, ax = /'(0) and p is an entire function. Then p is even,
ep(®) = 1 and p"(0) = 0.

Proof. Since / is odd, f is even. Thus the function eip® must be even.
Differentiating the equality eip® = eip(~z*we obtain p'(z) — —p'(—z), whence
the eveness of p follows. Thus pW(0) = 0 for all odd positive integers. Differ-
entiating (15) and setting r = 0 we see that etp® = 1. Write

q(z) = e M\ h=2ff'=(f2)' and g(z) = aif(2z).

Since p'(0) = 0 to prove that p"(0) = 0 it is enough to show that g"(0) = 0.
Differentiating the equality h = qg three times we get

h™(z) = g"(z)a(z) + 39"(2)a'(z) + 39'{2)q"(2) + 9(2)q"{2).

Setting 2 = 0 and applying conditions g(0) = ~"(0) = 0, g"'(0) = h™(0) =
8ai/'(0), g'(0) = 2af we get

8a1/w(0) = 8ai/(0) + 6a2g"(0),

whence q”(0) = O follows.

3. Proof of the Theorem

Let / / O be an entire solution of equation (2). By Lemmas 4 and 5 we
know that /(0) = 0, /'(0) = ai ¢ 0 and / is odd. Assume that the order p of
/ belongs to the interval [0,4). Write

M(r,f) = {?\z;)é \f(2)\.

It is easily seen that M (r, /(2 ®m) = M(2r,/) and M(r,/ 2) = (M(r,/))2. Since
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p = limsupl0S(1°eM (r'/))
r—00 logr

(cf. [5], p. 320), we see that the orders of /(2 ) and f 2 axe also equal to p. It
is known that orders of an entire function and its derivative are the same (cf.
[5], p. 323). Consequently the orders of functions a\f{2-) and 2 ff = (/ 2)
are equal to p. By Lemma 6 there exists an entire function p such that / is a
solution of equation (15), i.e.,

2f'(z)f{z) = eip{2)
axf{2z)

Hence the order of the function eip® does not exceed p (see [5, Theorem
(10.19), Ch. 7]). Hadamard’s Theorem states that p is a polynomial of degree
~ p (see [5, Theorem (10.1), Ch. 7]). Consequently the degree of p is less than
4. In virtue of Lemma 8, p is even and p"(0) = 0, so the polynomial p must
be a constant. On the other hand ei p = 1. Thus / is an odd entire solution
of equation (18). Now our theorem results from Lemma 7.
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