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A n d r z e j  S m a jd o r  and  W il h e l m in a  S m a jd o r

E n tire  so lu tio n s o f a fu n ctio n al equ ation

Dedicated, to Professor Zenon Moszner 
on the occasion of his 70th birthday

A b stract. The aim of the present note is to show that all entire solutions 
/  : C  — ¥ C , of order less than 4, of the equation

\f(s + it)f(s - i t )I = |/(s)2 -  f(it)21, s ,t G Ж

are given by f ( z)  — az and f ( z)  =  a sin bz, where a, b are arbitrary 
complex constants. This is a partial solution of the problem posed by 
Themistocles M. Rassias [3] (see also [4]).

1. It is known that all entire solutions of the functional equation

f { z  +  w ) f ( z  - w )  =  f ( z )2 -  f ( w ) 2, z, w e C  (1)

are of the form

(i) f { z )  — az or (ii) f ( z )  =  asinbz,

where a, b 6 C  (cf. e.g. [1]). If  we replace in (1) the complex variables z and w 
by s and it (s , t G К) and we take the absolute values in the resulting equation, 
then we obtain the functional equation

|/(s +  i t ) f ( s  -  i<)| =  | /(s)2 -  f ( i t ) 2\. (2)

So functions (i) and (ii) are entire solutions of (2). We conjecture that there 
are no other entire solutions of this equation. We can prove only the following:

T h e o r e m  1

The only entire solutions of order p, p <  4, of equation (2) are given by 
(i) and (ii).
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2 . O f course, if /  satisfies equation (2) then / ( 0 )  =  0. It is clear that the
function _____

F ( z )  : =  f ( z )  (3)
is entire if and only if /  is entire. We denote by f l the set of all entire func­
tions /  such that their power series expansions Х ^ о апг"  bave only real 
coefficients. To prove the theorem we need the following lemmas.

Lemma 1 (cf. [6])
Assume that an entire function f  has only a finite number of zeros located 

at the points z \ ,  z2, ■ ■ ■, zn. Then all entire solutions g which satisfy

IsOOl =  1/001 f o r a l l s e R

are given by

g{z) =  f ( z )

where p 6 fl and Wj € {z j , Zj } ,

(z -  wi) ■ ■ ■ {z -  wn) j v(z) 
(z -  zi) ■■■ {z -  zn) 

j  £ n}.

(4)

(5)

Let f  ф 0 be an entire function having a zero of multiplicity m ^  0 at 0 
and let

z i , z 2, . . .

be the sequence of all zeros of /  different from 0, where fc-fold zero is supposed 
to be repeated к times in the sequence. We suppose that the zeros are ordered 
according to increasing absolute values. The Weierstrass Factorization Theo­
rem states that there exists an entire function having zeros at zn, n  € N and a 
zero of multiplicity m  at 0 and having no other zeros. If {gn} is a sequence of 
non-negative integers such that the series ]C ^ L il;^ T n+1 converges uniformly 
on compact sets, then the product

I ( z )  =  zm f [ E ( - , p n) ,  (6)
nVl V*n )

where E ( z , 0) =  1 — z and E ( z , p) =  (1 — z) exp ^  H------+  у  ) ,  p  € N,

satisfies the above conditions. Moreover the product converges absolutely. It 
is clear that the quotient ^ is an entire function without zeros (see [5], p. 298).

Lemma 2 (cf. [6])
Assume that an entire function f  Ф 0 has an m-fold zero at 0 and an­

other zeros are the elements of the sequence {zn}. Then all entire functions g 
satisfying equation (4) are of the form

9{z)=нг)Ш еЫ,)'
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where p  G O, I  is given by formula (6) whereas J  has the form

J ( z )  =  zm f [ E ( — ^ n) ,  (7)
n = l  ' Wn '

where wn G {zn ,zü},  n G N.

L e m m a  3  (cf. [6])

Under hypotheses of Lemma 2 all entire functions g satysfying the equation 

\ f ( i t) \  — |5(*<)| for all t G К

are of the form

9 W = / ( z ) # r e « W +i' W ,
1 (z J

where q ,r  G Г2, q ,r  are odd and even, respectively, whereas I  and J  are given 
by formulas (6) and (7), respectively, where wn G {zn , —z^}, n  G N.

L e m m a  4

I f  f  is an entire solution of  (2) then f 2 is even and / ( 0 )  =  0.

Proof. The second fact is obvious. Put

<P =  f 2-
By (2)

M s )  -  I =  |/(* +  -  i t )I =  \ f {s  -  ( - i t ) ) f { s  +  H * ))|

=  M s ) -  4 > ( -i t )I

for all s , t  G R . Squaring the both sides of the equality |< (̂s) -  ip(it)\ =  
M s ) -  < p ( - i t ) I yields

(<p(s) -  <p(it)) (Ф(з) -  Ф (-г * ))  =  (p(s)  -  <p(-it)) (Ф(з) -  Ф ( й ) ) ,

where Ф(г)  :=  tp(z). According to the Identity Theorem we obtain

(p{z) -  p(w))  {Ф(г) -  Ф ( - т ) )  =  (<p(z) -  <p(-w))  (Ф (г) -  Ф (м )) (8)

for all z ,w  G C . Since y?(0) =  Ф(0) =  0, relation (8) implies <p(w)Ф (—ю) =  
<p(—т)Ф(ю), whence by (8)

ip(z) [Ф(ги) — Ф (—u;)] =  Ф(г) [p{w) — p { —w ) \ . (9)

If <£>(s) =  p ( —s) for s G R  then ip(z) =  <p(—z) for all z G C  and Lemma 4 
follows. Thus suppose that for some so G R , </>(so) Ф p { ~ So)- It is enough to 
show that this case does not occur. Setting w =  so in (9) we infer

Ф (z) — cip(z) for all г  G С , (10)

where с : =  • We observe that the complex numbers p(so) — <p(— so)
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and Ф(во) — Ф (—so) are conjugate so |c| =  1. Since /  is a solution of equation 
(2), we have

M « ) -  v H I 2 =  M *  +  **)v(s -  i t )I =  |v(s +  it)(f(s -  *t)|
=  \<p(s +  й )Ф  (s +  *t)|.

By (10) we have also

М *)Ф(*)1 =  M * )l2-

Thus (11) goes into

M s )  -  v H )  ( $ ( s )  -  * ( - « * ) )  =  \ Ф  +  i t ) I 2

=  ip(s +  й )Ф  (s — it)

for s , i € l .  Again by the Identity Theorem we obtain

(<p(z) — <p(w)) (Ф(г) — Ф ( —го)) =  <p(z + г о ) Ф (z — го) 

for all z, w € C , whence by (10) we get

(ip(z) -  <p(w)) (<p(z) -  <p(-w)) =  ip(z +  w)<p(z -  w). (12)

Write

Ф )  =  2  М * ) -¥ > ( - •* ) ] ,  г е С .

Now we observe that гг satisfies equation (1). In fact, by (12)

7Г(z +  w )n(z  — w) — ~ М г  +  w) -  <p{—z -  wj\[<p(z — го) — <p(-z  +  го)]

=  +  w)(p(z — w) — ip(z +  w)tp(—z +  го)

-  ip(—z -  w)ip(z -  w) +  <p(-z -  w)ip(—z +  го)]

=  \ [ { Ф )  -  v H )  ( v ( * )  -  v ( - w ) )

-  ( v H  -  v ( * ) )  ( v H  -  v ( H )

-  ( v ( - « 0  -  v ( - * ) )  ( v ( - H  -  v W )

+  M - * )  -  v ( - H )  ( v ( H  -  v H ) ]

= J [ Ф ) 2 -  v H 2 -  <f(-w)2 + ip{-z)2 

+ 2ip(w)(p{-w) -  2tp(z)ip{-zj\

=  гт(г)2 — 7г(го)2.

Thus гг satisfies (1), whence (i) n(z)  =  az or (ii) n(z) =  asinbz ,  where a, b 
are some complex constants such that a ^ O  and 6 / 0 .  Define an even entire 
function by
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* i(* )  =  \  [4>(z) +  4>(-z)\-

When (i) holds, ip(z) — n\ (z) +  az. Differentiating both sides of the equality 
f ( z ) 2 =  7Гi (z) 4- az and setting z =  0  in the resulting equality we obtain 
7Tj(0) =  —a, which is impossible since is even and а Ф 0. Similarly, in 
the case (ii) differentiating the equality f { z )2 =  ni (z)  +  asinhz yields the 
condition 7г' (0) =  —ab, which again leads us to a contradiction.

Let ai :=  / '( 0 ) .  It is clear that -F'(O) =  Щ, where F  is given by (3). The 
methods used in the next lemma are due to Hiroshi Haruki (cf. e.g. [2]).

Lemma 5
I f  f  is an entire solution of equation (2), F  is given by (3) and a\ =  / ' ( 0), 

then f  is odd and the equality

\ax\2f {2 z )F { 2 z )  =  4 f ( z ) F ( z ) f ' ( z ) F ' ( z )  (13)

holds in C . Moreover, i f  f  ф 0, then ax Ф 0.

Proof. We may assume that f  ф 0. Since /  is a solution of (2), we have

f { s  +  i t ) f ( s  +  i t ) f { s  -  i t ) f ( s  -  it) =  ( / ( s )2 -  / ( i f ) 2) ( / ( s )2 -  / ( i t ) 2)

for all s, t G R. Hence by (3), Lemma 4 and the eveness of F 2 (/ 2 is even if 
and only if so is F 2) we obtain

f ( s  +  i t ) F ( s  -  i t ) f  (s -  i t ) F ( s  +  it) =  ( f ( s )2 -  / ( i t ) 2) ( F ( s )2 -  F { i t ) 2) , 

whence

f ( z  +  w ) F ( z  -  w ) f { z  -  w ) F ( z  +  w) =  (/(гг)2 -  /(г о )2) ( F ( z )2 -  F ( w ) 2)

for z , w  6 C . Dividing the last equality by (z +  w)2(z — w )2 and passing to 
the limit as z — > w we obtain

f ' ( 0 ) F ' ( 0 ) f { 2 w ) F { 2 w)  = 4  f ( w ) F { w ) f ' ( w ) F ' ( w ) .  (14)

Since the ring of all entire functions has no divisors of zero and /  ф 0, by (14), 
it follows that oq ф 0.

To end the proof it suffices to establish the oddness of the function / .  
We can find a disc D  centered at 0 such that the function ip(z) :=  is

holomorphic in it (both functions f ( z )  and f ( —z) have an 1-fold zero at 0, so 
tp{0) =  —1). The equality ip2 =  l  in D  results from Lemma 4. Consequently 
ip =  1 or ip =  — 1 in D ,  i.e., f ( z )  =  f { —z) or f ( —z) =  —f { z )  in D.  In virtue 
of the Identity Theorem /  is even or odd. Since ai =  / '( 0 )  ф 0, f  must be 
odd.
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L e m m a  6
I f  f  is an entire solution of equation (2) then there exists an entire function  

p belonging to Q such that

2f ' ( z ) f { z ) =a1f(2z)eî \  (15)

where a\  =  / ' ( 0).

Proof. Setting in formula (13) z =  s, s G R , we get

|а1|2/(25) 7 Щ  = 4/(5)7ы / ,(5)77Ы ,
i.e.,

I ° i / ( 2s)| =  2| /( s ) / , (s)|. (16)

A t first, suppose that /  has a finite number of zeros. Assuming that zo is 
a zero of /  we obtain that so is 2zq or 2zq, according to Lemma 5. Again by
this lemma, 4zo or 4z<j is a zero of /  and so on. Thus in this case /  must have
exactly one zero zq =  0, of multiplicity 1. In virtue of Lemma 1 we can find 
p  G Г2 such that

2 f ( z ) f ' ( z ) = a lf(2z)ei* z\

Now assume that /  ф 0 has an infinite number of zeros. Let all zeros of the 
function f ( 2 z )  different from zero be elements of the sequence {zn}. Applying 
Lemma 2 we can find p  €  fi such that

2 / W / '( 2 )  =  a , / ( 2 z ) ^ 4 e « 2>, (17)
l ( z)

where I  and J  are given by (6) and (7), respectively, m  =  1, wn €  {zn,z^} ,  
n G N. Taking z =  it (t 6 IR) in formula (13) we obtain

\a i f ( 2 it)\ =  2 \ f ( i t ) f ' ( i t ) \ .

Lemma 3 says that there exist un e  {zn, — z^} and q ,r  G Ü such that

2f ( z ) f ' ( z ) = a i f ( 2 z ) à & e M +irV ,
l {z)

where I  is given by (6) (m =  1) and

OO , \
J i { z )  =  z Ц Е ^ , р п)  ■

The products J  and J \  would be different only if there exists a zero of one of 
them that is not a zero of the other. But the both products have the same 
zeros, namely the zeros of the function 2 / / ' ,  so J  =  J \ .  Therefore, without 
loss of generality, we may assume that wn =  un for every n. We claim that
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wn — zn for all n  G N. Suppose the contrary: wn ф zn for some n. Then 
wn =  z^  and zn ф R . On the other hand, since wn — un — —z^, we would 
obtain zn =  0, which is impossible. Consequently I ( z )  =  J ( z ) ,  whence (15) 
follows. Finally, let us observe that /  =  0 satisfies equation (15) with an 
arbitrary entire function p.

Lemma 7
All odd entire solutions of the equation

a i f { 2 z) =  2 f ( z ) f ' { z )  (18)

such that / ( 0 )  =  0 and / '(O ) =  ai are of the form

(i) f { z )  =  a \ z  or (ii) f ( z )  =  as'mbz, 

where a and b are complex constants such that ab =  a \.

Proof. Let /  be an odd entire solution of (18). We may assume that 
/  Ф 0. Then / ' ( 0) =  ai ф 0. Write

/ ( * )  =  ^ a 2n+ \z 2 rc+ l (19)
n=0

We have by (18)

n=0
ai ^ a 2„ + i(2 z )2n+1 =  ] T a i a 2 „ + i22n+V n+1

n=0

=  2 ( +  l )a2n+\Z
2 n

Kn=0
E

\ n = 0
d2n+lZ 2 n + l

Equating the coefficients of z2n+1 (n =  0,1,  2 , . . . )  we infer that

П

22n+1aia2„+i = 2 ^ ( 2 к + l)a2fe+ia2(n-fc)+i • (20)
A:=0

It is easy to see that the coefficient аз may be arbitrarily chosen. Let n =  2.
By (20)

25a ia5 =  2(a ia5 +  3a| +  5asai).

Hence
(25 — 12) axas =  6a2.

Thus
62 a? 

as =  ry — • 5! ai
(21)

By induction we shall show that
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Ci2k+1 =  /0Ł6. тм ~ ё г  for all A: G N, к ź  2. (22)
(2к +  1)! aj

For к — 2, (22) reduces to (21). Assume that (22) is true for к E {2___ _ n},
where n ^  2 is a positive integer. We have by (20)

o2n-f-3_
z a ia 2n+3

=  2

=  2

aić*2n+3 +  ] ^ ( 2  к +  l)a2k+\d2n+3-2k +  (2n +  3)o2n+30l

6fc a£ 6n+1_A:

fc=i

(2n +  4)aia2n+3 +  £ < 2* +  ‘ >
n-f 1 —A:

к— 1 (2fc +  1)! a*-1 (2n +  3 — 2k)\ a " _fc

Hence

[22n+3 -  4(n +  2)] aia2„+3
n+l n 1 1

=  2 ^ 3 _ 6 n+1 V  — __________ - _______
a”-1 ^  (2fc)!(2n +  3 -2 A ; ) !

o a£+ 16n+1 1 - A / 2 n  +  3 \

a"-1 (2n +  3)! j“  \  2k )

QU+lgn+i

лп - 1 (2n +  3)!

2n + 3  y-fj q \  2n +3  Q

Е / 2n +  3 \ V—> I Zti +  3

(  j  )  +  £
j = о  V  J '  j = 0

2 -  2(2n +  3)

.n+l 6n+i
n— 1

1
(2n +  3)!

[22n+3 -  4n -  8] .

Consequently
6n+1a£+1

^271+3 fn , o \ l  Tl Î(2n +  З ) !^

i.e., we have obtained (22) for к =  n +  1. The induction completes the proof 
of (22).

We have proved that every odd entire solution different from zero of (18) 
is given by formula (19), where 02n+i are expressed by (22) for к =  n  ^  2. 
The coefficient аз may be chosen arbitrarily. If  аз =  0 then / (z) =  a iz ,  i.e., 
/  is of the form (i). O f course, this function is a solution of equation (18). 
Consider the case аз ^  0 and take complex numbers a and b such that
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Then û2n+i

ai =  ab and аз =  — ̂ ab3.
о

=  (2n+i) !a ( ~ l ) nfr2n+1 f ° r аИ «  € N. Consequently

°° °° /  I \7l
f ( z )  = a b z  +  ' ^ / a2n+iz 2n+l =  abz +  a +  (fez)2n+1

n = l  n = l  '

=  a sin tar,

i.e., the function /  is of the form (ii). Since ab — <ц, f  clearly satisfies equation 

(18).

L em m a  8

Assume that an odd entire function f  Ф 0 is a solution of equation (15), 
where /(0) = 0, ax = /'(0) and p is an entire function. Then p is even, 
e*p(°) =  1 and p " (0 ) =  0.

Proof. Since /  is odd, f  is even. Thus the function eip^  must be even. 
Differentiating the equality eip^  =  eip(~z  ̂ we obtain p'(z) — —p ' ( —z),  whence 
the even ess o f  p  follows. Thus pW (0) =  0 for all odd  positive integers. Differ­
entiating (15) and setting г  =  0 we see that etp^  =  1. Write

q(z) =  e ^ \  h =  2 f f ' = ( f 2)'  and g(z) =  a i f ( 2 z).

Since p'(0) =  0 to prove that p"(0) =  0 it is enough to show that q"(0) =  0. 
Differentiating the equality h =  qg three times we get

h'"(z) =  g '" (z )q(z) +  3 g"(z)q '(z) +  3 g'{z)q” (z) +  g(z)q'"{z).

Setting 2 =  0 and applying conditions g(0) =  ^"(0) =  0, g" '(0) =  h '"(0) =  
8a i / ' " ( 0), g '(0) =  2af we get

8a ! / w(0) =  8a i / ' " ( 0) +  6a?g"(0),

whence q” (0 ) =  0 follows.

3. Proof of the Theorem

Let /  /  0 be an entire solution of equation (2). By Lemmas 4 and 5 we 
know that / ( 0 )  =  0, / ' ( 0) =  ai ф 0 and /  is odd. Assume that the order p of 
/  belongs to the interval [0,4). Write

M ( r , f )  =  max \ f (z) \ .
\z\=r

It is easily seen that M (r , / ( 2  ■ )) =  M (2r, / )  and M (r , / 2) =  (M (r , / ) ) 2. Since
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p =  lim su p l0S(1°,e M ( r ' / ) )  
г—>oo log r

(cf. [5], p. 320), we see that the orders of / ( 2  • ) and f 2 axe also equal to p. It 
is known that orders of an entire function and its derivative are the same (cf. 
[5], p. 323). Consequently the orders of functions a \ f { 2 -)  and 2 f f  =  (/ 2)'  
are equal to p. B y Lemma 6 there exists an entire function p such that /  is a 
solution of equation (15), i.e.,

2 f ' ( z ) f { z )  =  eip{z) 

a xf { 2 z)

Hence the order of the function eip^  does not exceed p (see [5, Theorem 
(10.19), Ch . 7]). Hadamard’s Theorem states that p is a polynomial of degree 
^  p (see [5, Theorem (10.1), Ch. 7]). Consequently the degree of p is less than
4. In virtue of Lemma 8, p is even and p"(0) =  0, so the polynomial p must 
be a constant. On the other hand ei p =  1. Thus /  is an odd entire solution 
of equation (18). Now our theorem results from Lemma 7.
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