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A b stra ct. We prove that every two expanding selfmappings of the circle 
which take each value in exactly n points are conjugate. The prob­
lem of the uniqueness of continuous conjugating functions is considered. 
Moreover, some applications to the determination of iterative roots of 
the above mappings are given.

A  function /  is said to be n-valent or shortly n-to-1 if the pre-image of each 
its value consists of exactly n points. Let S 1 := {z € C  : \z\ =  1}. In this note 
we shall consider n-to-1 mappings of the unit circle S 1 onto itself. The natural 
examples of n-to-1 mappings are the functions conjugate with monomials zn. 
In this paper we consider the problem when n-to-1 functions conjugate with 
zn. The problem of semi-conjugacy has been treated by M. Shub in [3] and 
reported in monograph [2].

Let us quote the following

L e m m a  1 (see [4], [1])
Let F  : S 1 — > S 1 be a continuous function. Then there exist a unique 

integer n and a unique continuous function f  : E  — > E  such that

F  (e2lTit) =  e2nifW, t £  E , (1)

f  (t +  1) =  / ( f )  +  n, t 6 E  (2)

and
0 ^  / ( 0 )  <  1.

Mathematics Subject Classification (2000): 39B32, 39B12.



272 Marek Cezary Zdun

The function /  is said to be the lift of F  and the integer n is called the 
degree of F  (deg F  =  n).

Let us begin with a few remarks on multivalent functions.

R e m a r k  1

Let F  : S l — > S 1 be continuous and the lift of F  be strictly increasing 
(decreasing). Then F  is n-to-1 ( n  Ф  0 ) i f  and only i f  deg F  =  n  ( deg F  =  
- n ) .

Proof. Suppose that deg F  =  n >  0, / ( 0 )  ^  a  <  / ( 0 )  +  1 and w =  e2nia. 
Since /|[o,i) is a bijection of [0,1) onto [ /(0 ) , / ( 0 )  +  n ), we infer that for every 
к G 0 , . . .  , n  — 1 there exists a unique tk 6 [0,1) such that /(L t)  =  a  +  к. 
Hence F( zk)  =  w for е2ш1к, к =  0 , . . .  , n — 1 and F( z )  Ф w for z G
S 1 \  {  Zq , ,  zn _  ! }  -

Conversely, if F  is n-to-1 and deg F  =  к then by the previous part F  is 
fc-to-1 so к — n.

The same is in the case of a decreasing lift.

R e m a r k  2

I f  F  : S l — > S l is continuous, deg F  — п ф  0 and F  is \n \-to-l , then its 
lift is strictly monotonie.

Proof. Let n >  0. For the indirect proof suppose that / (< i)  =  / (< 2) = :  ot 
for some <1, <2 € [0,1) and t\ Ф t2 - Put a :=  e2,rîQ and w e27Tlt2. Write

[a — /(0 )]  =  In +  r, where Z, r G Z  and 0 ^  r <  n.

Th e continuity of /  and (2) imply that

/ (0) +  [In, (I +  l)n ) C  / [  [Z, Z +  1) ].

Hence for every integer к G [—r, n  — 1 — r] there exists иь G [Z, Z +  1) such that

f { u k ) =  а  +  к,

since / ( 0 )  +  In <  a  +  к <  / ( 0 )  +  (l +  1 )n. If Z =  0, then we put щ  :=  t\ .  
Define a*, :=  е2пШк, where к G { —г , . . . ,  n — 1 — r } . Obviously a^  Ф ak2, since 
Ukx, Uk2 € [1,1 + 1) and Ukj ф Uk2 ■ Moreover, w Ф for all к. In fact, suppose 
w =  Ofc , for а к G { - r , . . . ,  n - 1 -  r } , then e27riÉ2 =  е2пШк. Since <2 € [0,1) and 
Uk € [1,1 + 1), we have Z2 =  Ufc +  Z. Hence a  =  / (^ 2) =  /(n*; +  Z) =  f ( u k ) + n l  =  
a  +  к +  nl, so k =  —nl. In view of the inequalities —r ^ k ^ n - l - r  and 
0 ^  r <  n  we obtain that l — к =  0. Thus Z2 =  but this is a contradiction, 
since uo :=  <1, if Z =  0.
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Let us note that

F ( a k) =  e2™/(u*) =  e2*ia =

and
F {w )  =  e2nif^  =  e2ma =  a,

so w , a,k G F _1 [{a}] for к € { —r , . . . ,  n  — 1 — r}. Thus the pre-image F _1 [{a}] 
contains at least те +  l  points. This is a contradiction, so /  is strictly increasing 
in [0,1) and in view of (2) /  is strictly incresing in M.

The same proof is in the case of negative degree.

Remark 3
There exist continuous n-to-1 functions F  : S 1 — > S l (n >  1) of degree 

one.

We give an example for n  =  3. Let /  : [0,1] — > [0,1] be the piecewise 
linear function with the vertices: (0 ,0 ), ( 5 , 5), (§ , 0), (§ , 1 ) ,  (| , 5 ) ,  (1 ,1 ). It 
is easy to verify that F  (e2nit) :=  е2тгг№) is 3 -to -l function and deg F  =  1.

Define two classes of functions

fcn ■— { F  '■ S 1 — > S 1 : F  is continuous, deg F  =  n,

I* -  У\ <  I/0*0 -  f (y) I. *  Ф V, R } ,

where /  is the lift of F  and

/С* :=  { F  : 5 1 — > S 1 : F  is continuous, deg F  =  те,

\x — y\ ^  7 ( l / (^ )  -  f { y ) I), x ,y  e R ,  fo r  an increasing  

fu n ctio n  7 : [0, 00) — > [0, 00) such that its sequence 

o f  iterates converges pointwisely to 0}.

It is easy to see that /С* С  lCn.

Remark 4
I f  F  6  K,n , then F  has exactly \n\ — 1 fixed points.

Proof. Pu t h(t) =  f ( t )  -  t. Let z0 =  e2nito and t0 € [0,1). Let us note 
that F(zo) =  zo if and only if h(t0) G Z . Assume that F  preserves orientation. 
It is easy to see that h is an increasing homeomorphism and

M  [ 0 , 1 )  ]  =  [ Л ( 0 ) ,  M l ) )  =  [ / ( 0 ) ,  / ( 0 )  +  т е  -  1 ) .

We have

z n [ / ( 0) , / ( 0) +  n - i ) { 0 , . . . ,  и — 2}, if / ( 0 )  =  0,

{ 1 , . . . ,  те — 1}, if / ( 0 )  >  0.
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Thus, if / ( 0 )  =  0, Z n / i [ [ 0 , l ) ]  =  {О, . . .  , n  — 2} and if / ( 0 )  >  0, Z n / i [ [ 0 , l ) ]  =  
( 1 , . . . ,  n  — 1}, whence it follows that F  has exactly n — 1 fixed points.

If F  reverses orientation, the proof is analogous.

Remark 5
Let F  : S l — > S l be continuous, 0 ^  а  <  1, F a(z) :=  a ~ 1F (a z ) ,  z G S 1, 

where a — e2?ru* and let f  and f a be the lifts of F  and F a. Then

(i) fa it)  =  f { t  +  a ) -  a  -  [ / (a )  -  a], t G R .

(ii) F (a )  =  a F e (l)  =  1 <^=> f a{0) =  0.

(iii) F  G /С„ <=> F a G K n.

Proof, (i) We have

F a (e27rit) =  e - 2niaF  ^e27ri(Q+t)^ =  e2x*(/(a+ t) - c«)

In view of the continuity of f a and /  it follows that f a{t) =  f { t  +  a) -  a  -  к for 
a f c e Z .  Since / а(0) € [0,1) we have f { a )  — a  — k G [0,1). Thus [ / (a )  — a] =  k.

(ii) The first equivalence is trivial. Let us note that the equality 0 =  
f a { 0) =  f ( a )  -  a  — [f ( a ) -  a] is equivalent to the condition f ( a )  -  a  G Z . 
Since F  [a) =  e21” -^“ ) and a =  е2пга we get (ii).

(iii) It is a simple consequence of (i) and (2).

Directly from the definition of the degree we obtain the following 

Remark 6
I f  F ,  G  : 5 1 — > S l are continuous, then deg F  о G  =  deg F  deg G.

To solve the problem posed in the introduction we consider a more general 
problem of conjugacy of functions from the class K.n.

The main tool in the further part of the paper are the following proposi­
tions:

Proposition 1 (see [5])
Let J  be a closed and finite interval with the ends a and b. Assume that: 

(Hi )  f n- 1 : Г0,11 — > fO, 11 are continuous, strictly increasinq mappinqs

and M 0 ) =  0, fn —i (1) =  1, / * + 1(0) =  /* (1 ) , к =  0 , . . .  , n  -  2;

(Нг) до, ■ ■ ■ ,Q n-\ '■ J  — > J  are continuous, strictly increasing mappings and 
go (a) =  a, gn- i ( b )  =  b, gk+i(a) =  gk(b), к -  0 , . . .  , n  -  2.

I f
\ f h ( x ) - f k { y ) \ < \ x - y \ ,  X ф y, x, y G [0,1], к = 0,... ,n — 1 (3)
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and

\9 k{x) -  9 k{y)\ <  \x -  y\, X ф y, x , y  e  J ,  к =  0 , . . .  , n  — 1, (4)

then the system

<p(fk{x)) =  9 k{<p{x)), i 6 [ 0 , l ] ,  fc =  0 , . . . , n - l  (5)

has a unique solution <p : [0,1] — > J .  This solution is continuous and 
strictly monotonie with ip{0) =  a and <p(l) =  b.

P r o p o s it io n  2 (see [5])
Let / о , . .  - ,  / „ _ i satisfy (H i) and go ,. . . ,  gn- \  satisfy (H2) with J  =  Ш, for 

some a, b € R . Suppose that

\9 k{x) -  gk(y)\ ^ l i \ x - y \ ) ,  x ,y  € R , к =  0 , . . .  , n  -  1, (6)

where 7  : [0 ,0 0) — > [0 ,00) is an increasing function such that its sequence of 
iterates 7” converges pointwisely to 0. Then system (5) has a unique bounded 
solution. This solution is continuous and monotonie.

We shall prove simultaneously the following two theorems:

T h e o r e m  1

I f  F , G  €  K n (n ^  2), F  (a) =  a, G(b) =  b, then for every integer г Ф 0 
there exists a unique continuous solution Ф : 5 1 — > S 1 of the equation

Ф № ) )  =  С (Ф (г )) , 2 G S 1, (7)

such that deg<h =  г, Ф (a) =  b and <^[[0,1]] =  [y>(0), where <p is the lift
of Ф. This lift is strictly monotonie. Moreover, Ф is a homeomorphism if  and 
only i f  |r| =  1.

T h eo r em  2

I f  F  £ K-n, G  e K.*n (n  ^  2), F (a )  =  a, G(b) =  b, then for every integer 
r ^ 0 ,  there exists a unique continuous solution Ф : S 1 — > S 1 of equation (7) 
such that degФ =  r and Ф(а) =  b. The lift of Ф is strictly monotonie.

Proof. Let F , G  £ F  (a) =  a, G{b) =  b. Put F a{z) :=  a ~ l F(az)  
and Gb{z) =  b~1G(bz), z e S 1. Let us note that if a function Ф : S 1 — > S 1 
satisfies (7) and Ф(а) =  b, then

Фа.ь(-г) :=  б - ’ Ф (аг)

satisfies

Фа,ь(-Р’а(-г)) =  Сг0(Фа,ь(2:)), Z 6 S 1 (8)

and Фа1ь(1) =  1. Conversely, if Ф : S 1 — > S 1 satisfies (8) and Ф (1) =  1, then 
Ф(г) =  ЬФ(а_ 1г) satisfies (7) and Ф(а) =  b.
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Thus in view of Remark 5 (iii) we may assume further that а =  b =  1. 
First we shall prove the uniqueness. Let Ф : S 1 — > S l be continuous solu­

tion of (7) such that deg<l> =  г, Ф(1) =  1 and ip be the lift of Ф. We have 
/ ( 0 )  =  0, p(0) =  0 and ip(0) =  0. Moreover,

g(t +  1) =  g(t) + n ,  * € R (9)

and
p(t  +  1) =  ip(t) +  r, t £  R . (10)

We have
Ф ( F  (е2лй))  =  Ф =  e2mv(/(t)), t £ R

and
G  (Ф (e2*lt))  =  G  (е 27Г̂ (^  =  e2*iaMt)\  t e  K .

Hence in view of (7)

-  ffM * )) € Z , for t £  R . (11)

Since ip, f  and g are continuous we infer that there exists a к £  Z  such that

<P(f(t)) -  9(<P{t)) =  к, for t £  R .

We have к =  0, because <£>(/(0)) =  p(y?(0)). Thus

¥ > (/(0 ) =  $(¥>(<)). < € R .  (12)

Pu t J T :=  [0, r], if r >  0 and J r :=  [r, 0], if r <  0.
Define

f i ( t )  :=  f ~ l {t +  г), t £  [0,1], i =  0 , . . .  , n  -  1

and
gt{t) g ~ l (t +  ir), t £ R,  г =  0 , . . .  , n  — 1.

We have
= t  +  i, for t e  [0.1],

so by (12) and (10) we get

ip(t) + i r  =  g(<p(fi(t))), * € [ 0 , 1 ] ,  г =  0 , . . . ,  n — 1

and
g ~ l {<p(t) +  ir) =  <p{ft{t)), * € [ 0 , 1 ] ,  г =  0 , . . . ,  n — 1.

The last equalities we may write in the form of equation (5).
It is easy to verify that / o , . . . , / n- i  satisfy (Hj)  and g o , - - - , g n- i  satisfy 

(H 2) with а =  0 and b =  r. Moreover, the lifts /  and g are invertible and

\ f ~ ' (■>')- f ~ ' { y ) \  <  \ x - y \  and \g~1{ x ) - g ~ 1(y))\ < \ x - y \ ,  х ф у ,  x , y  £ R ,
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because F , G  £ 1Cn , whence it follows that /о , • ■ ■, f n- 1 satisfy (3) and go ,■■■ , 
gn- \  satisfy (4). Furthermore, if we assume that G  £  /С*, thent

l5-1 (z) < 7 ( l® ~ y | ) ,  ar.I/eR,

for an increasing fimction 7 : [0, 0 0 ) — > [0, 0 0 ) such that 7n(t) — > 0, for t ^  0. 
Hence it follows that go,- ■ ■, ffn-i satisfy (6).

In view of Proposition 1 system (5) has a unique solution Tp : [0,1] — > 
J r  . If  Ф is a continuous solution of (7) which lift ip satisfies the condition 

[0,1] ] =  [(/?(0), v?(l)] =  J T, then by Proposition 1 Tp =  <̂ |[o,i]- However, 
if F  G ICn, G  G /С* and Ф is a continuonus solution of (7) of degree r such 
that Ф(1) =  1, then by Proposition 2  its lift ip is monotonie, so p[ [0,1] ] =  J r 
and consequently Tp =  v?|[o,i]- Hence we infer that if F  G K.n and G  G £* 
(F , G  £ K.n) then equation (7) has at most one continuous solution Ф of degree 
r such that Ф(1) =  1 (and ip[ [0,1] ] =  [<£>(0), v?(l)] ).

Conversely, by Proposition 1 solution Tp of (7) is continuous, strictly mono­
tonie, Tp(0) =  0 and ^ (1 ) =  r. Let us note that the function ip(t) :=  Tp(t-  [f]) +  
r[<], for t £  Ж is continuous, strictly monotonie, ^|[од] =  Tp and fulfils (10). 
Hence

Tp(t) + i r  =  ip{t) + i r  =  ip{t +  i) =  V »(/(/t(< ))), t £  [0,1].

On the other hand by (5)

W )  =  р Г 1(^ (Л (0 ))> < €  [0, 1], * =  0, . . . , n  — 1.
Then

V>(/(/»(*))) =  9 Ш Ш ) ) )  =  g{il>{fi{t))), < 6 [ 0 , 1 ] ,  t =  0 , . . . , n - l .  (13)

It follows from (H j) that

n—1 n—1

U  /»[[0, 1]] =  U  /< (!)] =  [/o(0) , / n - i ( l ) ]  =  [0, 1].
i=0 i=0

Hence in view of (13) we obtain that

^ ( / (< ) )  =  s M * ) ) ,  <6 [0, 1],

so the function Ф (e2nit) :=  e2**¥’(t) ) t g [0,1] is a continuous solution of (7), 
such that ip(l) =  1 and d e g ^  =  r.

The remaining part of thesis is a simple consequence of Remark 1, since 
the lift of Ф is strictly monotonie.

Let a,b  £ S l , а Ф b. Then there exist ta, ij, G К  such that ta <  tb <  ta +  1, 
a — e2nita and b =  e2mtb. Put

arc (a, b) :=  {e2nü : t £ ( t a, t b)}.
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T h e o r e m  3

Let F ,  G  G K-n (n )  2), a 6 S 1, F ( a k) =  a, for к — 0 , . . .  ,n ,  ao =  an =  a
and

Arg ак~— >  Arg — , к =  0 , . . .  ,7i -  2. 
ао ао

A solution Ф : 5 1 — > S l of equation (7) is continuous and of degree one if  
and only i f

A $ ( a fc + l)  .  л  Ф ЫArg -  —>  Arg -, к =  0 , . . . ,  п — 2

and

Ф(ао) Ф(ао)

Ф [а гс(а ь а*+1)] С  arc (Ф(ал), Ф{ак+1)).

(14)

(15)

Proof. Let Ф satisfy (7), (14) and (15). Then Фа,ь, where b =  Ф(а) satisfies 
(8) and

Фa.b
/  ak arc —

afc+i \

V  a o «0 / J
C  arc k =  0 , . . . ,  n — 1 .

Thus we may assume that a =  1, -F (l) =  1, G ( l )  =  1 and Ф(1) =  1. Put 
bk : =  Ф (ак), к =  О, . . . ,  n. We have

G(bk) =  С (Ф  (ak)) =  Ф (F ( a k)) =  Ф(1) =  1.

It follows from (14) that

Arg 6jt+i >  Arg bk, for к =  0, . . . , n - 2 .

Put

Sk ■ =
Arg ak

tk : =
Arg bk

for к =  0 , . . . ,  n -  1 and sn tn 1.
27Г 27Г

Let us note that f ( s k) ,g ( t k) G Z , for к =  0 , . . . ,  n, where /  and g are the lifts 
of F  and G. Since /  is strictly increasing, / ( 0 )  =  0 and / ( 1 )  =  n, we have

0 =  / ( s 0) <  / ( s i )  <  <  f ( s n - i )  <  f ( s n) =  n,

so f { s k) =  k, for к =  0 , . . .  ,n.  Similarly g{tk) =  k, for к =  0 , . . . ,  n. 
Let Tp : [0. 1) — > [0,1) be a mapping such that

Ф =  e2^ № ) ,  f £ [0,1).

Define

Obviously

ip{t) :=  ip{t -  [<]) +  [t], t € К

Ф (e2wit) =  e2’r*v(0i i € R )  

< (̂t T  1) =  Р>[к) T  1, t G К (16)

and ip fulfils (11)
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Let t 6  [0,1),  then t G [s*, s^t+i) = :  /*,, for a к G { 0 , . . . ,  n  — 1}. In view of 
(15)

e2viip(t) =  ф (e2 € arc [bk, bk+1) =  axe [e2nitk, e2nitk+1 ),

so ip{t) G [tfc,t/c+i) = :  Jk- Consequently, g(<p(t)) G g[Jk\ =  [k,k +  1). On the 
other hand, f ( t )  G f[Ik) =  [k,k +  1) and g>(f{t)) G ip[ [к, к +  1) ] =  [к, к +  1). 
Hence Ig{(p{t)) -  g>{f{t))\ <  1. Taking into account (11) we get

# ( / ( * ) )  =  9 ( Ф ) ) ,  f o r t  G [0,1),

so by (2), (9) and (16) ip satisfies (12).
Further, similarly as in the previous proof one can verify that <̂ |[o,i] satis­

fies system (5). B y Proposition 1 (p is continuous, strictly increasing and 
t f [ 0 ,1]] =  [0,1]. Thus Ф is continuous and d e g #  =  1.

Conversely, if a solution Ф is continuous and d e g #  =  1, then its lift ip is 
continuous, strictly increasing and y>[[0,1)] =  [0,1).  Hence

#[arc (ajfc,a*+ i ) ]  =  {e2wiv,(t) : t G (s*,s;t+ i )}  =  {e2mu : и G <p[ (sk, sk+ \)  ] }

=  {e2wiu : и б ( ф к ) , Ф к + 1))}

=  ar c ( # ( a j t ) , # ( afe+i)),  к =  0 , . . . ,  n -  1.

Directly from Theorem 2 we obtain the following main result:

Theorem 4
I f  G  G K n (n ^  2), then for every a G S 1 such that G(a) =  a and every 

r G Z  \  {0} there exists a unique continuous solution Ф of degree r of the 
equation

# (* " )  =  <?(#(*)), z G S 1, (17)

such that Ф(1) =  a. I f  |r| =  1, then this solution is a homeomorphism.

Remark 7
I f  G  £ K n (n ^  2) and Ф is a continuous solution of (17) of degree r, then 

the remaining continuous solutions of (17) of degree r are given by the formula

Фк(г) =  Ф (q kẑ j , z G S 1, i  =  l , . . . , n - 2 ,  (18)

2ni
where q =  e n~ 1.

Proof. Let us note that every solution Ф of equation (17) has the property 
that Ф(1) is a fixed point of G. Thus G  has exactly n -  1 fixed points (cf. 
Remark 4). Hence by Theorem 4 equation (17) has exactly n — 1 continuous 
solutions of degree r . Let us note that Ф*, for к =  0 , . . . ,  n  — 2 satisfy (17). In 
fact, qn =  q, so
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Фк(гп) =  Ф ( 9fczn)  =  Ф ( ( g fc) V )  =  Ф ((«T ** )")

=  G (  Ф ( д * г ) )  = < Э Д ь(*)),  z g S 1.

B y Theorem 4 and Remark 7 we get 

Corollary 1
I f  Ф : S 1 — > S 1 is continuous and

Ф{гп) =  Ф (г)п, z E S 1,

then Ф{г) =  qkzr , for а к E { 0 , . . .  , n  — 2} and an r E Z \  {0}.

By Theorem 2 we have 

Corollary 2
I f  F  E /С* (n ^  2), -F(a) =  a and Ф : S 1 — » 5 1 is a continuous solution 

of the equation
Ф ( F ( z ) )  =  F & ( z ) ) ,  z G S 1, 

suc/i that Ф(а) =  a and degФ =  1, then Ф(г) — z, z E .

Finally we shall show some applications of Theorem 4 to the determination 
the iterative roots.

A  function H  is said to be an iterative root of order к of a function G  if 
H k =  G ,  where H k denotes the k-th iterate of H .  We have

Theorem 5
A function  G  G K „  (n )  2) has a continuous iterative root of order к iff  

n  =  r k for  an integer r.

Proof. Suppose H  : S l — > 5 1 is continuous, deg I I  =  r and

H k(z) =  G (z ) ,  z E S 1

B y Remark 6 deg H k =  r k, so r k =  deg G  =  n.
Conversely, in view of Theorem 4 there exists a homeomorphism Ф : S 1 — > 

S 1 fulfilling (17). Put H (z )  =  Ф (Ф "1(-г)г )- We have

H k{z) :=  Ф ( ф “ 1 (z )rk)  =  Ф ( Ф - 1 (z)n) -  G{z), z E S l .

Denote by S n the class of all functions conjugated with the monomial zn, 
that is

S n :=  {Ф  : S l — > S l : Ф(г)  =  Ф (Ф “ 1 (z )" ) , z E S 1, 

where  Ф : S 1 — > S 1 is a homeomorphism}.

Let us note that JCn C  S n .
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We shall show 

T h e o r e m  6
I f  G  G /С„ (n ^  2) and n  =  r fc, then G  has exactly iterative roots of 

order к in the class S r . They are given by the formula

H (z )  =  Ф ( ^ ф - 1 ( * П  , г  G S \  j  =  0 , . . . ,  , (19)

2iri(r-l)
where p =  e " - 1 and Ф is a homeomorphic solution of equation (17).

Proof. Let Ф be a homeomorphic solution of (17) and H  be given by (19). 
Then

H k(z) =  Ф (p j p jr . . .  р»'Г‘ -1 ф - 1(г )Г‘ )  =  Ф (р ’ ^ ф - 1(г )п)  =  Ф (Ф _1 (г )п)

=  G(z),
n— 1

since p r~ l =  1.

By Remark 7 the function Ф (г) :=  Ф(дп -1 - -*гг), where q :=  is a
homeomorphic solution of (17) and

ф  ( Ф_1(*)г) = Ф  (q n~ l ~ j  [^+1~п Ф - 1(л)]г)
=  Ф ^ ( " - » - Л а - О ф - ^ ^ г )  =  ф (p iф -1 (2)г) (20)

=  H (z ) ,

since qr~ l =  p. Therefore H  G <Sr .
Suppose now that H  € S r and H k =  G. Then there exists a homeomor- 

phism Ф : 5 1 — > S 1 such that

t f  (z) =  Ф ( Ф ^ У )  , г  € 5 ' .  (21)

Hence
G ( V ( z ) )  =  H k(V (z ))  =  Ф (z r* ) =  Ф (zn), z 6  S 1, (22)

so, in view of Remark 7 Ф (z) =  for a j  e  { 0 , . . .  , n  -  1}. Further by
(21) and (22) we get (19), because j  =  l ^ j  +  j ,  where j  e  { 0 , . . . ,  -  1}

and p3 =  p i .

C o r o lla r y  3

Let n  =  r k. The functions H (z )  =  pzr, where p r~1 =  1 are the only 
solutions of the equation

H k(z) =  zn, z e  S l

in the class K.r .
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