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On conjugacy of multivalent functions on the circle
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Abstract. We prove that every two expanding selfmappings of the circle
which take each value in exactly n points are conjugate. The prob-
lem of the uniqueness of continuous conjugating functions is considered.
Moreover, some applications to the determination of iterative roots of
the above mappings are given.

A function / is said to be n-valent or shortly n-to-1 if the pre-image of each
its value consists of exactly n points. Let S1:={z € C : \z2\ = 1}. In this note
we shall consider n-to-1 mappings of the unit circle S 1 onto itself. The natural
examples of n-to-1 mappings are the functions conjugate with monomials zn.
In this paper we consider the problem when n-to-1 functions conjugate with
zn. The problem of semi-conjugacy has been treated by M. Shub in [3] and
reported in monograph [2].

Let us quote the following

Lemma 1 (see [4], [1])
Let F :S1—>S1 be a continuous function. Then there exist a unique
integer n and a unique continuous function f : E — >E such that

F (e2Tit) = e2nifW, t£ E, ()]
f(t+ 1) = /(f) + n, t6E 2)
and
0o~ /(0) < 1

Mathematics Subject Classification (2000): 39B32, 39B12.
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The function / is said to be the lift of F and the integer n is called the
degree of F (deg F = n).
Let us begin with a few remarks on multivalent functions.

Remark 1

Let F :S|1 — >S1 be continuous and the lift of F be strictly increasing
(decreasing). Then F is n-to-1 (n ® 0) if and only if degF = n (degF =
-n).

Proof. Suppose that degF = n> 0, /(0) ~ a < /(0) + 1 and w = e2nia.
Since /][o,i) is a bijection of [0,1) onto [/(0), /(0) + n), we infer that for every

K G 0,... ,n —1 there exists a unique tk 6 [0,1) such that /(Lt) = a + K
Hence F(zk) = w for e2wlk, Kk = 0,... ,n —1 and F(z) & w for z G
S\ {Zq, , zn_!}-

Conversely, if F is n-to-1 and degF = k then by the previous part F is
fc-to-1 so K —n.
The same is in the case of a decreasing lift.

Remark 2
IfF :SI1 —>S1I is continuous, degF —nd¢ 0 and F is \n\-to-l, then its
lift is strictly monotonie.

Proof. Let n > 0. For the indirect proof suppose that /(<i) = /(<2) =: o
for some <1, < € [0,1) and t\ ® t2- Put a := e2riQ and w e2/Mit2 Write

[a—/(0)] = In+r, whereZr GZ and 0~ r < n.
The continuity of / and (2) imply that
/) + [In, (I+ hn) C/[[2Z+ 1)]
Hence for every integer k G [+, n —1 —r] there exists ub G [Z Z+ 1) such that
f{uk) = a + K,

since /(0) + In < a+ k< /(0) + (I + 1)n. If Z= 0, then we put w, := t\
Define a* := e2nllk, where Kk G {—,..., n —1—r}. Obviously a® ® ak2, since
Ukx, Uk2 € [L1+ 1) and Ukj ¢ Uk2 mMoreover, w ® for all k. In fact, suppose
w= Oc,forakG{-r,..., n- 1- r}, then eZh2 = e2nllk Since <€ [0,1) and
Uk € [1,1+ 1), we have 2= Uc+ Z Hence a = /(*2) = /(n*;+ 2 = f(uk)+nl =
a+ K+ nl, so k = —nl. In view of the inequalities —+ ~ k * n - | - r and
0~ r < n weobtain that | —k = 0. Thus Z2= but this is a contradiction,

since uo := <1 ifz= 0.
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Let us note that
F(ak) = e2™/(u*) = eZ*ia =

and
F{w) = e2nif* = e2ma = a,

sow,ak GF _1[{a}] for k € {—r,..., n —1—r}. Thus the pre-image F _1[{a}]
contains at least e+ | points. This is a contradiction, so / is strictly increasing
in [0,1) and in view of (2) / is strictly incresing in M.

The same proof is in the case of negative degree.

Remark 3
There exist continuous n-to-1 functions F : S1 — >SI| (n > 1) of degree
one.

We give an example for n = 3. Let / : [0,1] — > [0,1] be the piecewise
linear function with the vertices: (0,0), (5,5), (8§, 0), (8 1). (].5). (1,1). It
is easy to verify that F (e2nit) := e2mNe) is 3-to-l function and degF = 1

Define two classes of functions
fcn ;m— {F mS1— >S1: F is continuous, degF = n,
I* - W\ < 1/0*0 - f(y)L * &V, R},
where / is the lift of F and

c* = {F :51—>S1: F is continuous, degF = T8
X —yW\ A~ 7(/(™) - f{y)D), x,y eR, for an increasing
function 7 : [o,00) — >[0,00) such that its sequence
of iterates converges pointwisely to o}.

It is easy to see that /C* C ICn.

Remark 4
If F 6 Kn, then F has exactly \n\ —1 fixed points.

Proof. Put h(t) = f(t) - t. Let z0 = e2nito and t0 € [0,1). Let us note
that F(zo) = zo ifand only if h(t0) G Z. Assume that F preserves orientation.
It is easy to see that h is an increasing homeomorphism and

W0 ) = [A() W) = [I0), 1(0) + - 1),
We have
{0,..., n—2}, if/(0) = O,

zn[/(0),/(0)+ n-i) {1,...,e—1}, if/(0) > O.
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Thus, if/(0) = 0, Zn/i[[0,1)] = {O,... ,n—2} and if/(0) > 0, Zn/i[[O,I)] =
(1,..., n —1}, whence it follows that F has exactly n —1 fixed points.
If F reverses orientation, the proof is analogous.

Remark 5
Let F :S|I — >S1| be continuous, 0 ~ a < 1, Fa(z) := a~1F(az), z G S 1,
where a —e2rv* and let f and fa be the lifts of F and Fa. Then

(i) fait) = f{t+ a) - a- [/(a) - a], t GR.
(i) F(a)
(iii) F G/C,, <=> Fa G Kn.

a Fe(l) = 1<~=>faf{0) = 0.

Proof, (i) We have
Fa (e27rit) = e- 2niaF "eZmi(Q+t)N = e2x*(/(a+t) - )

In view of the continuity of fa and / it follows that fa{t) = f{t+ a)- a- kfor
afcezZ. Since/a(0) € [0,1) we have f{a) —a —k G [0,1). Thus [/(a) —a] = k.

(ii) The first equivalence is trivial. Let us note that the equality 0 =
fa{0) = f(a) - a —[f(a) - a] is equivalent to the condition f(a) - a G Z.
Since F [a) = e2Zl”-~*) and a = e2nra we get (ii).

(iii) It is a simple consequence of (i) and (2).
Directly from the definition of the degree we obtain the following

Remark 6
IfF,G :51— >S1| are continuous, then degF 0G = degF degG.

To solve the problem posed in the introduction we consider a more general
problem of conjugacy of functions from the class Kn.

The main tool in the further part of the paper are the following proposi-
tions:

Proposition 1 (see [9])
Let J be a closed and finite interval with the ends a and b. Assume that:
(Hi) fn-1:r0,11 — >1fO 11 are continuous, strictly increasing mappings
and M 0) = 0, fn—i(1) = 1, /*+1(0) = /*(1), k= 0,... ,n - 2;
(Hr) po, mmm,Qn-\ ®mJ — >J are continuous, strictly increasing mappings and
go(a) = a, gn-i(b) = b, gk+i(a) = gk(b), k- 0,... ,n - 2

If
\fh(x)-fk{y)\<\x-y\, Xaoy xy G[0]], xk=0,....n—1 (3
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and
Wk{x) - 9k{y)\ < - vy\, Xdvy, x,yeld, k=0,... ,n—1, 4)
then the system
<p(fk{x)) = 9k{<p{x)), i6[0,1], fc=0,...,n -1 (5)

has a unique solution 9: [0,1] — >J. This solution is continuous and
strictly monotonie with ip{0) = a and <p(l) = b.

Proposition 2 (see [5])
Let /o,.. -, /, _i satisfy (Hi) and go,..., gn-\ satisfy (H2) with J = L for
some a, b€ R. Suppose that

WVk{x) - gk(y)\ Mli\x-y\), X,y €R, k=0,... ,n- 1 (6)

where 7 : [0,00) — >[0,00) is an increasing function such that its sequence of
iterates 7” converges pointwisely to 0. Then system (5) has a unique bounded
solution. This solution is continuous and monotonie.

We shall prove simultaneously the following two theorems:

Theorem 1
IfF,G € Kn (n ~ 2), F(a) = a, G(b) = b, then for every integer r & 0
there exists a unique continuous solution ® : 51— >S 1 of the equation

®Ne)) = C(od(r)), 2GS (7)

such that deg<h = r, ®(a) = b and </[[0,1]] = [y>(0), where < is the lift
of ®. This lift is strictly monotonie. Moreover, ® is a homeomorphism if and
only if Jr] = 1

Theorem 2

IfF £ Kn, G e Kn (n ™~ 2), F(a) = a, G(b) = b, then for every integer
r~0, there exists a unique continuous solution ® : S1— >S1 of equation (7)
such that deg® = r and ®(a) = b. The lift of ® is strictly monotonie.

Proof. Let F,G £ F(@ = a G{b) = b Put Fa{z) := a~IF(az)
and Gb{z) = b~1G(bz), z e S1. Let us note that if a function & :S1— >S1
satisfies (7) and ®(a) = b, then

da.b(-r) := 6-"P(ar)
satisfies
®a,b(-Pa(-r)) = Co(dab(2:)), z26S1 (8)

and ®alb(1l) = 1. Conversely, if ® :S1— >S5 lsatisfies (8) and ® (1) = 1, then
®(r) = bd(a_Ir) satisfies (7) and ®(a) = b.
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Thus in view of Remark 5 (iii) we may assume further that a = b= 1

First we shall prove the uniqueness. Let ® : S1 — >S | be continuous solu-
tion of (7) such that deg<l> = r, ®(1) = 1 and ip be the lift of . We have
/(0) = 0, p(0) = 0 and ip(0) = 0. Moreover,

g(t+ 1) =g() +n, *€R )
and
p(t+ 1) =ip(t) + r, t£R. (10)
We have
® (F (e2nin)) = o = e2mv(/(t)), tE£R
and

G (P (e2*lt)) = G (e2Z™ (™ = eZ*iaMt)\ te K.
Hence in view of (7)
- ffM*)) € z, fort £ R. (12)
Since ip, f and g are continuous we infer that there exists a kK £ Z such that
<P(f(t)) - 9(<P{t)) = k, for t£ R.

We have k = 0, because <£>(/(0)) = p(y?(0)). Thus

¥>(/(0) = $(¥>(<)). <€R. (12)
Put JT:= [0,r], ifr > 0and Jr := [r,0], ifr < 0.
Define
fi(t) ;= f~I1{t+r), t£][01], i=20,..., n- 1
and
gt{t) g~I(t+ir), t£R, r=20,...,n —1
We have

=t + i, forte [0.1],
so by (12) and (10) we get
ip(t) +ir = g(<p(fi(t))), *€[0,1], r=20,...,n—1

and
g~1{<p®) + ir) = <p{ft{t)), *€[0,1], r=0,...,n —1

The last equalities we may write in the form of equation (5).
It is easy to verify that /o,...,/n-i satisfy (Hj) and go,---,gn-i satisfy
(H2) with a = 0 and b= r. Moreover, the lifts / and g are invertible and

\f~'(m>)- f~"{y)\ < \x-y\ and \g~1{x)-g~1(y))\ <\x-y\, xdy, X,y £ R,
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because F,G £ Xn, whence it follows that /o, +mm, fN- 1satisfy (3) and go,mm,
gn-\ satisfy (4). Furthermore, if we assume that G £ /C*, thent

15-1(2) <7(I®~yl|), ar.l/eR,

for an increasing fimction 7 : [0,00) — > [0, 00) such that 7n(t) — >0, fort ~ 0.
Hence it follows that go,- mm, ffn-i satisfy (6).
In view of Proposition 1 system (5) has a unique solution Tp : [0,1] — >
lr. If ® is a continuous solution of (7) which lift ip satisfies the condition

[0,1]1]1 = [(/?(0), v?()] = JT, then by Proposition 1 Tp = <}|[oi]- However,
if F G ICh, G G /C* and @ is a continuonus solution of (7) of degree r such
that ®(1) = 1, then by Proposition 2 its lift ip is monotonie, so p[ [0,1]] = Ir
and consequently Tp = V?][oji]- Hence we infer that if F G Kn and G G £*
(F, G £ Kn) then equation (7) has at most one continuous solution ® of degree
r such that ®(1) = 1 (and ip[[0,1]] = [<EX0), v?(1)] ).

Conversely, by Proposition 1 solution Tpof (7) is continuous, strictly mono-
tonie, Tp(0) = 0 and ~(1) = r. Let us note that the function ip(t) := Tp(t- [f]) +
r[<], for t £ X is continuous, strictly monotonie, ~|[og] = Tp and fulfils (10).
Hence

Tpt) +ir = ip{t) +ir = ip{t + i) = V»(/(/t(<))), t£ [0,1].
On the other hand by (5)

W) =prl(~n0)> <€10,1, *=0,....n —1

Then
V>(/(/»(*))) = ol W ))) = g{il>{fi{t))), <6[0,1], t=0,...,n-1. (13)
It follows from (Hj) that
n—4 n—4
_UO/»[[O, 11 :_l.(lJ <M1 = [o(0),/n-i(N] = [0, 1.
i= i=

Hence in view of (13) we obtain that

~I(<)) = sM*)), <6 [0 1
so the function ® (e2nit) := e2*¥(t)) t g [0,1] is a continuous solution of (7),
such that ip(l) = 1land deg” = r.
The remaining part of thesis is a simple consequence of Remark 1, since
the lift of @ is strictly monotonie.

Let a,b £ S1, a® b. Then there exist ta,ij, G K such that ta< tb< ta+ 1,
a —e2nita and b = e2mtb. Put

arc (a,b) := {e2nu : t£ (ta,tb)}.
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Theorem 3
Let F,G GKn (n) 2), a6 S1 F(ak) = a, for k —0,... ,n, a0 = an = a
and

Arg ak— > Arg —, K=0,... ,7- 2
ao ao

A solution ® : 51— >S| of equation (7) is continuous and of degree one if
and only if

Ag$(afo+l) ;>,&Fg®b‘ - Kk=0,...,n—2 (14)
®(ao) ®(ao)
and
d[arc(ab a*+1)] C arc (®(an), d{ak+l)). (15)

Proof. Let & satisfy (7), (14) and (15). Then ®ab, where b = ®(a) satisfies
(8) and
/ ak afc+i\
vﬂ «0 /]
Thus we may assume that a = 1, -F(I) = 1, G(I) = 1 and ®(1) = 1 Put
bk := ®(ak), k = O,..., n. We have

Pap arc C arc k=20,..., n —1.

G(bk) = C(® (ak)) = ®(F(ak)) = ®(1) = 1

It follows from (14) that

Arg 6jt+i > Argbk, fork=10,...,n-2.
Put
Arg ak Arg bk
Sk = tk := fork = 0,...,n- 1and sn tn 1
271 27r
Let us note that f(sk),g(tk) G Z, for k= 0,..., n, where / and g are the lifts

of F and G. Since / is strictly increasing, /(0) = 0 and /(1) = n, we have
0= /(s0) < /(si) < < f(sn-i) < f(sn) = n,
so f{sk) = k, for k = 0,... ,n. Similarly g{tk) = k, for k = 0,..., n.
Let Tp: [0. 1) — >[0,1) be a mapping such that
0} = e2?Ne ), f £ [01).
Define
ip{t) ;= ip{t- [+ [t], t€K
Obviously
® (e2wit) = e2rv(0i i€R)
MNTL=PWT L tGK (16)
and ip fulfils (11)
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Let t 6 [0,1), then t G [s*, s"t+i) =: /*,, fora k G {0,..., n —1}. In view of
(15)
e2viip(t) = o (e2 € arc [bk, bk+1) = axe [e2nitk, e2nitk+1 ),
so ip{t) G [tfc,t/c+i) =: Jk- Consequently, g(<p(t)) G g[Jk\z [k,k + 1). On the
other hand, f(t) G f[lk) = [k,k + 1) and g>(f{t)) Gip[[k, Kk + 1)] = [k K+ 1).
Hence Ig{(p{t)) - g>{f{t))\ < 1. Taking into account (11) we get

#(/(*)) = 9(®)), fort G [0,1),

so by (2), (9) and (16) ip satisfies (12).

Further, similarly as in the previous proof one can verify that <*|[oi] satis-
fies system (5). By Proposition 1 (p is continuous, strictly increasing and
tf[0,1]] = [0,1]. Thus ® is continuous and deg# = 1.

Conversely, if a solution ® is continuous and deg# = 1, then its lift ip is
continuous, strictly increasing and y>[[0,1)] = [0,1). Hence

#[arc (ajfc,a*+i)] = {e2wiv,(t) : t G (s*,s;t+i)} = {e2mu : n G ¢ (sk,sk+\) ]}

= {e2wiu: 6 (b k), d k+ 1)}
arc(#(ajt),#(afeti)), k= 0,...,n- 1L

Directly from Theorem 2 we obtain the following main result:

Theorem 4
If G GKn (n ™ 2), then for every a G S1 such that G(a) = a and every
r G Z\ {0} there exists a unique continuous solution ® of degree r of the
equation
#(*") = <?2(#(*)), z GS1], 17)

such that ®(1) = a. If |r] = 1, then this solution is a homeomorphism.

Remark 7
IfG £ Kn (n ~ 2) and @ is a continuous solution of (17) of degree r, then
the remaining continuous solutions of (17) of degree r are given by the formula

oK(r) = ¢ (qkzy, zGSL i =1,...,n-2, (18)

2Nk
where q = en~1.

Proof. Let us note that every solution ® of equation (17) has the property
that ®(1) is a fixed point of G. Thus G has exactly n - 1 fixed points (cf.
Remark 4). Hence by Theorem 4 equation (17) has exactly n — 1 continuous
solutions of degree r. Let us note that ¢* for k = 0,..., n —2 satisfy (17). In
fact, gn = q, so
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ok(rn) = @ (9fzn) = & ((gfY V ) = & ((«T**)")

=G (e(a*r)) =<3h0s(*), zgSLl
By Theorem 4 and Remark 7 we get

Corollary 1

If® :S1— >S1is continuous and
®{rn) = o(r)n, z ES1,
then ®{r) = gkzr, for ak E {0,... ,n —2} and anr E Zz\ {0}.
By Theorem 2 we have
Corollary 2

IfF E/C* (n ™ 2), -F(@) = a and ® : S1—» 51 is a continuous solution
of the equation
®(F(z)) = F&(z)), =z GS1,
suc/i that ®(a) = a and deg® = 1, then ®(r) —z, z E
Finally we shall show some applications of Theorem 4 to the determination
the iterative roots.

A function H is said to be an iterative root of order Kk of a function G if
Hk = G, where H k denotes the k-th iterate of H. We have

Theorem 5

A function G G K,, (n) 2) has a continuous iterative root of order Kk iff
n = rk for an integer r.

Proof. Suppose H :S| — >51is continuous, deg Il = r and

Hk(z) = G(z), zES1

By Remark 6 degH k= rk, so rk= degG = n.

Conversely, in view of Theorem 4 there exists a homeomorphism ® : S1 — >
S 1 fulfilling (17). Put H(z) = ®(®"1(-r)r)- We have

Hk{z) := o (p“1(2)rk) = & (®-1(z)n) - G{z), zESI.

Denote by Sn the class of all functions conjugated with the monomial zn,

that is
Sn:= {® :SI —>S1: &(r) = & (P“1(z)"), zE S1,
where ® :S1—>S1is a homeomorphism}.

Let us note that J.Cn C Sn.
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We shall show

Theorem 6
IfG G/C,, (n ™ 2) and n

rfc then G has exactly

on the circle 281

iterative roots of

order K in the class Sr. They are given by the formula

H(z) = ® (" -1(*1

2iri(r-1)

wherep =¢e¢ "-1

Proof.
Then

Hk(z) = © (pjpjr ... ppT"-1¢p -1(r)Ir)

= 02,
n— N

By Remark 7 the function @ (r)
homeomorphic solution of (17) and

since p r~1

rés\ j=o0,.., , (19)

and ® is a homeomorphic solution of equation (17).

Let ® be a homeomorphic solution of (17) and H be given by (19).

=0 (p'r ¢ -1r)n) = & (®_1(r)n)

®(an-1--*mr), where q := is

b (0_20) =0 can-1-i [MHE0- A0

H(z),
since gr~1 = p. Therefore H G <& .
Suppose now that H € Sr and HKk
phism ® : 51— >S 1 such that
tf(z) = & (o~
Hence

G(V(z)) = Hk(V(z2)) = @

so, in view of Remark 7 ®(z) =
(21) and (22) we get (19), because j

and p3 = pi.

Corollary 3

Let n rk. The functions H(z)
solutions of the equation

H k(z) = zn

in the class Kir.

P A ("-»-Na-0d-""r) = ¢ (pih-1(2)r)

(20)

G. Then there exists a homeomor-

Y), r€5". (21)
(zr*) = ®(zn), =z 6 S1, (22)
foraj e {0,... ,n - 1}. Further by
I~j +j, wherej e {O0,..., 1}

pzr, where pr~1 1 are the only

, ze SI



282 Marek Cezary Zdun

References

[1] L.S. Bloc, W.A. Coppel, Dynamics in One Dimension, Lectures Notes in Math.
1513, Springer Verlag, Berlin, Heidelberg, 1992.

[2] W. de Melo, S. van Strien, One Dimensional Dynamics, Ergebnisse der Mathe-
matik und ihrer Grenzgebiete, 3 Folge, Band 25, Springer-Verlag, Berlin, Heidel-
berg, 1993.

[8] M. Schub, Endomorphisms of compact differentiable manifolds, Amer. J. Math.
91 (1969), 175-199.

[4 C.T.C. Wall, A Geometric Introduction to Topology, Addison-Wesley, Reading,
Mass., 1972.

[6] M.C. Zdun, On conjugacy of some systems of functions, Aequationes Math., to
appear.

Institute of Mathematics
Pedagogical University
Podchorazych 2

30-084 Krakow

Poland

E-mail: mczdun@wsp.krakow.pl

Manuscript received: February 29, 2000 and in final form: April 20, 2000


mailto:mczdun@wsp.krakow.pl

