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Darren CrowdyExpli
it solution of a 
lass of Riemann�HilbertproblemsAbstra
t. Analyti
al solutions to a spe
ial 
lass of Riemann�Hilbert bound-ary value problems on multiply 
onne
ted domains are presented. The so-lutions are expressed, up to a �nite number of a

essory parameters, asnon-singular inde�nite integrals whose integrands are expressed in terms ofthe S
hottky�Klein prime fun
tion asso
iated with the S
hottky double ofthe planar domain.1. A 
lass of Riemann�Hilbert problemsThe subje
t of this paper is a spe
ial 
lass of Riemann�Hilbert problems (RHproblems) on multiply 
onne
ted planar domains. The study of general RH prob-lems is a 
lassi
al subje
t and dis
ussions of it 
an be found in standard mono-graphs on boundary value problems [9℄, [18℄, [13℄. A solution of the general(Riemann)�Hilbert boundary value problem has been found, using su

essive it-eration methods, by Mityushev [14℄. Here we restri
t attention to a spe
ial (butimportant) sub
lass of the same RH problems and �nd an analyti
al expressionfor the solutions, up to a �nite set of a

essory parameters, in terms of a trans
en-dental fun
tion known as the S
hottky�Klein prime fun
tion [3℄ asso
iated withthe multiply 
onne
ted domain.We de�ne a 
ir
ular domain Dζ in a 
omplex parametri
 ζ-plane to be a domainwhose boundaries are all 
ir
les. Let Dζ be the M +1 
onne
ted 
ir
ular domain ina ζ-plane 
onsisting of the unit dis
 with M smaller dis
s ex
ised from its interior.The outer boundary of Dζ is the unit 
ir
le whi
h we label C0. Label the M innerboundary 
ir
les of Dζ as C1, . . . , CM . For k = 0, 1, . . . , M let the 
entre andradius of Ck be δk and qk respe
tively.Consider the Riemann�Hilbert problem for the fun
tion w(ζ):

Re
[

λk w(ζ)
]

= dk on Ck, k = 0, 1, . . . , M, (1)where {λk ∈ C | |λk| = 1, k = 0, 1, . . . , M} is a set of 
omplex 
onstants with unitmodulus and {dk ∈ R | k = 0, 1, . . . , M} is a set of real 
onstants. We solve forAMS (2000) Subje
t Classi�
ation: 30C20, 30E25, 35F15.Volumes I-VII appeared as Annales A
ademiae Paedagogi
ae Cra
oviensis Studia Mathemati
a.



[6℄ Darren Crowdy
w(ζ) satisfying (1) that is analyti
, but not ne
essarily single-valued, in Dζ ex
eptfor a simple pole, with known residue, at some point ζ = β stri
tly inside Dζ .Cir
ular domains are a 
anoni
al 
lass of planar domains be
ause every planardomain is 
onformally equivalent to some 
ir
ular domain [10℄. Be
ause of this,and be
ause the 
lass of RH problems (1) is 
onformally invariant, it means thatthe solution s
heme whi
h follows is rather general. It applies, up to 
onformalmapping from the 
anoni
al 
lass of 
ir
ular domains, to any multiply 
onne
tedplanar region.Problem (1) is a generalization of the 
lassi
al S
hwarz problem [9℄, [18℄, [13℄,a 
ase of whi
h is retrieved on making the 
hoi
e, for example, that λk = 1for all k = 0, 1, . . . , M in (1). This paper produ
es an analyti
al expression forthe solution of (1) when the 
onstants {λk ∈ C | k = 0, 1, . . . , M} are generallydistin
t. The solution is expressed as a non-singular, inde�nite integral whoseintegrand is written in terms of the S
hottky�Klein prime fun
tion [3℄ asso
iatedwith Dζ . This integrand depends on a �nite set of a

essory parameters that
an, in prin
iple, be determined (for example, numeri
ally) from the given data
{λk, dk ∈ C | k = 0, 1, . . . , M}.The spe
ial form of RH problem (1) has been 
onsidered by other authors.Vekua [18℄ shows that, if it exists, the solution of the RH problem (1) is unique [18℄.Wegmann & Nasser [19℄ study the doubly 
onne
ted 
ase M = 1 of (1) in a re
entpaper on numeri
al solutions of RH problems on multiply 
onne
ted regions usingintegral equations based on the generalized Neumann kernel.The 
lass of RH problems appears in a variety of appli
ations, espe
ially inthe more general (dis
ontinuous) 
ase when the value of the 
onstant λk assumesdi�erent values on di�erent segments of the 
ir
le Ck (the methods of this paper,presented for the 
ontinuous problem, 
an be generalized to this 
ase). One ofthe more important appli
ations is to free streamline theory in hydrodynami
s.There, in the study of jets and 
avities, it is traditional to study a fun
tion knownas the Joukowski fun
tion [11℄, often written as

Ω(ζ) ≡ log

(

1

V0

dw(z)

dz

)

,where z = x+iy, V0 is a 
onstant s
aling fa
tor and w(z) is an analyti
 fun
tion inthe �ow region (known as the 
omplex velo
ity potential). On any solid boundariesin 
onta
t with the �uid, the imaginary part of Ω(ζ) is 
onstant; on any freestreamlines, owing to the 
onstan
y of pressure in a 
avity region on one sideof the free streamline and Bernoulli's theorem, it is the real part of Ω(ζ) thatis 
onstant. Sin
e a single streamline in a real �ow 
an, in part, be in 
onta
twith a solid boundary and then separate into a free streamline bounding a 
avity,
Ω(ζ) turns out to satisfy a (dis
ontinuous) Riemann�Hilbert problem of pre
iselythe form (1). In the simply 
onne
ted situation, S
hwarz�Christo�el methodshave proved to be very useful in problems of this kind [11℄. Interestingly, therehas been re
ent interest [2℄ in developing this nonlinear theory to �ows involvingmultiple body-
avity systems. The theory presented here, for multiply 
onne
tedsituations, should �nd appli
ation in su
h studies.



Expli
it solution of a 
lass of Riemann�Hilbert problems [7℄2. Fun
tion theoryThe investigation we now present borrows ideas from prior work by the author[5℄, [6℄ in whi
h new analyti
al formulae for the S
hwarz�Christo�el mappingsto bounded and unbounded polygonal domains were 
onstru
ted. Although thisviewpoint is not the one taken in [5℄, [6℄, su
h S
hwarz�Christo�el mappings 
an beviewed as satisfying a RH problem on a multiply 
onne
ted domain of exa
tly theform (1). Here, the same 
onstru
tive method is exploited to �nd expli
it repre-sentations of the solution of broader 
lasses of RH problems in multiply 
onne
teddomains.In this paper, for ease of exposition, we fo
us on the 
ontinuous 
ase wherethe 
onstant λk assumes the same value at all points on the 
ir
le Ck (in thedis
ontinuous analogue, whi
h is more akin to the usual S
hwarz�Christo�el prob-lem, the value of this 
onstant is allowed to be di�erent on di�erent segments of
Ck). A 
onsequen
e of this assumption is that we e�e
tively do not allow anybran
h point singularities of w(ζ) on any of the 
ir
les {Cj | j = 0, 1, . . . , M}.The method, however, 
an be readily generalized to the 
ase where bran
h pointsare present.We now 
onstru
t some spe
ial fun
tions asso
iated with Dζ . First, for k =
0, 1, . . . , M , de�ne the Möbius transformation φk(ζ) by

φk(ζ) = δk +
q2
k

ζ − δk
, k = 0, 1, . . . , M. (2)It is straightforward to 
he
k that for ζ on 
ir
le Ck,

φk(ζ) = ζ.We de�ne the re�e
tion of a point ζ in the 
ir
le Ck by φk(ζ). Then, for k =
1, . . . , M , introdu
e the Möbius transformation θk(ζ) de�ned by

θk(ζ) = φk

(

ζ
−1)

, k = 1, . . . , M. (3)It follows from (3) and (2) that
θk(ζ) = δk +

q2
kζ

1 − δkζ
, k = 1, . . . , M.For k = 1, . . . , M , let C′

k denote the re�e
tion of Ck in C0. It 
an be shown that
θk(ζ) maps C′

k onto Ck.Let Θ denote the set of all 
ompositions of the maps {θk(ζ) | k = 1, . . . , M} andtheir inverses. It is an example of an in�nite S
hottky group. Further informationon S
hottky groups 
an be found in [3℄, [4℄. We refer to the maps {θk(ζ) | k =
1, . . . , M}, together with their inverses, as the generators of Θ. A fundamentalregion of Θ is a 
onne
ted region whose images under all maps in Θ tessellate thewhole of the plane. Consider the region 
onsisting of Dζ and its re�e
tion in C0,i.e., the 2M -
onne
ted region bounded by {Ck, C′

k | k = 1, . . . , M}. Label thisregion as F . F is a fundamental region of Θ.



[8℄ Darren CrowdyAsso
iated with Θ are M fun
tions known as integrals of the �rst kind whi
hwe denote {υk(ζ) | k = 1, . . . , M}. These are analyti
, but not single-valued, in F .Indeed, for j, k = 1, . . . , M we have
[υk(ζ)]Cj

= −[υk(ζ)]C′

j
= δjk, (4)where [υk(ζ)]Cj

and [υk(ζ)]C′

j
denote respe
tively the 
hanges in υk(ζ) on travers-ing Cj and C′

j with the interior of F on the right, and δjk denotes the Krone
kerdelta fun
tion. Furthermore, for j, k = 1, . . . , M ,
υk(θj(ζ)) − υk(ζ) = τjk (5)for some {τjk | j, k = 1, . . . , M} whi
h are 
onstants, i.e., independent of ζ. Thefun
tions {υk(ζ) | k = 1, . . . , M} are uniquely determined (up to an additive 
on-stant) by their periods given by (4) and (5).2.1. The S
hottky�Klein prime fun
tionLet α be some arbitrary point in F . It is established in [12℄ that there existsa unique fun
tion X(ζ, α) de�ned by the properties:(i) X(ζ, α) is single-valued and analyti
 in F .(ii) X(ζ, α) has a se
ond-order zero at ea
h of the points θ(α), θ ∈ Θ.(iii) limζ→α

X(ζ,α)
(ζ−α)2 = 1.(iv) For k = 1, . . . , M ,

X(θk(ζ), α) = exp (−2πi(2υk(ζ) − 2υk(α) + τkk))
dθk(ζ)

dζ
X(ζ, α).The S
hottky�Klein prime fun
tion (hen
eforth referred to as S�K prime fun
tion),whi
h we denote ω(ζ, α), is de�ned as

ω(ζ, α) = (X(ζ, α))1/2,where the bran
h of the square root is 
hosen so that ω(ζ, α) behaves like (ζ − α)as ζ → α.There are two known ways to evaluate the S�K prime fun
tion. One possibilityis to use a 
lassi
al in�nite produ
t formula for it as re
orded, for example, inBaker [3℄. It is given by
ω(ζ, α) = (ζ − α)

∏

θk

(θk(ζ) − α)(θk(α) − ζ)

(θk(ζ) − ζ)(θk(α) − α)
, (6)where the produ
t is over all 
ompositions of the basi
 maps {θj , θ

−1
j | j =

1, . . . , M} ex
luding the identity and all inverse maps. This produ
t, even if itis 
onvergent, 
an 
onverge so slowly and require su
h a large number of termsin the produ
t, that its use in many 
ir
umstan
es is impra
ti
al. An alternativenumeri
al s
heme has re
ently been put forward by Crowdy & Marshall [8℄; it ismu
h more 
omputationally e�
ient than methods based on the in�nite produ
t(6) over the S
hottky group.



Expli
it solution of a 
lass of Riemann�Hilbert problems [9℄3. The 
ir
ular slit domainTo pro
eed with the 
onstru
tion, we introdu
e an intermediate η-plane. Con-sider a 
onformal mapping, denoted η(ζ; α), taking the multiply 
onne
ted 
ir
u-lar domain Dζ to a 
onformally equivalent 
ir
ular slit domain 
alled Dη. α isthe point in Dζ mapping to η = 0 in Dη, i.e., η(α; α) = 0. Figure 1 showsa s
hemati
 in a triply 
onne
ted 
ase. Let the image of C0 under this map-ping be the unit 
ir
le in the η-plane whi
h will be 
alled L0. The M 
ir
les
{Cj | j = 1, . . . , M} will be taken to have 
ir
ular-slit images, 
entred on η = 0,and labelled {Lj | j = 1, . . . , M}. Let the 
ir
ular ar
 Lj be 
hara
terized by the
onditions

|η| = rj , arg[η] ∈ [φ
(j)
1 , φ

(j)
2 ].There will be two pre-image points on the 
ir
le Cj 
orresponding to the two end-points of the 
ir
ular-slit Lj. These two pre-image points, labelled γ

(j)
1 and γ

(j)
2 ,satisfy the 
onditions

η(γ
(j)
1 ; α) = rje

iφ
(j)
1 , ηζ(γ

(j)
1 , α) = 0,

η(γ
(j)
2 ; α) = rje

iφ
(j)
2 , ηζ(γ

(j)
2 , α) = 0.These two zeros of ηζ(ζ) on Cj are simple zeros.

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

ζ−plane

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

η−plane

Figure 1: A typi
al 
ir
ular slit mapping from a triply 
onne
ted 
ir
ular region
Dζ in a ζ-plane to a triply 
onne
ted 
ir
ular slit domain Dη in a η-plane.It is shown in [5℄ and [7℄ that an expli
it expression for the 
onformal slitmapping from Dζ to Dη 
an be found in terms of the S�K prime fun
tion of Dζ .It is given by

η(ζ; α) =
ω(ζ, α)

|α|ω(ζ, α−1)
. (7)Formula (7) will be 
ru
ial in the solution s
heme to follow.



[10℄ Darren Crowdy4. Solution s
hemeThe required fun
tion w(ζ) is analyti
 in Dζ . One 
an also 
onsider the 
om-posed fun
tion W (η), analyti
 in Dη, de�ned by
W (η(ζ; α)) ≡ w(ζ).The boundary 
onditions (1), expressed in terms of this new fun
tion W (η), are

Re
[

λk W (η)
]

= dk on Lk, k = 0, 1, . . . , M.These 
an be rewritten in the form
λk W (η) + λkW (η) = 2dk on Lk, k = 0, 1, . . . , M,or, on use of the fa
t that η = r2

kη−1 on Lk,
λk W (η) + λkW (r2

kη−1) = 2dk on Lk, k = 0, 1, . . . , M. (8)Using W ′(η) to denote the derivative of W with respe
t to its argument, di�eren-tiation of (8) with respe
t to η gives
λk W ′(η) −

r2
k

η2
λkW

′
(r2

kη−1) = 0 on Lk, k = 0, 1, . . . , M,whi
h 
an be rewritten as
ηW ′(η)

ηW ′(η)
=

λk

λk

on Lk, k = 0, 1, . . . , M.This is a statement of the fa
t that the argument of ηW ′(η) is 
onstant on Lk.Let us now suppose that we seek a solution for whi
h there are pre
isely twozeros of the derivative dw/dζ on ea
h of the boundary 
omponents {Cj | j =
0, 1, . . . , M}. Let the positions of the two zeros on Cj be at points aj and cj , i.e.,

dw

dζ
(aj) = 0 =

dw

dζ
(cj).These zero positions will not be known a priori but will enter our representationof the solution as a

essory parameters.4.1. Building blo
k fun
tionsA set of �building blo
k� fun
tions will be used to 
onstru
t the required solu-tions. Their 
hara
terizing feature is that they all have 
onstant argument on theboundary 
ir
les {Cj | j = 0, 1, . . . , M}. These fun
tions were introdu
ed in [5℄and their properties established there.It is shown in [5℄ that fun
tions of the form

R1(ζ; ζ1, ζ2) =
ω(ζ, ζ1)

ω(ζ, ζ2)
, (9)



Expli
it solution of a 
lass of Riemann�Hilbert problems [11℄where ζ1 and ζ2 are any two points on the same 
ir
le Ck (for k = 0, 1, . . . , M) has
onstant argument on ea
h of the boundary 
ir
les {Cj | j = 0, 1, . . . , M}. Also,fun
tions of the form
R2(ζ; ζ1, ζ2) =

ω(ζ, ζ1)ω(ζ, ζ1
−1

)

ω(ζ, ζ2)ω(ζ, ζ2
−1

)
, (10)where ζ1 and ζ2 are any two ordinary points of the S
hottky group (these pointsneed not be points on the boundary 
ir
les) similarly have 
onstant argument onea
h of the boundary 
ir
les {Cj | j = 0, 1, . . . , M}.Let γ0 be some point on C0 that is distin
t from a0 and c0. Consider thefun
tion

R1(ζ; a0, γ0)R1(ζ; c0, γ0)R2(ζ; γ0, β)R2(ζ; α, β)

×
M
∏

k=1

R1(ζ; ak, γ
(1)
k )R1(ζ; ck, γ

(2)
k ).

(11)First, sin
e it is a produ
t of the building blo
k fun
tions just introdu
ed, thefun
tion in (11) has 
onstant argument on the 
ir
les {Cj | j = 0, 1, . . . , M}. Asfor its singularities, it is a meromorphi
 fun
tion in Dζ with a se
ond order pole at
ζ = β (and at β

−1), simple poles at the points {γ(1)
k , γ

(2)
k | k = 1, . . . , M}, simplezeros at ζ = α and α−1 and simple zeros at the points {ak, ck | k = 0, 1, . . . , M}.It has no other singularities in Dζ . Let the fun
tion (11), 
onsidered now asa fun
tion of η, be 
alled U(η).Now 
onsider the fun
tion ηW ′(η) whi
h, we have already established, musthave 
onstant argument on the 
ir
les {Cj | j = 0, 1, . . . , M}. By the 
hain rulewe have

ηW ′(η) = η
dw/dζ

dη/dζ
.This fun
tion is analyti
 everywhere in Dη ex
ept for simple poles at the zerosof dη/dζ, i.e., at the points {γ

(1)
k , γ

(2)
k | k = 1, . . . , M}. It also has se
ond orderpoles at ζ = β and β

−1. It has a simple zero at ζ = α sin
e η(ζ; α) has a sim-ple zero there and, as 
an be seen after making use of (7), it also has a simplezero at α−1. By assumption, it also has 2(M + 1) simples zeros at the points
{ak, ck | k = 0, 1, . . . , M}. In short, it has all the same zeros and poles in Dζ asthe fun
tion U(η).We are thus led to 
onsider the ratio

V (η) ≡
ηW ′(η)

U(η)in the domain Dη. Sin
e we know that U(η) and ηW ′(η) have the same polesand zeros inside and on the boundaries of Dζ , the fun
tion V (η) 
an be dedu
edto be analyti
 everywhere in the domain Dη, as well as on its boundaries. Thismeans that V (η) is analyti
 everywhere in |η| ≤ 1. Moreover, it is known that thearguments of both U(η) and ηW ′(η) are 
onstant on L0. Thus,
V (η) = ǫV (η) on L0,



[12℄ Darren Crowdyfor some 
onstant ǫ implying that
V (η−1) = ǫV (η) on L0.This equation furnishes the analyti
 
ontinuation of V (η) into |η| > 1 and, inparti
ular, shows that it is analyti
 there (and bounded at in�nity). Sin
e V (η) isanalyti
 everywhere in the 
omplex η-plane, and bounded as η → ∞, Liouville'stheorem implies V (η) = B, where B is some 
omplex 
onstant.On use of (9) and (10), and after some 
an
ellations, we dedu
e that

dw(ζ)

dζ
=

BS(ζ; α)

ω(ζ, β)2ω(ζ, β
−1

)2

M
∏

k=0

ω(ζ, ak)ω(ζ, ck),where
S(ζ; α) ≡

(

ω(ζ, α−1)ωζ(ζ, α) − ω(ζ, α)ωζ(ζ, α−1)
∏M

k=1 ω(ζ, γ
(1)
k )ω(ζ, γ

(2)
k )

)

.Hen
e, the required solution 
an be written as the inde�nite integral
w(ζ) = A + B

ζ
∫

1

S(ζ′; α)

ω(ζ′, β)2ω(ζ′, β
−1

)2

M
∏

k=0

ω(ζ′, ak)ω(ζ′, ck) dζ′, (12)where A is some 
omplex 
onstant. Formula (12) is the main result of this paper.It is demonstrated in the appendix that for any two distin
t 
hoi
es of α1and α2, S(ζ; α1) = CS(ζ; α2), where C is some 
onstant (independent of ζ).This means that making di�erent 
hoi
es of α in the representation (12) simply
orresponds to making a di�erent 
hoi
e of the 
onstant B.5. The doubly 
onne
ted 
aseAs veri�
ation we 
onsider two problems in the doubly 
onne
ted 
ase. Let
Dζ to be the 
on
entri
 annulus ρ < |ζ| < 1 for some real ρ. Any doubly 
on-ne
ted domain is 
onformally equivalent to some su
h annulus. The solutions tothe following two problems 
an, it turns out, be found in analyti
al form usingalternative arguments whi
h allows us to 
he
k our analysis.Problem 1We spe
ialize to the 
ase where λ0 = λ1 = 1 with c0 = 0. The problem is then the
lassi
al S
hwarz problem. One form of the solution is

w(ζ) =
U

ζ − β
+ Ã log ζ + I(ζ), (13)where Ã is a 
onstant and the single-valued fun
tion I(ζ) 
an be written in termsof the 
lassi
al Villat formula [1℄:

I(ζ) =
1

2πi

∮

|ζ′|=1

dζ′

ζ′
(1 − 2K(ζ/ζ′, ρ))

[

−Re

[

U

ζ − β
+ Ã log ζ

]]
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lass of Riemann�Hilbert problems [13℄
−

1

2πi

∮

|ζ′|=ρ

dζ′

ζ′
(2 − 2K(ζ/ζ′, ρ))

[

c1 − Re

[

U

ζ − β
+ Ã log ζ

]]

,where
K(ζ, ρ) ≡

ζPζ(ζ, ρ)

P (ζ, ρ)
(14)and

P (ζ, ρ) ≡ (1 − ζ)

∞
∏

k=1

(1 − ρ2kζ)(1 − ρ2kζ−1). (15)Alternatively, the same solution 
an be written in the form
w(ζ) =

U

β

(

K(ζβ−1, ρ) + K(ζ β, ρ)
)

+ C log ζ + D,where
C =

1

log ρ

(

c1 −
U

β

(

K(ρβ−1, ρ) + K(ρ β, ρ) − K(β−1, ρ) − K(β, ρ)
)

)and
D = −

U

α

(

K(β−1, ρ) + K(β, ρ)
)

.The new solution method given earlier provides a third representation of thesame solution:
w(ζ)

= A + B

ζ
∫

1

S(ζ′; α)

ω(ζ′, β)2ω(ζ′, β
−1

)2
ω(ζ′, a0)ω(ζ′, c0)ω(ζ′, a1)ω(ζ′, c1) dζ′,

(16)where, in this doubly 
onne
ted 
ase, it 
an be shown (see [5℄ for details) that
S(ζ; α) ∝

1

ζ2
.To 
he
k (16) we use the solution (13) to numeri
ally 
ompute (using Newton'smethod) the two points on C0 at whi
h dw/dζ = 0. These are substituted into(16) as the values of a0 and c0. Similarly, we �nd the two points on C1 at whi
h

dw/dζ = 0 and take these as the values of a1 and c1. Next, we set A = w(1),where the right hand side is 
omputed using the known solution (13). We also�x B by ensuring that
w(ρ) = A + B

ρ
∫

1

S(ζ′)

ω(ζ′, β)2ω(ζ′, β
−1

)2
ω(ζ′, a0)ω(ζ′, c0)ω(ζ′, a1)ω(ζ′, c1) dζ′,where the left hand side of this equation is evaluated using the known solution(13). With all the parameters in (16) now determined, we 
he
k the value of theintegral (16) against the values given by (13) for di�erent (arbitrary) 
hoi
es of ζ in



[14℄ Darren Crowdythe annulus (the integral (16) is 
omputed using the trapezoidal rule). The valuesare found to be in agreement (to within the a

ura
y of the numeri
al method)thereby 
on�rming that (16) is indeed a representation of the required solution.Problem 2We now spe
ialize to the 
ase where λ0 = 1, λ1 = eiπ/2 with no restri
tions on d0and d1. This is no longer a 
lassi
al S
hwarz problem so the Villat formula 
annotbe used here. An analyti
al formula for the solution 
an, however, be found:
w(ζ) =

U

β

[

K(ζβ−1, ρ2) − K(ζβ, ρ2) − K(ζβ−1ρ−2, ρ2) + K(ζβρ−2, ρ2)
]

+ d0 + id1,

(17)where the spe
ial fun
tion de�ned in (14) again appears. A derivation of (17) isgiven in appendix B. In a manner akin to that used in Problem 1, the expression(17) was used to �nd the lo
ations of the zeros of dw/dζ on both C0 and C1 (thereare two on ea
h 
ir
le). These are then used as the values of a0, c0, a1 and c1 inan expression of the form (16). The values of A and B are determined in the sameway as in Problem 1 and the values of the integral (16) for arbitrary values of ζ
he
ked against the values given by (17). They are found to be in agreement.6. Dis
ussionThis paper des
ribes a 
onstru
tive method for �nding solutions to Riemann�Hilbert problems of the spe
ial form (1) on multiply 
onne
ted domains. Thesolution having two zeros of the derivative on ea
h of the boundary 
ir
les isgiven in (12) as a non-singular inde�nite integral 
ontaining a �nite set of a

es-sory parameters. In general, these parameters must be determined from a setof equations obtained by substituting the form (12) into the boundary 
ondi-tions (1). In other words, given the 2M + 2 real parameters asso
iated with theset {λk, dk | k = 0, 1, . . . , M} it is possible to determine the 2M + 2 real parame-ters asso
iated with the set of zeros {ak, ck | k = 0, 1, . . . , M}. How to determinethese a

essory parameters numeri
ally in an e�
ient manner remains a subje
tfor future resear
h.In prin
iple, it is possible to extend the 
onstru
tive method herein to �nd rep-resentations to solutions of the dis
ontinuous analogues of the spe
ial RH problems
onsidered here where the 
onstant λk is allowed to assume di�erent pie
ewise 
on-stant values on di�erent segments of 
ir
le Ck. In su
h 
ases, one must generallyintrodu
e bran
h point singularities in the derivative wζ(ζ) but this just requiresthe in
orporation of appropriate non-integer powers of the building blo
k fun
tionswhen performing the 
onstru
tion des
ribed herein. It is very similar to what isdone in 
onstru
ting multiply 
onne
ted S
hwarz�Christo�el formulae [5℄, [6℄.A
knowledgementsThe author a
knowledges support from a 2004 Philip Leverhulme Prize inMathemati
s, an EPSRC Advan
ed Resear
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it solution of a 
lass of Riemann�Hilbert problems [15℄the European S
ien
e Foundation's MISGAM and HCAA resear
h networks. Thiswork was initiated during the BFA 
onferen
e, Kraków, Poland, April 16-23, 2008;the author thanks Prof. V. Mityushev for suggesting this problem as a topi
 ofstudy.A. The fun
tion S(ζ; α)In this appendix we establish the fa
t that S(ζ; α1) = CS(ζ; α2), where C issome 
onstant (independent of ζ). To this end, 
onsider the ratio
R(ζ) ≡

S(ζ; α1)

S(ζ; α2)
, (18)where α1 and α2 are two distin
t values in Dζ . First, noti
e that S(ζ; α1) 
an berewritten in the form

S(ζ; α1) =

(

ωζ(ζ, α1)

ω(ζ, α1)
−

ωζ(ζ, α1
−1)

ω(ζ, α1
−1)

)

ω(ζ, α1)ω(ζ, α1
−1)

∏M
k=1 ω(ζ, γ

(1)
k )ω(ζ, γ

(2)
k )

, (19)where {γ
(1)
k , γ

(2)
k | k = 1, . . . , M} are the zeros of the slit map η(ζ; α1). Similarly

S(ζ; α2) =

(

ωζ(ζ, α2)

ω(ζ, α2)
−

ωζ(ζ, α2
−1)

ω(ζ, α2
−1)

)

ω(ζ, α2)ω(ζ, α2
−1)

∏M
k=1 ω(ζ, γ̃

(1)
k )ω(ζ, γ̃

(2)
k )

, (20)where {γ̃
(1)
k , γ̃

(2)
k | k = 1, . . . , M} are the zeros of the slit map η(ζ; α2). It is alsoeasy to 
he
k that, for j = 1, 2,

ωζ(ζ, αj)

ω(ζ, αj)
−

ωζ(ζ, αj
−1)

ω(ζ, αj
−1)

=
ηζ(ζ; αj)

η(ζ; αj)
.Next, observe that on Cj (and for any α),

η(ζ; α)η(ζ; α) = r2
j ,where rj is some real 
onstant. A di�erentiation with respe
t to ζ yields

ηζ(ζ; α)

η(ζ; α)
= −

(

dζ

dζ

)(

ηζ(ζ; α)

η(ζ; α)

)

.It follows that the ratio of any two su
h fun
tions, that is,
T (ζ) ≡

ηζ(ζ; α1)/η(ζ; α1)

ηζ(ζ; α2)/η(ζ; α2)will be real (and, in parti
ular, have 
onstant argument) on all the 
ir
les {Cj | j =
0, 1, . . . , M}.Substitution of (19) and (20) into (18) then produ
es

R(ζ) = T (ζ)R2(ζ; α1, α2)

M
∏

j=1

R1(ζ; γ̃
(1)
j , γ

(1)
j )R1(ζ; γ̃

(2)
j , γ

(2)
j ).



[16℄ Darren CrowdyThe important observation is that this is a produ
t of fun
tions that all have
onstant argument on the 
ir
les {Cj | j = 0, 1, . . . , M}. These 
onditions 
an bewritten as
R(ζ) = κjR(ζ) on Cj , j = 0, 1, . . . , M, (21)for some set of 
omplex 
onstants {κj | j = 0, 1, . . . , M}. R(ζ) 
an be shown tobe a 
onstant. One way to do this is to use arguments similar to those used in�4.1. to show that V (η) is 
onstant, but it is instru
tive to present an alternativeargument based on RH methods. The fun
tion R(ζ) is known to be analyti
 andsingle-valued everywhere in the fundamental region of the group Θ. Consider thereal part of equation (21); it 
an be written in the standard form of a RH problem:
Re[ µj R(ζ)] = 0 on Cj , j = 0, 1, . . . , M, (22)for some set of 
omplex 
onstants {µj | j = 0, 1, . . . , M}. The (homogeneous)Riemann�Hilbert problem (22) has been well studied and it is known (see, forexample, p. 257 of Vekua [18℄) that it admits no solution for R(ζ) unless all the
onstants {µj | j = 0, 1, . . . , M} are identi
al. In this 
ase, the unique solutionis R(ζ) = C, where C is a 
onstant. Thus, we have established that S(ζ; α1) =

CS(ζ; α2) for some 
onstant C that is independent of ζ.B. Derivation of (17)To �nd solution (17), 
onsider the following boundary value problem for w(ζ):
Re[w(ζ)] = 0 on |ζ| = 1,

Im[w(ζ)] = 0 on |ζ| = ρ.These imply that
w(ζ) + w(ζ−1) = 0 on |ζ| = 1,

w(ζ) − w(ρ2ζ−1) = 0 on |ζ| = ρ.
(23)The relations (23) 
an be analyti
ally 
ontinued o� the respe
tive 
ir
les and implythat w(ζ) satis�es the fun
tional relation

w(ρ4ζ) = w(ζ). (24)Now P (ζ, ρ) 
an be shown, dire
tly from its de�nition (15), to satisfy the fun
tionalrelations
P (ζ−1, ρ) = −ζ−1P (ζ, ρ), P (ρ2ζ, ρ) = −ζ−1P (ζ, ρ),from whi
h it also follows that
K(ζ−1, ρ) = 1 − K(ζ, ρ), K(ρ2ζ, ρ) = K(ζ, ρ) − 1.Furthermore, near ζ = 1, K(ζ, ρ) has a simple pole with unit residue, i.e.,

K(ζ, ρ) =
1

ζ − 1
+ analytic.
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it solution of a 
lass of Riemann�Hilbert problems [17℄We 
an therefore use K(ζ, ρ2) to 
onstru
t a fun
tion w(ζ) satisfying (24) andhaving a simple pole at ζ = β. The relations (23) imply that w(ζ) also has simplepoles at ζ = β−1, ρ2β, ρ2β−1 (and at all points equivalent to these under ζ 7→ ρ4ζ).The required form of solution 
an now easily be dedu
ed to be that given in (17).Referen
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ae Cra
oviensisStudia Mathemati
a VIII (2009)
Barbara Ko
l�ga�Kulpa, Tomasz Szostok and Szymon W¡sowi
zOn some equations stemming from quadrature rulesAbstra
t. We deal with fun
tional equations of the type

F (y) − F (x) = (y − x)
n
∑

k=1

fk ((1 − λk)x + λky) ,
onne
ted to quadrature rules and, in parti
ular, we �nd the solutions of thefollowing fun
tional equation
f(x) − f(y) = (x − y)[g(x) + h(x + 2y) + h(2x + y) + g(y)].We also present a solution of the Stamate type equation

yf(x) − xf(y) = (x − y)[g(x) + h(x + 2y) + h(2x + y) + g(y)].All results are valid for fun
tions a
ting on integral domains.1. Introdu
tionWe deal with some equations 
onne
ted to quadrature rules. Having a fun
tion
f : R → R we may approximate its integral using the following expression

F (y) − F (x) ≈ (y − x)

n
∑

k=1

αkf((1 − λk)x + λky)(where F is a primitive fun
tion for f), whi
h is satis�ed exa
tly for polynomials of
ertain degree. One of the simplest fun
tional equations 
onne
ted to quadraturerules is an equation stemming from Simpson's rule
F (y) − F (x) = (y − x)

[

1

6
f(x) +

2

3
f

(

x+ y

2

)

+
1

6
f(y)

]

.Another example is given by the equation
F (y) − F (x) = (y − x)

[

1

8
f(x) +

3

8
f

(

x+ 2y

3

)

+
3

8
f

(

2x+ y

3

)

+
1

8
f(y)

]

,AMS (2000) Subje
t Classi�
ation: 39B52.Volumes I-VII appeared as Annales A
ademiae Paedagogi
ae Cra
oviensis Studia Mathemati
a.



[20℄ Barbara Ko
l�ga�Kulpa, Tomasz Szostok and Szymon W¡sowi
zwhi
h is satis�ed by polynomials of degree not greater than 3. The generalizedversion of this equation
g(x) − f(y) = (x− y)[h(x) + k(sx+ ty) + k(tx+ sy) + h(y)] (1)was 
onsidered during the 44th ISFE held in Louisville, Kentu
ky, USA by P.K. Sa-hoo [7℄. The solution has been given in the 
lass of fun
tions f , g, h, k mapping

R into R and su
h that g and f are twi
e di�erentiable, and k is four times di�er-entiable.On the other hand, M. Sablik [5℄ during the 7th Katowi
e�Debre
en WinterSeminar on Fun
tional Equations and Inequalities presented the general solutionof this equation in the 
ase s, t ∈ Q without any regularity assumptions 
on
erningthe fun
tions 
onsidered.We deal with a spe
ial 
ase of (1) (with s = 1, t = 2) for fun
tions a
tingon integral domains. However, it is easy to observe that if we take x = y in (1),then we immediately obtain that f = g. Thus we shall �nd the solutions of thefollowing fun
tional equation
f(x) − f(y) = (x− y)[g(x) + h(x+ 2y) + h(2x+ y) + g(y)]. (2)Using the obtained result we will also present a solution of a similar Stamate typeequation
yf(x) − xf(y) = (x− y)[g(x) + h(2x+ y) + h(x+ 2y) + g(y)]. (3)In the proof of Lemma 1 below we use the lemma established by M. Sablik[6℄ and improved by I. Pawlikowska [3℄. First we need some notations. Let G,

H be Abelian groups and SA0(G,H) := H , SA1(G,H) := Hom(G,H) (i.e., thegroup of all homomorphisms from G into H), and for i ∈ N, i ≥ 2, let SAi(G,H)be the group of all i-additive and symmetri
 mappings from Gi into H . Fur-thermore, let P :=
{

(α, β) ∈ Hom(G,G)2 : α(G) ⊂ β(G)
}. Finally, for x ∈ G let

xi = (x, . . . , x
︸ ︷︷ ︸

i

), i ∈ N.Lemma 1Fix N ∈ N ∪ {0} and let I0, . . . , IN be �nite subsets of P. Suppose that H isuniquely divisible by N ! and let the fun
tions ϕi:G→ SAi(G,H) and ψi,(α,β):G→
SAi(G,H) ((α, β) ∈ Ii, i = 0, . . . , N ) satisfy

ϕN (x)(yN ) +

N−1
∑

i=0

ϕi(x)(y
i) =

N
∑

i=0

∑

(α,β)∈Ii

ψi,(α,β)(α(x) + β(y))(yi)for every x, y ∈ G. Then ϕN is a polynomial fun
tion of order at most k − 1,where
k =

N
∑

i=0

card

(

N
⋃

s=i

Is

)

.



On some equations stemming from quadrature rules [21℄Now we will state a simpli�ed version of this lemma. We take N = 1 and we
onsider fun
tions a
ting on an integral domain P . Moreover, we 
onsider onlyhomomorphisms of the type x 7→ yx, where y ∈ P is �xed.Lemma 2Let P be an integral domain and let I0, I1 be �nite subsets of P 2 su
h that for all
(a, b) ∈ Ii the ring P is divisible by b. Let ϕi, ψi,(α,β):P → P satisfy

ϕ1(x)y + ϕ0(x) =
∑

(a,b)∈I0

ψ0,(a,b)(ax+ by) + y
∑

(a,b)∈I1

ψ1,(a,b)(ax+ by)for all x, y ∈ P . Then ϕ1 is a polynomial fun
tion of order at most equal to
card(I0 ∪ I1) + card I1 − 1.In the above lemmas a polynomial fun
tion of order n means a solution of thefun
tional equation ∆n+1

h f(x) = 0, where ∆n
h stands for the n-th iterate of thedi�eren
e operator ∆hf(x) = f(x+ h)− f(x). Observe that a 
ontinuous polyno-mial fun
tion of order n is a polynomial of degree at most n (see [2, Theorem 4,p. 398℄).It is also well known that if P is an integral domain uniquely divisible by n!and f :P → P is a polynomial fun
tion of order n, then

f(x) = c0 + c1(x) + . . .+ cn(x), x ∈ P,where c0 ∈ P is a 
onstant and
ci(x) = Ci(x, x, . . . , x), x ∈ Pfor some i-additive and symmetri
 fun
tion Ci:P

i → P .2. ResultsWe begin with the following lemma whi
h will be usefull in the proof of themain result. However, we state it a bit more generally.Lemma 3Let P be an integral domain and let f, fk:P → P , k = 0, . . . , n, be fun
tionssatisfying the equation
f(y) − f(x) = (y − x)

n
∑

k=0

fk(akx+ bky), (4)where ak, bk ∈ P are given numbers su
h that for every k ∈ {0, . . . , n} we have
ak 6= 0 or bk 6= 0.Let i ∈ {0, . . . , n} be �xed. If P is divisible by ai, bi and also by aibk − akbi,
k = 0, . . . , n; k 6= i, then the fun
tion

f̃(x) := (ai + bi)fi((ai + bi)x)is a polynomial fun
tion of degree at most 2n+ 1.



[22℄ Barbara Ko
l�ga�Kulpa, Tomasz Szostok and Szymon W¡sowi
zMoreover, if there exists k1 ∈ {0, 1, . . . , n} su
h that ak1 = 0 or bk1 = 0,then fun
tion f̃ is a polynomial fun
tion of order at most 2n and if there exist
k1, k2 ∈ {0, . . . , n} su
h that ak1 = bk2 = 0, then f̃ is a polynomial fun
tionof order at most 2n− 1.Proof. Fix an i ∈ {0, . . . , n}, put in (4) x − biy and x + aiy instead of x and
y, respe
tively, to obtain

f(x+ aiy) − f(x− biy)

= (ai + bi)y[f0((a0 + b0)x+ (aib0 − a0bi)y) + . . . (5)
+ fi((ai + bi)x) + . . .+ fn((an + bn)x+ (aibn − anbi)y)].There are two possibilities:1. ai, bi 6= 0,2. ai = 0 or bi = 0.Let us 
onsider the �rst 
ase. Then from (5) we obtain

y(ai + bi)fi((ai + bi)x) = f(x+ aiy) − f(x− biy)

− (ai + bi)y

n
∑

k=0,k 6=i

fk((ak + bk)x + (aibk − akbi)y),whi
h means that
yf̃(x) = f(x+ aiy) − f(x− biy)

−(ai + bi)y

n
∑

k=0,k 6=i

fk((ak + bk)x+ (aibk − akbi)y).
(6)Now we are in position to use Lemma 2 with

I0 = {(1,−bi), (1, ai)}and
I1 = {(ak + bk, aibk − akbi) : k = 0, . . . , n; k 6= i}.We 
learly obtain that f̃ is a polynomial fun
tion of order at most equal to

card(I0 ∪ I1) + card I1 − 1 ≤ (n+ 2) + n− 1 = 2n+ 1.Further, if for example ak1 = 0 for some k1 ∈ {0, . . . , n}, k1 6= i, then we havea summand
fk1(bk1x+ aibk1y) = fk1(bk1(x+ aiy))on the right-hand side of (6). Thus we put f̃k1(x) := fk1(bk1x) and (6) takes form

yf̃(x)

= f(x− biy) − f(x+ aiy)

− (ai + bi)y

[

n
∑

k=0,k 6=i,k1

fk((ak + bk)x+ (aibk − akbi)y) + f̃k1(x+ aiy)

]

.



On some equations stemming from quadrature rules [23℄Similarly as before we take
I0 = {(1,−bi), (1, ai)}and

I1 = {(ak + bk, aibk − akbi) : k = 0, . . . , n; k 6= i, k1} ∪ {(1, ai)}.In this 
ase we have I0 ∩ I1 = {(1, ai)}, i.e.,
card(I0 ∪ I1) + card I1 − 1 ≤ (n+ 1) + n− 1 = 2n.The proof in the 
ase ak1 = bk2 = 0 is similar.Now we 
onsider the 
ase ai = 0 or bi = 0. Let for example ai = 0, thenfrom (6) we have

y(bi)fi(bix) − f(x) = −f(x− biy) − biy

n
∑

k=0,k 6=i

fk((ak + bk)x − akbiy),i.e.,
ybif̃(x) − f(x) = −f(x− biy) − biy

n
∑

k=0,k 6=i

fk((ak + bk)x− akbiy).In this 
ase we take
I0 = {(1,−bi)}and

I1 = {(ak + bk,−akbi) : k = 0, . . . , n; k 6= i}.Thus similarly as before f̃ is a polynomial fun
tion of degree not greater than
card(I0 ∪ I1) + card I1 − 1 ≤ (n+ 1) + n− 1 = 2n.It is easy to see that if for some k2 ∈ {0, . . . , n}, bk2 = 0, then f̃ is a polynomialfun
tion of order at most 2n− 1.Now we are in position to state the most important result of this paper.Namely, we give a general solution of (2) for fun
tions a
ting on integral domainssatisfying some assumptions.Theorem 1Let P be an integral domain with unit element 1I, uniquely divisible by 5! and su
hthat for every n ∈ N we have n1I 6= 0. The fun
tions f, g, h:P → P satisfy theequation (2) if and only if there exist a, b, c, d, d̄, e ∈ P and an additive fun
tion

A:P → P su
h that
f(x) = 18ax4 + 8bx3 + cx2 + 2dx+ e, x ∈ P,

g(x) = 9ax3 + 3bx2 + cx− 3A(x) + d− d̄, x ∈ P,

h(x) = ax3 + bx2 +A(x) + d̄, x ∈ P.



[24℄ Barbara Ko
l�ga�Kulpa, Tomasz Szostok and Szymon W¡sowi
zProof. Assume that f, g, h:P → P satisfy the equation (2). From Lemma 3we know that g and h are polynomial fun
tions of order at most 5. Therefore
g(x) = c0 + c1(x) + c2(x) + c3(x) + c4(x) + c5(x), x ∈ P (7)and
h(x) = d0 + d1(x) + d2(x) + d3(x) + d4(x) + d5(x), x ∈ P, (8)where ci, di:P → P are diagonalizations of some i-additive and symmetri
 fun
-tions Ci, Di:P

i → P , respe
tively. Taking in (2) y = 0, we obtain the followingformula
f(x) = x[g(x) + h(x) + h(2x) + g(0)] + f(0), x ∈ P, (9)whi
h used in (2) gives us

x[g(x) + h(x) + h(2x) + g(0)] − y[g(y) + h(y) + h(2y) + g(0)]

= (x− y)[g(x) + h(x+ 2y) + h(2x+ y) + g(y)], x, y ∈ P.After some simple 
al
ulations we get
x[h(2x) + h(x) − h(x+ 2y) − h(2x+ y) − g0(y)]

= y[h(2y) + h(y) − h(x+ 2y) − h(2x+ y) − g0(x)], x, y ∈ P,
(10)where g0(x) := g(x) − g(0), x ∈ P .Further, putting 2x instead of y in (10), we have

h(5x) − h(4x) − h(2x) + h(x) = g0(2x) − 2g0(x), x 6= 0,whi
h is also satis�ed for x = 0, sin
e g0(0) = 0. Thus
h(5x) − h(4x) − h(2x) + h(x) = g0(2x) − 2g0(x), x ∈ P. (11)By (7) we obtain
g0(2x) − 2g0(x) = 2c2(x) + 6c3(x) + 14c4(x) + 30c5(x) (12)and similarly from (8) we have

h(5x) − h(4x) − h(2x) + h(x) = 6d2(x) + 54d3(x) + 354d4(x) + 2070d5(x). (13)Using (13) and (12) in (11) we may write
6d2(x) + 54d3(x) + 354d4(x) + 2070d5(x) = 2c2(x) + 6c3(x) + 14c4(x) + 30c5(x).Comparing the 
orresponding terms on both sides of this equality we get

c2(x) = 3d2(x),

c3(x) = 9d3(x),

7c4(x) = 177d4(x),

c5(x) = 69d5(x).



On some equations stemming from quadrature rules [25℄Using these equations in (7) we have
g(x) = c0 + c1(x) + 3d2(x) + 9d3(x) + c4(x) + 69d5(x), x ∈ P, (14)where

7c4(x) = 177d4(x), x ∈ P. (15)Substitute in (10) −x in pla
e of y. Then
h(2x) + h(−2x) − [h(x) + h(−x)] = g0(x) + g0(−x), x ∈ P.This, in view of (8) and (14), means that

6d2(x) + 30d4(x) = 6d2(x) + 2c4(x), x ∈ P,i.e,
c4(x) = 15d4(x), x ∈ Pand from (15) we have

d4(x) = 0, x ∈ P (16)and also c4 = 0.Now we shall show that d5(x) = 0 for all x ∈ P . To this end we put in (10) inpla
es of x and y, respe
tively −x and 2x. Thus
−2h(4x) + 3h(3x) − 2h(2x) − h(−2x) − h(−x) + 3h(0) = −g0(2x) − 2g0(−x)for x ∈ P . Similarly as before, using (8), (14) and (16), we have

−18d2(x) − 54d3(x) − 1350d5(x) = −18d2(x) − 54d3(x) − 2070d5(x), x ∈ P,whi
h means that
d5(x) = 0, x ∈ P.Now formulas (14) and (8) take forms

g(x) = c0 + c1(x) + 3d2(x) + 9d3(x), x ∈ P (17)and
h(x) = d0 + d1(x) + d2(x) + d3(x), x ∈ P. (18)Using these equalities in (10), we get

x[−c1(y) − 3d1(y) + 5d2(x) − 3d2(y) − d2(x + 2y) − d2(2x+ y)

+ 9d3(x) − 9d3(y) − d3(x+ 2y) − d3(2x+ y)]

= y[−c1(x) − 3d1(x) + 5d2(y) − 3d2(x) − d2(x+ 2y) − d2(2x+ y)

+ 9d3(y) − 9d3(x) − d3(x+ 2y) − d3(2x+ y)].Now, sin
e the ring P is divisible by 3 and 2, the fun
tions di are diagonal-izations of symmetri
 and i-additive fun
tions Di:P
i → P , i.e., di(x) = Di(x

i),
x ∈ P . Using these forms of di in the above equation we obtain

2(x− y)[4D2(x, y) + 9D3(x, x, y) + 9D3(x, y, y)]

= y[c1(x) + 3d1(x) + 8d2(x) + 18d3(x)]

−x[c1(y) + 3d1(y) + 8d2(y) + 18d3(y)]

(19)
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l�ga�Kulpa, Tomasz Szostok and Szymon W¡sowi
zfor all x, y ∈ P . Put in (19) −y instead of y. Then for all x, y ∈ P we have
2(x+ y)[−4D2(x, y) − 9D3(x, x, y) + 9D3(x, y, y)]

= −y[c1(x) + 3d1(x) + 8d2(x) + 18d3(x)]

−x[−c1(y) − 3d1(y) + 8d2(y) − 18d3(y)].

(20)Adding the equations (19) and (20) we arrive at
9xD3(x, y, y) − y[4D2(x, y) + 9D3(x, x, y)] = −4xd2(y), x, y ∈ P,and, 
onsequently,

9xD3(x, y, y) − 9yD3(x, x, y) = 4yD2(x, y) − 4xd2(y), x, y ∈ P. (21)Inter
hanging in these equations x with y and using the symmetry of both D2 and
D3 we may write

9yD3(x, x, y) − 9xD3(x, y, y) = 4xD2(x, y) − 4yd2(x), x, y ∈ P. (22)Now, we add (21) and (22) to get
(x+ y)D2(x, y) = xd2(y) + yd2(x), x, y ∈ P.Put here x+ y in pla
e of x, then

(x+ 2y)D2(x+ y, y) = (x+ y)d2(y) + yd2(x+ y), x, y ∈ P,whi
h yields
xD2(x, y) = yd2(x), x, y ∈ P (23)and 
hanging the roles of x and y
yD2(x, y) = xd2(y), x, y ∈ P. (24)Now, we multiply (23) by y and (24) by x to obtain
xyD2(x, y) = y2d2(x), x, y ∈ Pand
xyD2(x, y) = x2d2(y), x, y ∈ P.Thus
y2d2(x) = x2d2(y), x, y ∈ P,whi
h after substituing y = 1I gives the formula

d2(x) = bx2, x ∈ P, (25)where b := d2(1I). Thus from (24) we obtain
D2(x, y) = bxy, x, y ∈ P. (26)



On some equations stemming from quadrature rules [27℄Using the formulas (25) and (26) in (21) we have
yD3(x, x, y) = xD3(x, y, y), x, y ∈ P. (27)Putting x+ y in pla
e of x (27), we get

yD3(x+ y, x+ y, y) = (x+ y)D3(x+ y, y, y),whi
h after some 
al
ulations gives
yD3(x, x, y) − (x − y)D3(x, y, y) = xd3(y), x, y ∈ P.We use here the 
ondition (27). Then
xD3(x, y, y) − (x − y)D3(x, y, y) = xd3(y), x, y ∈ P,i.e.,

yD3(x, y, y) = xd3(y), x, y ∈ P. (28)Clearly we also have
xD3(x, x, y) = yd3(x), x, y ∈ P. (29)Now, multiply the equation (28) by x and (29) by y2. Then we have
xyD3(x, y, y) = x2d3(y), x, y ∈ P (30)and

xy2D3(x, x, y) = y3d3(x). (31)On the other hand, we multiply (27) by y. We obtain
y2D3(x, x, y) = xyD3(x, y, y), x, y ∈ P. (32)Using (32) in (30) we arrive at
x2d3(y) = y2D3(x, x, y), x, y ∈ P,whi
h multiplied by x yields
x3d3(y) = xy2D3(x, x, y), x, y ∈ P. (33)Comparing the equation (31) and (33) we obtain

y3d3(x) = x3d3(y), x, y ∈ P,i.e.,
d3(x) = ax3, x ∈ P, (34)where a := d3(1I). Now equalities (28) and (29) take forms

D3(x, y, y) = axy2, x, y ∈ P (35)
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zand
D3(x, x, y) = ax2y, x, y ∈ P. (36)Using the formulas (25), (26), (34), (35) and (36) in (19) we have

y[c1(x) + 3d1(x)] = x[c1(y) + 3d1(y)], x, y ∈ P.Substituting here y = 1I we obtain
c1(x) + 3d1(x) = x[c1(1I) + 3d1(1I)], x ∈ P,whi
h means that

c1(x) = cx− 3d1(x), x ∈ P,where c := c1(1I) + 3d1(1I).Thus we have shown that the formulas (17) and (18) may be written in theform
g(x) = 9ax3 + 3bx2 + cx− 3d1(x) + c0, x ∈ Pand

h(x) = ax3 + bx2 + d1(x) + d0, x ∈ P,where d1 is a given additive fun
tion. Now it su�
es to use the obtained expres-sions in (9), to get the desired formula for f .It is an easy 
al
ulation to show that these fun
tions f , g, h satisfy the equa-tion (2).With the aid of this theorem we may prove also a Stamate-kind result.Corollary 1Let P be an integral domain with unit element 1I, uniquely divisible by 5! andsu
h that for every n ∈ N we have n1I 6= 0. Fun
tions f, g, h:P → P satisfy theequation (3) if and only if there exist a, ā, b, c, d, d̄ ∈ P and an additive fun
tion
A:P → P su
h that

f(x) =

{

18ax3 + 8bx2 + cx+ 2d, x 6= 0

ā, x = 0
,

g(x) =

{

−9ax3 − 5bx2 − 3A(x) − d− d̄, x 6= 0

d− d̄− ā, x = 0
,

h(x) = ax3 + bx2 + A(x) + d̄, x ∈ P.Conversely, f, g, h:P → P given by the above equalities satisfy (2).Proof. First we write the equation (3) in the form
(y − x)f(y) − yf(y) + (y − x)f(x) + xf(x)

= (x− y)[g(x) + h(2x+ y) + h(x+ 2y) + g(y)]



On some equations stemming from quadrature rules [29℄and, 
onsequently,
xf(x) − yf(y) = (x− y)[g(x) + f(x) + h(2x+ y) + h(x + 2y) + g(y) + f(y)].Putting here k(t) := g(t) + f(t) and F (t) := tf(t) for all t ∈ P we obtain
F (x) − F (y) = (x− y)[k(x) + h(2x+ y) + h(x+ 2y) + k(y)], x, y ∈ P.Thus, using Theorem 1, we get

xf(x) = 18ax4 + 8bx3 + cx2 + 2dx+ e, x ∈ P, (37)
g(x) + f(x) = 9ax3 + 3bx2 + cx− 3A(x) + d− d̄, x ∈ P, (38)

h(x) = ax3 + bx2 +A(x) + d̄, x ∈ P.Now, from (37) it easily follows that e = 0 and furthermore
xf(x) = 18ax4 + 8bx3 + cx2 + 2dx,i.e.,

f(x) = 18ax3 + 8bx2 + cx+ 2d, x 6= 0,whi
h gives us
g(x) = −9ax3 − 5bx2 − 3A(x) − d− d̄, x 6= 0.Moreover, from (38) we get g(0) + f(0) = d− d̄, thus putting ā := f(0) we obtainthat g(0) = d− d̄− ā.On the other hand, it is easy to see that fun
tions given by the above formulaeyield a solution of the equation (3).A
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a VIII (2009)
Magdalena Pisz
zekOn a multivalued se
ond order differential problemwith Jensen multifun
tionAbstra
t. The aim of this paper is to present a generalization of the resultspublished in [5℄ and [8℄ for 
ontinuous Jensen multifun
tions. In parti
ular,we study a se
ond order di�erential problem for multifun
tions with theHukuhara derivative.Throughout this paper all ve
tor spa
es are supposed to be real. Let X bea ve
tor spa
e. We introdu
e the notations:

A + B := {a + b : a ∈ A, b ∈ B} and λA := {λa : a ∈ A}for A, B ⊂ X and λ ∈ R.A subset K of X is 
alled a 
one if tK ⊂ K for all t ∈ (0, +∞). A 
one is saidto be 
onvex if it is a 
onvex set.Let X and Y be two ve
tor spa
es and let K ⊂ X be a 
onvex 
one. A set-valued fun
tion F : K → n(Y ), where n(Y ) denotes the family of all nonemptysubsets of Y , is 
alled additive if
F (x + y) = F (x) + F (y) for x, y ∈ Kand F is Jensen if

F

(

x + y

2

)

=
F (x) + F (y)

2
for x, y ∈ K. (1)From now on, we assume that X is a normed ve
tor spa
e, c(X) denotes thefamily of all 
ompa
t members of n(X) and cc(X) stands for the family of all
onvex sets of c(X).Lemma 1 ([4℄, Theorem 5.6)Let K be a 
onvex 
one with zero in X and Y be a topologi
al ve
tor spa
e. A set-valued fun
tion F : K → c(Y ) satis�es the equation (1) if and only if there existan additive multifun
tion AF : K → cc(Y ) and a set GF ∈ cc(Y ) su
h that

F (x) = AF (x) + GF for x ∈ K.AMS (2000) Subje
t Classi�
ation: 26E25, 39B52, 47D09.Volumes I-VII appeared as Annales A
ademiae Paedagogi
ae Cra
oviensis Studia Mathemati
a.



[32℄ Magdalena Pisz
zekThe Hukuhara di�eren
e A − B of A, B ∈ cc(X) is a set C ∈ cc(X) su
h that
A = B+C. By Rådström's Can
ellation Lemma [9℄ it follows that if this di�eren
eexists, then it is unique.For a multifun
tion F : [a, b] → cc(X) su
h that there exist the Hukuhara dif-feren
es F (t) − F (s) as a ≤ s ≤ t ≤ b, the Hukuhara derivative at t ∈ (a, b) isde�ned by the formula

DF (t) = lim
k→0+

F (t + k) − F (t)

k
= lim

k→0+

F (t) − F (t − k)

k
,whenever both these limits exist with respe
t to the Hausdor� distan
e h (see [3℄).Moreover,

DF (a) = lim
s→a+

F (s) − F (a)

s − a
, DF (b) = lim

s→b−

F (b) − F (s)

b − s
.Let X be a Bana
h spa
e and let [a, b] ⊂ R. If a multifun
tion F : [a, b] → cc(X)is 
ontinuous, then there exists the Riemann integral of F (see [3℄). We need thefollowing properties of the Riemann integral.Lemma 2 ([7℄, Lemma 10)If F : [a, b] → cc(X) is 
ontinuous, then H(t) =

∫ t

a
F (u) du for a ≤ t ≤ b is
ontinuous.Lemma 3 ([10℄, Lemma 4)If F : [a, b] → cc(X) is 
ontinuous and H(t) =

∫ t

a
F (u) du, then DH(t) = F (t) for

a ≤ t ≤ b.Let (K, +) be a semigroup. A one-parameter family {Ft : t ≥ 0} of set-valuedfun
tions Ft: K → n(K) is said to be a 
osine family if
F0(x) = {x} for x ∈ Kand

Ft+s(x) + Ft−s(x) = 2Ft(Fs(x)) := 2
⋃

y∈Fs(x)

Ft(y)for x ∈ K and 0 ≤ s ≤ t.Let X be a normed spa
e. A 
osine family is 
alled regular if
lim

t→0+
h(Ft(x), {x}) = 0.Example 1Let K = [0, +∞) and Ft(x) = [x cosh at, x cosh bt], where 0 ≤ a ≤ b. Then

{Ft : t ≥ 0} is a regular 
osine family of 
ontinuous additive multifun
tions.Example 2Let K = [0, +∞) and Ft(x) = [x, x cosh t + cosh t − 1]. Then {Ft : t ≥ 0} isa regular 
osine family of 
ontinuous Jensen multifun
tions.



On a multivalued se
ond order differential problem with Jensen multifun
tion [33℄We say that a 
osine family {Ft : t ≥ 0} is di�erentiable if all multifun
tions
t 7→ Ft(x) (x ∈ K) have the Hukuhara derivative on [0, +∞).Lemma 4 ([8℄, Theorem)Let X be a Bana
h spa
e and let K be a 
losed 
onvex 
one with a nonemptyinterior in X. Suppose that {At : t ≥ 0} is a regular 
osine family of 
ontinuousadditive set-valued fun
tions At: K → cc(K), x ∈ At(x) for all x ∈ K, t ≥ 0 and
At ◦ As = As ◦ At for all s, t ≥ 0. Then this 
osine family is twi
e di�erentiableand

DAt(x)|t=0 = {0}, D2At(x) = At(A(x))for x ∈ K, t ≥ 0, where DAt(x) denotes the Hukuhara derivative of At(x) withrespe
t to t and A(x) is the se
ond Hukuhara derivative of this multifun
tion at
t = 0.We would like to obtain a similar result to the above one for a 
osine familyof 
ontinuous Jensen multifun
tions. For this purpose we remind some propertiesof su
h a family.Lemma 5 ([6℄, Theorem 3)Let X be a Bana
h spa
e and let K be a 
losed 
onvex 
one in X su
h that
intK 6= ∅. A one-parameter family {Ft : t ≥ 0} is a regular 
osine family of 
on-tinuous Jensen multifun
tions Ft: K → cc(K) su
h that x ∈ Ft(x) for all x ∈ K,
t ≥ 0 and Ft ◦Fs = Fs ◦Ft for all s, t ≥ 0 if and only if there exist a regular 
osinefamily {At : t ≥ 0} of 
ontinuous additive multifun
tions At: K → cc(K) su
hthat x ∈ At(x) for all x ∈ K, t ≥ 0, At ◦ As = As ◦ At for all s, t ≥ 0 and a set
D ∈ cc(K) with zero for whi
h 
onditions

At+s(D) + At−s(D) = 2At(As(D)) for 0 ≤ s ≤ t,

Ft(x) = At(x) +

t
∫

0

( s
∫

0

Au(D) du

)

ds for t ≥ 0hold.Using Lemmas 2, 3, 4 and 5 we obtain the following theorem.Theorem 1Let X be a Bana
h spa
e and let K be a 
losed 
onvex 
one with a nonemptyinterior in X. Suppose that {Ft : t ≥ 0} is a regular 
osine family of 
ontinuousJensen set-valued fun
tions Ft: K → cc(K), x ∈ Ft(x) for all x ∈ K, t ≥ 0 and
Ft ◦Fs = Fs ◦Ft for all s, t ≥ 0. Then this 
osine family is twi
e di�erentiable and

DFt(x)|t=0 = {0}, D2Ft(x) = At(A(x) + D)for x ∈ K, t ≥ 0, where DFt(x) denotes the Hukuhara derivative of Ft(x) withrespe
t to t, D ∈ cc(K) with zero, A(x) = D2At(x)|t=0, {At : t ≥ 0} is a regular
osine family of 
ontinuous additive multifun
tions (as in Lemma 5 ).
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zekLet K be a 
losed 
onvex 
one with a nonempty interior in X . We 
onsidera 
ontinuous multifun
tion Φ: [0, +∞) × K → cc(K) Jensen with respe
t to these
ond variable. A

ording to Lemma 1 there exist multifun
tions AΦ: [0, +∞) ×
K → cc(X) additive with respe
t to the se
ond variable and GΦ: [0, +∞) → cc(X)su
h that

Φ(t, x) = AΦ(t, x) + GΦ(t) for x ∈ K, t ∈ [0, +∞). (2)Setting x = 0 in (2) we have
Φ(t, 0) = GΦ(t) ∈ cc(K) for t ∈ [0, +∞).Sin
e AΦ(t, x) + 1

nGΦ(t) = 1
nΦ(t, nx) ⊂ K for all n ∈ N and the set K is 
losed,

AΦ(t, x) ∈ cc(K) for x ∈ K, t ∈ [0, +∞). Moreover, multifun
tions AΦ, GΦare 
ontinuous. Indeed, t 7→ GΦ(t) = Φ(t, 0) is 
ontinuous. As Φ and GΦ are
ontinuous, the multifun
tion AΦ is also 
ontinuous.Theorem 1 is a motivation for studying existen
e and uniqueness of a solution
Φ: [0, +∞) × K → cc(K), whi
h is Jensen with respe
t to the se
ond variable, ofthe following di�erential problem

Φ(0, x) = Ψ(x),

DΦ(t, x)|t=0 = {0},

D2Φ(t, x) = AΦ(t, H(x)),

(3)where H, Ψ: K → cc(K) are given 
ontinuous Jensen set-valued fun
tions, DΦ(t, x)denotes the Hukuhara derivative of Φ(t, x) with respe
t to t and AΦ is the additive,with respe
t to the se
ond variable, part of Φ.Definition 1A multifun
tion Φ: [0, +∞) × K → cc(K) is said to be a solution of the prob-lem (3) if it is 
ontinuous, twi
e di�erentiable with respe
t to t and Φ satis�es (3)everywhere in [0, +∞) × K and in K, respe
tively, where H, Ψ: K → cc(K) aretwo given 
ontinuous Jensen multifun
tions.With the problem (3), we asso
iate the following equation
Φ(t, x) = Ψ(x) +

t
∫

0

( s
∫

0

AΦ(u, H(x)) du

)

ds (4)for x ∈ K, t ∈ [0, +∞), where H, Ψ: K → cc(K) are given 
ontinuous Jensenmultifun
tions and AΦ is the additive, with respe
t to the se
ond variable, partof Φ.Definition 2Let H, Ψ: K → cc(K) be two 
ontinuous Jensen set-valued fun
tions. A map
Φ: [0, +∞) × K → cc(K) is said to be a solution of (4) if it is 
ontinuous andsatis�es (4) everywhere.



On a multivalued se
ond order differential problem with Jensen multifun
tion [35℄Theorem 2Let K be a 
losed 
onvex 
one with a nonempty interior in a Bana
h spa
e and let
H, Ψ: K → cc(K) be two 
ontinuous Jensen multifun
tions. Let Φ: [0, +∞)×K →
cc(K) be a given Jensen with respe
t to the se
ond variable set-valued fun
tion.This Φ is a solution of the problem (3) if and only if it is a solution of (4).The proof of Theorem 2 is the same as the proof of Theorem 1 in [5℄.In the proof of the next theorem we use the following lemmas.Lemma 6 ([12℄, Theorem 3)Let X and Y be two normed spa
es and let K be a 
onvex 
one in X. Supposethat {Fi : i ∈ I} is a family of superadditive lower semi
ontinuous in K and Q+-homogeneous set-valued fun
tions Fi: K → n(Y ). If K is of the se
ond 
ategoryin K and ⋃i∈I Fi(x) ∈ b(Y ) for x ∈ K, then there exists a 
onstant M ∈ (0, +∞)su
h that

sup
i∈I

‖Fi(x)‖ ≤ M‖x‖ for x ∈ K.Let K be a 
losed 
onvex 
one in X . Applying Lemma 6 we 
an de�ne thenorm ‖F‖ of a 
ontinuous additive multifun
tion F : K → n(K) to be the smallestelement of the set
{M > 0 : ‖F (x)‖ ≤ M‖x‖, x ∈ K}.Lemma 7Let K be a 
losed 
onvex 
one with a nonempty interior in a Bana
h spa
e and let

H, Ψ: K → cc(K) be two 
ontinuous Jensen multifun
tions. Assume that a 
on-tinuous multifun
tion A: [0, T ]×K → cc(K) is additive with respe
t to the se
ondvariable. Then the multifun
tion
F (t, x) := Ψ(x) +

t
∫

0

( s
∫

0

A(u, H(x)) du

)

ds, (t, x) ∈ [0, T ]× K (5)is Jensen with respe
t to the se
ond variable and 
ontinuous.Proof. The proof is based upon ideas found in the proof of Theorem 2 in thepaper [5℄. A

ording to the proof of Theorem 1 in [5℄ we have that the multifun
-tion u 7→ A(u, H(x)) is 
ontinuous for all x ∈ K. We see that every set F (t, x)belongs to cc(K) and F is Jensen with respe
t to the se
ond variable.Next we show that F is 
ontinuous. Let x, y ∈ K and 0 ≤ t1 ≤ t2 ≤ T . Theset
A([0, T ], x) =

⋃

t∈[0,T ]

A(t, x)is 
ompa
t (see [1℄, Ch. IV, p. 110, Theorem 3), so it is bounded. Therefore, byLemma 6, there exists a positive 
onstant MA su
h that
‖A(u, a)‖ ≤ MA‖a‖ (6)



[36℄ Magdalena Pisz
zekfor u ∈ [0, T ] and a ∈ K. This implies that
‖A(u, H(x))‖ ≤ MA‖H(x)‖for u ∈ [0, T ]. Thus

∥

∥

∥

∥

∥

∥

t2
∫

t1

( s
∫

0

A(u, H(x)) du

)

ds

∥

∥

∥

∥

∥

∥

≤

t2
∫

t1

( s
∫

0

‖A(u, H(x))‖ du

)

ds

≤

t2
∫

t1

( s
∫

0

MA‖H(x)‖ du

)

ds (7)
=

t22 − t21
2

MA‖H(x)‖.From Lemma 5 in [11℄ and (6) there exists a positive 
onstant M0 su
h that
h(A(u, a), A(u, b)) ≤ M0‖A(u, ·)‖‖a− b‖ ≤ M0MA‖a − b‖for u ∈ [0, T ] and a, b ∈ K. Therefore,

A(u, a) ⊂ A(u, b) + M0MA‖a − b‖Sfor u ∈ [0, T ] and a, b ∈ K.Let ε > 0 and a ∈ H(x). There exists b ∈ H(y) for whi
h
‖a − b‖ < d(a, H(y)) +

ε

M0MA
.This shows that for every a ∈ H(x) there exists b ∈ H(y) su
h that

A(u, a) ⊂ A(u, b) + M0MAd(a, H(y))S + εS

⊂ A(u, H(y)) + M0MAh(H(x), H(y))S + εS,thus
A(u, H(x)) ⊂ A(u, H(y)) + M0MAh(H(x), H(y))S + εSfor u ∈ [0, T ]. Sin
e ε > 0 and x, y ∈ K are arbitrary, we obtain

h(A(u, H(x)), A(u, H(y))) ≤ M0MAh(H(x), H(y)).Hen
e and by properties of the Riemann integral we have
h





t
∫

0

( s
∫

0

A(u, H(x)) du

)

ds,

t
∫

0

( s
∫

0

A(u, H(y)) du

)

ds





≤

t
∫

0

( s
∫

0

h(A(u, H(x)), A(u, H(y))) du

)

ds

≤

t
∫

0

( s
∫

0

M0MAh(H(x), H(y)) du

)

ds

=
t2

2
M0MAh(H(x), H(y)).

(8)



On a multivalued se
ond order differential problem with Jensen multifun
tion [37℄By (5), (7) and (8) we get
h(F (t1, x), F (t2, y))

≤ h(Ψ(x), Ψ(y))

+ h





t1
∫

0

( s
∫

0

A(u, H(x)) du

)

ds,

t2
∫

0

( s
∫

0

A(u, H(y)) du

)

ds





≤ h(Ψ(x), Ψ(y))

+ h





t1
∫

0

( s
∫

0

A(u, H(x)) du

)

ds,

t1
∫

0

( s
∫

0

A(u, H(y)) du

)

ds





+ h



{0},

t2
∫

t1

( s
∫

0

A(u, H(y)) du

)

ds





≤ h(Ψ(x), Ψ(y)) +
t21
2

M0MAh(H(x), H(y)) +
t22 − t21

2
MA‖H(y)‖.This shows that F is a 
ontinuous set-valued fun
tion, be
ause Ψ and H are
ontinuous.Theorem 3Let K be a 
losed 
onvex 
one with a nonempty interior in a Bana
h spa
e andlet H, Ψ: K → cc(K) be two 
ontinuous Jensen multifun
tions. Then there existsexa
tly one solution, Jensen with respe
t to the se
ond variable, of the problem (3).Proof. Fix T > 0. Let E be the set of all 
ontinuous set-valued fun
tions

Φ: [0, T ]×K → cc(K) su
h that x 7→ Φ(t, x) are Jensen. As it was shown, for Φ ∈ Ethere exist 
ontinuous multifun
tions AΦ: [0, T ]×K → cc(K) additive with respe
tto the se
ond variable and GΦ: [0, T ] → cc(K) su
h that Φ(t, x) = AΦ(t, x)+GΦ(t)for x ∈ K, t ∈ [0, T ].Let Φ, Π ∈ E be given by
Φ(t, x) = AΦ(t, x) + GΦ(t) and Π(t, x) = AΠ(t, x) + GΠ(t) (9)for (t, x) ∈ [0, T ]×K, where AΦ, AΠ: [0, T ]×K → cc(K) are additive with respe
tto the se
ond variable and GΦ(t), GΠ(t) ∈ cc(K). We de�ne a fun
tional ρ in

E × E as follows
ρ(Φ, Π) = sup{h(AΦ(t, B), AΠ(t, B)) + h(GΦ(t), GΠ(t)) :

0 ≤ t ≤ T, B ∈ cc(K), ‖B‖ ≤ 1}.We see that sets
Ai([0, T ], x) =

⋃

t∈[0,T ]

Ai(t, x), x ∈ K,

Gi([0, T ]) =
⋃

t∈[0,T ]

Gi(t),



[38℄ Magdalena Pisz
zekwhere i ∈ {Φ, Π} are 
ompa
t (see [1℄, Ch. IV, p. 110, Theorem 3), so they arebounded. By Lemma 6 there exist positive 
onstants MAΦ and MAΠ su
h that
‖AΦ(t, x)‖ ≤ MAΦ‖x‖, ‖AΠ(t, x)‖ ≤ MAΠ‖x‖for t ∈ [0, T ] and x ∈ K. We note that

h(AΦ(t, B), AΠ(t, B)) + h(GΦ(t), GΠ(t))

≤ ‖AΦ(t, B)‖ + ‖AΠ(t, B)‖ + ‖GΦ([0, T ])‖ + ‖GΠ([0, T ])‖

≤ MAΦ + MAΠ + ‖GΦ([0, T ])‖ + ‖GΠ([0, T ])‖for t ∈ [0, T ] and B ∈ cc(K) su
h that ‖B‖ ≤ 1. Thus
ρ(Φ, Π) < +∞,so the fun
tional ρ is �nite. It is easy to verify that ρ is a metri
 in E.As the spa
e (cc(K), h) is a 
omplete metri
 spa
e (see [2℄), (E, ρ) is also a
omplete metri
 spa
e.We introdu
e the map Γ whi
h asso
iates with every Φ ∈ E the set-valuedfun
tion ΓΦ de�ned by

(ΓΦ)(t, x) := Ψ(x) +

t
∫

0

( s
∫

0

AΦ(u, H(x)) du

)

dsfor (t, x) ∈ [0, T ] × K. We see that every set (ΓΦ)(t, x) belongs to cc(K). ByLemma 7 the multifun
tion ΓΦ is Jensen with respe
t to the se
ond variable and
ontinuous. Therefore, Γ: E → E.Now, we prove that Γ has exa
tly one �xed point. A

ording to Lemma 1 wetake the notations Ψ(x) = AΨ(x) + GΨ and H(x) = AH(x) + GH , x ∈ K, where
AΨ, AH : K → cc(K) are additive and GΨ, GH ∈ cc(K). Let Φ, Π ∈ E be of theform (9) and let (t, x) ∈ [0, T ]× K. We observe that

(ΓΦ)(t, x) = Ψ(x) +

t
∫

0

( s
∫

0

AΦ(u, H(x)) du

)

ds

= AΨ(x) + GΨ +

t
∫

0

( s
∫

0

AΦ(u, AH(x)) du

)

ds

+

t
∫

0

( s
∫

0

AΦ(u, GH) du

)

ds,thus the additive part AΓΦ(t, x) of ΓΦ is equal to
AΨ(x) +

t
∫

0

( s
∫

0

AΦ(u, AH(x)) du

)

ds



On a multivalued se
ond order differential problem with Jensen multifun
tion [39℄and similarly
AΓΠ(t, x) = AΨ(x) +

t
∫

0

( s
∫

0

AΠ(u, AH(x)) du

)

ds.Hen
e and by properties of the Hausdor� metri
 we have
h(AΓΦ(t, x), AΓΠ(t, x)) + h(GΓΦ(t), GΓΠ(t))

= h





t
∫

0

( s
∫

0

AΦ(u, AH(x)) du

)

ds,

t
∫

0

( s
∫

0

AΠ(u, AH(x)) du

)

ds





+ h





t
∫

0

( s
∫

0

AΦ(u, GH) du

)

ds,

t
∫

0

( s
∫

0

AΠ(u, GH) du

)

ds





≤
t2

2!
ρ(Φ, Π)‖AH(x)‖ +

t2

2!
ρ(Φ, Π)‖GH‖

≤ 2
t2

2!
ρ(Φ, Π)max{‖AH(x)‖, ‖GH‖}.Suppose that

h(AΓnΦ(t, x), AΓnΠ(t, x)) + h(GΓnΦ(t), GΓnΠ(t))

≤ 2
t2n

(2n)!
ρ(Φ, Π)max{‖AH(x)‖, ‖GH‖}n (10)for some n ∈ N. Then

h(AΓn+1Φ(t, x), AΓn+1Π(t, x)) + h(GΓn+1Φ(t), GΓn+1Π(t))

= h





t
∫

0

( s
∫

0

AΓnΦ(u, AH(x)) du

)

ds,

t
∫

0

( s
∫

0

AΓnΠ(u, AH(x)) du

)

ds





+ h





t
∫

0

( s
∫

0

AΓnΦ(u, GH) du

)

ds,

t
∫

0

( s
∫

0

AΓnΠ(u, GH) du

)

ds





≤

t
∫

0

( s
∫

0

2
u2n

(2n)!
ρ(Φ, Π)max{‖AH(x)‖, ‖GH‖}n+1 du

)

ds

= 2
t2n+2

(2n + 2)!
ρ(Φ, Π)max{‖AH(x)‖, ‖GH‖}n+1.This shows that (10) holds for all n ∈ N. Therefore,

ρ(ΓnΦ, ΓnΠ) ≤ 2
(T 2 max{‖AH‖, ‖GH‖})n

(2n)!
ρ(Φ, Π), n ∈ N.
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zekWe observe that for every T > 0 there exists n ∈ N su
h that
2
(T 2 max{‖AH‖, ‖GH‖})n

(2n)!
< 1.By Bana
h Fixed Point Theorem we get that Γn has exa
tly one �xed point,when
e it follows that Γ has exa
tly one �xed point. This means that there existsexa
tly one solution of the problem (3) for (t, x) ∈ [0, T ]× K.Now we give an appli
ation. Let K be a 
losed 
onvex 
one with a nonemptyinterior in a Bana
h spa
e. Suppose that {Ft : t ≥ 0} and {Gt : t ≥ 0} are regular
osine families of 
ontinuous Jensen multifun
tions Ft: K → cc(K), Gt: K → cc(K)su
h that x ∈ Ft(x), x ∈ Gt(x), Ft ◦ Fs = Fs ◦ Ft, Gt ◦ Gs = Gs ◦ Gt for x ∈ K,

s, t ≥ 0 and
H(x) := D2Ft(x)|t=0 = D2Gt(x)|t=0.Then multifun
tions (t, x) 7→ Ft(x) and (t, x) 7→ Gt(x) are Jensen with respe
t to

x and satisfy (3) with Ψ(x) = {x}. A

ording to Theorem 3 we have Ft(x) = Gt(x)for (t, x) ∈ [0, +∞) × K. This means that if two regular 
osine family as abovehave the same se
ond order in�nitesimal generator, then there are equal.Referen
es[1℄ C. Berge, Topologival Spa
es, Oliver and Boyd, Eidenburg and London, 1963.[2℄ C. Castaing, M. Valadier, Convex Analysis and Measurable Multifun
tions, Le
-ture Notes in Math. 580, Springer�Verlag, Berlin�Heidelberg�New York, 1977.[3℄ M. Hukuhara, Intégration des appli
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ompa
t
onvexe, Funk
ial. Ekva
. 10 (1967), 205�223.[4℄ K. Nikodem, K-
onvex and K-
on
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h. �ódz. Mat. 559, Rozprawy Nauk. 144, 1989.[5℄ M. Pisz
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Ján Gun£agaRegulated fun
tions and integrabilityAbstra
t. Properties of fun
tions de�ned on a bounded 
losed interval, weakerthan 
ontinuity, have been 
onsidered by many mathemati
ians. Fun
tionshaving both sides limits at ea
h point are 
alled regulated and were 
on-sidered by J. Dieudonné [2℄, D. Fra¬ková [3℄ and others (see for exampleS. Bana
h [1℄, S. Saks [8℄). The main 
lass of fun
tions we deal with 
on-sists of pie
e-wise 
onstant ones. These fun
tions play a fundamental rolein the integration theory whi
h had been developed by Igor Kluvanek (see�. Tka
ik [9℄). We present an outline of this theory.1. Regulated fun
tionsEverybody familiar with basi
 
al
ulus remembers properties of 
ontinuousfun
tions de�ned on a bounded 
losed interval. Some of those properties 
anbe extended to suitably dis
ontinuous fun
tions, namely to fun
tions having theright and the left limits at ea
h point; su
h fun
tions are 
alled regulated. We shalldeal with a spe
ial 
lass of regulated fun
tions 
onsisting of pie
e-wise 
onstantfun
tions.From now on, I will denote a 
losed bounded interval [a, b] of real numbers.All 
onsidered fun
tions will be bounded and de�ned in the interval I.A limit of a fun
tion is meant to be proper, i.e., di�erent from +∞ or −∞.Definition 1A fun
tion f : I → R is 
alled regulated on I if f has the left-sided limit at everypoint of the interval I ex
ept the point a and f has the right-sided limit at everypoint of the interval I ex
ept the point b.The idea of regulated fun
tions 
an be spread out to fun
tions de�ned in a sub-set of the interval I, namely to a set E, su
h that ea
h point from the interval Iis left-sided and right-sided a

umulation point of the set E. Nevertheless we arenot 
on
erned to su
h approa
h.AMS (2000) Subje
t Classi�
ation: 26A15, 26A39.This arti
le is supported by grant KEGA 3/7068/09.Volumes I-VII appeared as Annales A
ademiae Paedagogi
ae Cra
oviensis Studia Mathemati
a.



[44℄ Ján Gun£agaIn this de�nition we do not require that the right-sided limit and the left-sidedlimit of the fun
tion at a point are equal. The pi
ture below shows an example ofa regulated fun
tion on I.
Figure 1Important 
lass of regulated fun
tions 
onsists of pie
e-wise 
onstant ones.Definition 2A fun
tion f : I → R is said to be a step fun
tion on I whenever there exist:a positive integer n, a sequen
e of points (c1, . . . , cn) su
h that

a = c0 < c1 < . . . < cj−1 < cj < . . . < cn = band the fun
tion f is 
onstant on ea
h interval (cj−1, cj), j = 1, 2, . . . , n.An example of a step fun
tion is shown in Figure 2.It follows from the de�nition that if f is regulated on an interval I, then it isalso regulated in ea
h subinterval J (J ⊆ I).

Figure 2Although the next theorem is known (see [2℄ for example) we shall presentan elementary proof of it.This theorem states that a regulated fun
tion 
an be aproximated with arbi-trary a

ura
y by a step fun
tion.



Regulated fun
tions and integrability [45℄Theorem 1Let f : I → R be a regulated fun
tion and let ε be a positive number. Then thereexists a step fun
tion g su
h that
|f(x) − g(x)| < εin ea
h point x of the interval I.If the fun
tion f is 
ontinuous on the interval I, then we 
an 
hoose the fun
tion

g to be right-
ontinuous at ea
h point of the interval [a, b) or to be left-
ontinuousat ea
h point of the interval (a, b].Proof. Let Z be the set of all numbers z from the interval I = [a, b] for whi
hthere exists a step fun
tion gz su
h that
|f(x) − gz(x)| < ε (1)for every x ∈ [a, z]. If the fun
tion f is 
ontinuous, then the step fun
tion gz isassumed to be right-
ontinuous at every point of the interval [a, z). Our aim is toshow that b ∈ Z. If it is so we take gb for g.We shall do that by showing that the supremum of the set Z belongs to Zand that it is equal to b. The set Z has a supremum be
ause it is not empty (thenumber a surely belongs to it) and bounded from above (no element of the set Zis greater than b). Then, let s = supZ.1. We prove that s ∈ Z.If s = a, then s ∈ Z. So now assume that a < s. Then the fun
tion f has a leftlimit k at s and for a positive number ε there exists a number c < s su
h that
|f(x) − k| < ε (2)for every x ∈ (c, s). Sin
e c < s, there exists a number z ∈ Z su
h that c < z.Let gz be a step fun
tion su
h that (1) holds for every x ∈ [a, z] and, if thefun
tion f is 
ontinuous in [a, b], let gz be left-
ontinuous at every point of theinterval [a, z). De�ne the fun
tion gs by letting gs(s) = f(s), provided s belongs tothe domain of f , further gs(x) = k for every x ∈ [z, s) and, �nally, gs(x) = gz(x) forevery x ∈ [a, z]. Then gs is a step fun
tion su
h that (1) holds for every x ∈ [a, s]and if the fun
tion f happens to be 
ontinuous in [a, b], then gs is right-
ontinuousat every point of the interval [a, s). Hen
e, s ∈ Z.2. We prove that s = b.Assume to the 
ontrary that s < b.Sin
e s < b, the fun
tion f has a right-sided limit k at s and there existsa number d > s su
h that (2) holds for every x ∈ (s, d). As s ∈ Z, there existsa step fun
tion gs su
h that (1) holds for every x ∈ [a, s] and gs is left-
ontinuousat every point of the interval [a, s) in 
ase when f is 
ontinuous in [a, b]. Let zbe a number su
h that s < z < d. Let gz(x) = gs(x) for every x ∈ [a, s); let

gz(s) = f(s); and let gz(x) = k for every x ∈ (s, z). Then gz is a step fun
tionsu
h that (1) holds for every x ∈ [a, z] and gz is right-
ontinuous at every point ofthe interval [a, z) if the fun
tion f is 
ontinuous in [a, b]. Hen
e z ∈ Z, whi
h isa 
ontradi
tion sin
e s < z and s = supZ.



[46℄ Ján Gun£agaSimilar arguments 
an be used for the 
ase, when we want the fun
tion g to beleft-
ontinuous, simply apply the previous argument to the fun
tion f(−x), when
x ∈ [−b,−a].2. ExamplesExample 1During the �rst 19 weeks of the �nan
ial year, the wage of an employee was 186Euro weekly. Than he was promoted and had 203,50 Euro weekly. A month beforethe end of the �nan
ial year, due to general salaries and wages in
rease, his wagewas in
reased to 211,30 Euro weekly. This last month represents 4,4 working weeks(four full weeks and two working days, ea
h representing 0,2 of a working week).Indi
ate how the weekly wage depends on time.If we want to introdu
e a fun
tion indi
ating how the weekly wage of theemployee depended on time we represent the year by the interval [0, 52], taking aweek for a unit of time. The fun
tion f representing the dependen
e of the wageon time 
an then be de�ned in the following manner:

f(t) =











186 for t ∈ [0, 19],

203, 50 for t ∈
(

19, 47 3
5

)

,

211, 30 for t ∈
[

47 3
5 , 52

]

.If χA(t) is a 
hara
teristi
 fun
tion of the set A, then we have
f(t) = 186 · χ[0,19](t) + 203, 50 · χ(19,47 3

5 )(t) + 211, 30 · χ[47 3
5 ,52](t)for every t ∈ [0, 52].Now we 
an ask what was the average (mean) wage of that employee duringthe year or what was his total in
ome from wages in that year? Clearly, his totalin
ome was

186 · 19 + 203, 50 · (47, 6 − 19) + 211, 30 · (52 − 47, 6) = 10283, 82Euro. His average wage was
10283, 82

52
= 197, 76Euro per week (rounded to whole 
ents). In this example it is easy to see that thefun
tion f is a step fun
tion and it does not matter, if we use open or boundedintervals for 
al
ulating of the total in
ome.Here we de�ned c1 = 186; c2 = 203, 50; c3 = 211, 30; J1 = [0, 19], J2 =

[19, 47 3
5 ], J3 = [47 3

5 , 52]. If the number b − a = λ(J) is the length of the interval
J = [a, b], then the total in
ome has the form

c1λ(J1) + c2λ(J2) + c3λ(J3) =

3
∑

j=1

cjλ(Jj).This number is also the area of the set S = {(t, y) : t ∈ [0, 52], 0 ≤ y ≤ f(t)}.



Regulated fun
tions and integrability [47℄Therefore, it is possible to express the step fun
tion by the formula
f(x) =

n
∑

j=1

cjχJj
(x)for every x in an interval I, where n is a positive integer, cj are arbitrary numbersand Jj some bounded intervals (⋃n

j=1 Jj = I) for every j = 1, 2, 3, . . . , n. In ea
h
ase, the number
n
∑

j=1

cjλ(Jj)is 
alled the integral of the fun
tion f .Example 2Now, we try to 
al
ulate the area of the set
S = {(x, y) : x ∈ I, 0 ≤ y ≤ f(x)},where f is some 
ontinuous and non-negative fun
tion in the (
ompa
t) interval I.If the fun
tion f is not a step fun
tion in the interval I, then the set S is notequal to the union of �nite number of re
tangles. Nevertheless, with the ex
eptionof some points on the boundary, whi
h may be disregarded when 
al
ulating thearea, this set 
an be 
overed by an in�nite sequen
e of non-overlapping re
tanglesas illustrated in Figure 3. The sum of the areas of these re
tangles is equal to thearea of S.

Figure 3That is, there exist intervals Jj ⊂ I and numbers cj , j = 1, 2, 3, . . . , su
h that
f(x) =

∞
∑

j=1

cjχJj
(x) (3)for every x ∈ I and the area of set S is equal to the number

∞
∑

j=1

cjλ(Jj). (4)The 
lass of fun
tions to whi
h the pro
edure 
an be applied is mu
h larger thanin the 
ase when cj ≥ 0 for every j = 1, 2, 3, . . . . In parti
ular, we now may
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onsider fun
tions with both positive and negative values. Consequently, we 
analso 
al
ulate the integral (4) of a fun
tion f when it has an interpretation di�erentfrom that of the area of a planar �gure. Of 
ourse, if so desired, the integral ofa fun
tion in an interval I 
an always be interpreted �geometri
ally� as a di�eren
eof the areas of the sets
S+ = {(x, y) : x ∈ I, 0 ≤ y ≤ f(x)} and S− = {(x, y) : x ∈ I, f(x) ≤ y ≤ 0}.3. Definition of the integralTo obtain a workable de�nition of integral for a su�
iently large 
lass of fun
-tions, it su�
es to require the existen
e of the sum (4) and to note that this sumis then independent of the parti
ular 
hoi
e of the numbers cj and intervals Jj ,
j = 1, 2, 3, . . . , used in the representation (3) of the fun
tion f .Definition 3A fun
tion f is said to be integrable in the interval I whenever there exist numbers
cj and bounded intervals Jj ⊂ I, j = 1, 2, 3, . . . , su
h that

∞
∑

j=1

|cj |λ(Jj) < ∞ (5)and the equality
f(x) =

∞
∑

j=1

cjχJj
(x)holds for every x ∈ I su
h that

∞
∑

j=1

|cj |χJj
(x) < ∞. (6)Now we shall introdu
e the notions of a virtually primitive fun
tion. We shalluse the term a 
ondition P is ful�lled nearly everywhere. It means that the set ofpoints for whi
h the 
ondition P is not ful�lled is at most 
ountable.Definition 4A fun
tion F is said to be virtually primitive to a fun
tion f in an interval I, ifthe fun
tion F is 
ontinuous in the interval I and F ′(x) = f(x) nearly everywherein I.In this de�nition we do not require I to be a 
ompa
t interval, it 
an be aswell an unbounded interval.We shall prove that if a fun
tion f is integrable in the interval I, then the sum(4) is the same for every 
hoi
e of the numbers cj and intervals Jj , j = 1, 2, 3, . . . ,satisfying the 
ondition (5), su
h that (3) holds for every x ∈ I for whi
h theinequality (6) does hold.The next three theorems, whi
h are te
hni
al ones, are useful in the proof thatthe de�nition of the Kluvanek integral is 
orre
t.



Regulated fun
tions and integrability [49℄Theorem 2Let n be a positive integer, cj non-negative numbers, Jj bounded subintervals of
I, j = 1, 2, 3, . . . , n, dk non-negative numbers and Kk bounded intervals, k =
1, 2, 3, . . . , su
h that

n
∑

j=1

cjχJj
(x) ≤

∞
∑

k=1

dkχKk
(x) (7)for every x ∈ (−∞,∞). Then

n
∑

j=1

cjλ(Jj) ≤

∞
∑

k=1

dkλ(Kk). (8)Proof. It follows from the assumptions that a is a number not greater thanthe left end-point and b is a number not less than the right end-point of ea
hof the intervals Jj , j = 1, 2, 3, . . . , n. Let Fj be a fun
tion virtually primitive in
(−∞,∞) to the fun
tion cjχJj

su
h that Fj(a) = 0, j = 1, 2, 3, . . . , n, and Gk thefun
tion virtually primitive to dkχKk
su
h that Gk(a) = 0, k = 1, 2, 3, . . . . Sin
e

cjλ (Jj) = Fj(b), j = 1, 2, 3, . . . , n, if we prove that
n
∑

j=1

Fj(b) ≤

∞
∑

k=1

Gk(b),then (8) will follow.Suppose to the 
ontrary that
∞
∑

k=1

Gk(b) <
n
∑

j=1

Fj(b). (9)First note that 0 ≤ Gk(x) ≤ Gk(b) for every x ∈ [a, b] and every k = 1, 2, 3, . . . .Hen
e, by (9), the sequen
e of fun
tions {Gk}
∞
n=1 is uniformly 
onvergent in theinterval [a, b]. Let

F (x) =
n
∑

j=1

Fj(x) and G(x) =
∞
∑

k=1

Gk(x)for every x ∈ [a, b]. The fun
tions Fj(x), j = 1, 2, 3, . . . , n , and Gk(x), k =
1, 2, 3, . . . , are 
ontinuous in the interval [a, b]. Therefore, the fun
tions F (x) and
G(x) are also 
ontinuous in the interval [a, b] and, of 
ourse, F (a) = G(a) = 0.Let

k =
F (b) − G(b)

2(b − a)
and q =

F (b) − G(b)

2
.By (9), k > 0 and q > 0. If t ∈ (0, k), let

ht(x) = F (x) − G(x) − t(x − a) − qfor every x ∈ [a, b]. Then, for every t ∈ (0, k), ht is a fun
tion 
ontinuous in theinterval [a, b] su
h that ht(a) < 0 and ht(b) > 0. Let ξ(t) be its maximal root inthe interval (a, b). That is ht(ξ(t)) = 0 and ht(y) > 0 for every y ∈ (ξ(t), b).



[50℄ Ján Gun£agaThe fun
tion ξ(t), t ∈ (0, k), is (stri
tly) in
reasing, be
ause if 0 < t < s < k,then
hs(ξ(t)) = hs(ξ(t)) − ht(ξ(t)) = (t − s)(ξ(t) − a) < 0and, hen
e, the largest root, ξ(s), of the fun
tion hs is greater than ξ(t). So, thisfun
tion is inje
tive. Sin
e its domain, (0, k), is not a 
ountable set, the set ofits values {ξ(t) : t ∈ (0, k)} is not 
ountable either. But the set of end-points ofall intervals Jj , j = 1, 2, 3, . . . , n, and Kk, k = 1, 2, 3, . . . , is 
ountable. So, thereis a number t ∈ (0, k) su
h that ξ(t) is not an end-point of any of intervals Jj ,

j = 1, 2, 3, . . . , n, and Kk, k = 1, 2, 3, . . . . Let t be su
h a number and x = ξ(t),the 
orresponding point of the interval (a, b). Then ht(x) = 0 and ht(y) > 0 forevery y ∈ (x, b). That is,
F (x) − G(x) = t(x − a) − q and F (y) − G(y) > t(y − a) − qfor every y ∈ (x, b). Consequently,

F (y) − F (x)

y − x
−

G(y) − G(x)

y − x
> t (10)for every y ∈ (x, b].On the other hand, sin
e x is not an end-point of any of the intervals Jj and

Kk, ea
h fun
tion Fj and Gk is di�erentiable at x and F ′
j(x) = cjχJj

(x) for
j = 1, 2, 3, . . . , n and G′

k(x) = dkχKk
(x) for k = 1, 2, 3, . . . . So, by (7),

F ′(x) =
n
∑

j=1

F ′
j(x) ≤

∞
∑

k=1

G′
k(x).Sin
e t > 0, there exists a positive integer m su
h that

F ′(x) ≤
∞
∑

k=1

G′
k(x) <

m
∑

k=1

G′
k(x) + t.Therefore,

lim
y→x+

(

F (y) − F (x)

y − x
−

m
∑

k=1

Gk(y) − Gk(x)

y − x

)

< t.From the properties of limits we have, that there exists a point y in the interval
[x, b] su
h that

F (y) − F (x)

y − x
−

m
∑

k=1

Gk(y) − Gk(x)

y − x
< t. (11)Now, Gk(y)−Gk(x) > 0 for every k = m+1, m+2, . . . , be
ause the fun
tions Gkare non-de
reasing. Hen
e,

G(y) − G(x)

y − x
=

∞
∑

k=1

Gk(y) − Gk(x)

y − x
≥

m
∑

k=1

Gk(y) − Gk(x)

y − x
.So, (11) 
ontradi
ts (10).



Regulated fun
tions and integrability [51℄Theorem 3Let cj and dj be non-negative numbers and let Jj and Kj be subintervals of I,
j = 1, 2, 3, . . . , su
h that

∞
∑

j=1

cjλ(Jj) < ∞,

∞
∑

j=1

djλ(Kj) < ∞and
∞
∑

j=1

cjχJj
(x) =

∞
∑

j=1

djχKj
(x) (12)for every x for whi
h

∞
∑

j=1

cjχJj
(x) < ∞ and ∞

∑

j=1

djχKj
(x) < ∞.Then

∞
∑

j=1

cjλ(Jj) =

∞
∑

j=1

djλ(Kj). (13)Proof. Let ε be an arbitrary positive number. Let n be a positive integer su
hthat
∞
∑

j=n+1

cjλ(Jj) <
ε

2
.Then

n
∑

j=1

cjχJj
(x) ≤

∞
∑

j=1

djχKj
(x) +

∞
∑

j=n+1

cjχJj
(x)for every x ∈ (−∞,∞) with no ex
eption.By Theorem 2,

n
∑

j=1

cjλ(Jj) ≤

∞
∑

j=1

djλ(Kj) +

∞
∑

j=n+1

cjλ(Jj) <

∞
∑

j=1

djλ(Kj) +
ε

2
.Hen
e,

∞
∑

j=1

cjλ(Jj) =

n
∑

j=1

cjλ(Jj) +

∞
∑

j=n+1

cjλ(Jj)

<

∞
∑

j=1

djλ(Kj) +
ε

2
+

∞
∑

j=n+1

cjλ(Jj)

<

∞
∑

j=1

djλ(Kj) + ε.



[52℄ Ján Gun£agaBe
ause the inequality between the �rst and the last term holds for everypositive ε, we have
∞
∑

j=1

cjλ(Jj) ≤

∞
∑

j=1

djλ(Kj).The reverse inequality 
an be proved by a symmetri
 argument. Hen
e (13) holds.Re
all that nonnegative x+ and nonpositive x− parts of a number x are de�nedby
x+ =

{

x if x ≥ 0,

0 if x < 0
and x− =

{

−x if x < 0,

0 if x ≥ 0.Then: x+ ≥ 0, x− ≥ 0, x = x+ −x− and |x| = x+ +x− for any real number x.Theorem 4Let cj and dj be real numbers and let Jj and Kj , j = 1, 2, . . . , be subintervals of Isu
h that
∞
∑

j=1

|cj |λ(Jj) < ∞,

∞
∑

j=1

|dj |λ(Kj) < ∞. (14)If
∞
∑

j=1

cjχJj
(x) =

∞
∑

j=1

djχKj
(x)for every x ∈ I for whi
h

∞
∑

j=1

|cj |χJj
(x) < ∞ and ∞

∑

j=1

|dj |χKj
(x) < ∞,then

∞
∑

j=1

cjλ(Jj) =

∞
∑

j=1

djλ(Kj).Proof. The 
onditions (14) imply:
∞
∑

j=1

c+
j λ(Jj) < ∞,

∞
∑

j=1

c−j λ(Jj) < ∞,

∞
∑

j=1

d+
j λ(Kj) < ∞,

∞
∑

j=1

d−j λ(Jj) < ∞.From 
ondition
∞
∑

j=1

cjχJj
(x) =

∞
∑

j=1

djχKj
(x)we have

∞
∑

j=1

c+
j χJj

(x) −

∞
∑

j=1

c−j χJj
(x) =

∞
∑

j=1

d+
j χKj

(x) −

∞
∑

j=1

d−j χKj
(x).



Regulated fun
tions and integrability [53℄That is
∞
∑

j=1

c+
j χJj

(x) +

∞
∑

j=1

d−j χKj
(x) =

∞
∑

j=1

d+
j χKj

(x) +

∞
∑

j=1

c−j χJj
(x)for every x su
h that both sides represent a real number (not ∞). By Theorem 3

∞
∑

j=1

c+
j λ(Jj) +

∞
∑

j=1

d−j λ(Kj) =

∞
∑

j=1

d+
j λ(Kj) +

∞
∑

j=1

c−j λ(Jj),

∞
∑

j=1

c+
j λ(Jj) −

∞
∑

j=1

c−j λ(Jj) =
∞
∑

j=1

d+
j λ(Kj) −

∞
∑

j=1

d−j λ(Kj)and
∞
∑

j=1

cjλ(Jj) =

∞
∑

j=1

djλ(Kj).Now we are able to pro
eed with the de�nition of integral:Definition 5Let f be a fun
tion integrable in the interval I. Let cj be numbers and let Jj ⊂ Ibe intervals, j = 1, 2, 3, . . . , satisfying the 
ondition
∞
∑

j=1

|cj |λ(Jj) < ∞su
h that the equality
f(x) =

∞
∑

j=1

cjχJj
(x)holds for every x ∈ I satisfying the 
ondition

∞
∑

j=1

|cj |χJj
(x) < ∞.Then the number

∞
∑

j=1

cjλ(Jj)is 
alled the integral of f in the interval I; it will be denoted by ∫I f(x) dx.Clearly, for every 
onstant fun
tion f(x) = β in the interval [a, b] we have
b
∫

a

f(x) dx = β(b − a).



[54℄ Ján Gun£aga4. Integration of regulated fun
tionsThe next theorem shows how to integrate regulated fun
tions.Theorem 5Let f be a regulated fun
tion in the interval [a, b] (a < b). Then f is integrable inthis interval and
b
∫

a

f(x) dx = F (b) − F (a),where F is any virtually primitive fun
tion to f in the interval [a, b].Proof. Let {fn(x)}
∞
n=1 be a uniformly 
onvergent sequen
e of step fun
tionsin the interval [a, b] su
h that

f(x) =

∞
∑

n=1

fn(x)for every x ∈ [a, b]. This sequen
e exists from the theory of regulated and pie
e-wise 
onstant fun
tions (see [5℄). The fun
tions fn(x) are bounded. Let
βn = sup{|fn(x)| : x ∈ I}for every n = 1, 2, 3, . . . .It follows from the uniform 
onvergen
e of the sequen
e {fn(x)}

∞
n=1 that

∞
∑

n=1

βn < ∞. (15)For every n = 1, 2, 3, . . . we have
b
∫

a

|fn(x)| dx ≤

b
∫

a

βn dx = βn(b − a).From (15) we have ∑∞
n=1

∫ b

a |fn(x)| dx < ∞. The fun
tion f is integrable in theinterval [a, b] and
b
∫

a

f(x) dx =

∞
∑

n=1

b
∫

a

fn(x) dx. (16)Let Fn be a fun
tion virtually primitive to the fun
tion fn in the interval [a, b]su
h that Fn(a) = 0 for n = 1, 2, 3, . . . . The sum
F (x) =

∞
∑

n=1

Fn(x)exists for every x ∈ [a, b] and fun
tion F de�ned in this way is virtually primitive



Regulated fun
tions and integrability [55℄to f in [a, b]. Thus
b
∫

a

fn(x) dx = Fn(b) − Fn(a)holds for every n = 1, 2, 3, . . . . Hen
e by (16)
b
∫

a

fn(x) dx =

∞
∑

n=1

(Fn(b) − Fn(a)) = F (b) − F (a).Sin
e the di�eren
e of any two fun
tions virtually primitive to f in [a, b] is 
onstant,the last equality holds for any fun
tion F virtually primitive to f in [a, b].5. Con
lusionsOur aim was to provide an introdu
tion to the theory of integral developed byProfessor Igor Kluvanek during his stay at Flinders University in Adelaide (Aus-tralia). In his approa
h regulated fun
tions play an important role (see I. Klu-vánek [4℄).The de�nition of integral given in this arti
le applies an idea of Ar
himedes.The most e�e
tive method for the 
al
ulation of integrals is the one whi
h is basedon di�erential 
al
ulus (see V.V. Mityushev, S.V. Rogosin [6℄ and W.F. Pfe�er [7℄).As everybody knows Diri
hlet fun
tion (
hara
teristi
 fun
tion of the set ofrational numbers) is not integrable in Riemann sense. It is possible to show, thatthis fun
tion is integrable in the sense of I. Kluvanek and the value of this integralis zero. In fa
t, let Q ∩ [a, b] = {qj : j ∈ N}. Let further J2j = {qj} and let J2j−1be any subintervals of [0, 1]. Hen
e the Diri
hlet fun
tion D: [0, 1] → R 
an berepresented in the form
D(x) =

∞
∑

j=1

cj · χJj
(x),where c2j = 1 and c2j−1 = 0. Hen
e its integral equals 0.Applying properties of this kind of integral it is possible to prove that integralof a regulated fun
tion f is an additive fun
tion of interval.Referen
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Paweª SolarzA note on some iterative rootsAbstra
t. In this paper some orientation-preserving iterative roots of anorientation-preserving homeomorphism F :S1

→ S1 whi
h possess periodi
points of order n are 
onsidered. Namely, iterative roots with periodi
 pointsof order n. All orders of su
h roots are determined and their general 
on-stru
tion is given.Let X be a nonempty set. A fun
tion g: X → X is 
alled an iterative root ofa given fun
tion f : X → X if gm(x) = f(x) for x ∈ X . The number m ≥ 2 is
alled the order of the iterative root and gm denotes m-th iterate of g. Moreover,we say that x ∈ X is a periodi
 point of f of order n ∈ N, n > 1 if
fn(x) = x and fk(x) 6= x for k ∈ {1, . . . , n − 1}.If f(x) = x, then x is said to be a �xed point of f . The set of all periodi
 (�xed)points of f will be denoted by Per f (Fix f).In [9℄ M.C. Zdun proved that every orientation-preserving homeomorphism

F : S1 → S1 possessing periodi
 points of order n is a 
omposition of twoorientation-preserving homeomorphisms T, G: S1 → S1. Fun
tion G has no pe-riodi
 points ex
ept �xed points and T is su
h that T n = idS1 . Using this resulthe determined all 
ontinuous iterative roots with periodi
 points for homeomor-phisms having �xed points.In the present paper we apply Zdun's theorem to the problem of �nding some
ontinuous iterative roots for an orientation-preserving homeomorphism F : S1 →
S1 with periodi
 points of order n. Namely, we shall give 
onditions under whi
h
ontinuous iterative roots with periodi
 points of order n exist and give the 
on-stru
tion of these roots.Now, we re
all some useful notations and de�nitions related to the mappingsof the 
ir
le. Let u, w ∈ S1 and u 6= w, then there exist t1, t2 ∈ R su
h that
t1 < t2 < t1 + 1 and u = e2πit1 and w = e2πit2 . Put
−−−→
(u, w) :=

{

e2πit : t ∈ (t1, t2)
}

,
−−−→
[u, w] :=

−−−→
(u, w)∪ {u, w},

−−−→
[u, w) :=

−−−→
(u, w)∪{u}.AMS (2000) Subje
t Classi�
ation: 39B12, 26A18.Volumes I-VII appeared as Annales A
ademiae Paedagogi
ae Cra
oviensis Studia Mathemati
a.



[58℄ Paweª SolarzThese sets are 
alled ar
s.For every homeomorphism F : S1 → S1 there exists a unique (up to translationby an integer) homeomorphism f : R → R su
h that
F

(

e2πix
)

= e2πif(x)and
f(x + 1) = f(x) + kfor all x ∈ R, where k ∈ {−1, 1}. We 
all F orientation-preserving if k = 1, whi
his equivalent to the fa
t that f is in
reasing.Moreover, for every 
ontinuous fun
tion G: I → J , where I = {e2πit : t ∈ [a, b]}and J = {e2πit : t ∈ [c, d]} there exists a unique 
ontinuous fun
tion g: [a, b] →

[c, d] su
h that
G

(

e2πix
)

= e2πig(x), x ∈ [a, b].In this 
ase we also 
all g the lift of G and we say that G preserves orientation if
g is stri
tly in
reasing.For any orientation-preserving homeomorphism F : S1 → S1, the limit

α(F ) := lim
n→∞

fn(x)

n
(mod 1), x ∈ Ralways exists and does not depend on the 
hoi
e of x and f . This number is
alled the rotation number of F (see [3℄). It is known that α(F ) is a rationaland positive number if and only if F has a periodi
 point (see for example [3℄).If F : S1 → S1 is an orientation-preserving homeomorphism su
h that α(F ) = q

n ,where q, n are positive integers with q < n and gcd(q, n) = 1, then PerF 
ontainsonly periodi
 points of order n (see [7℄, [5℄). Moreover, there exists a unique number
p ∈ {1, . . . , n−1}, 
alled the 
hara
teristi
 number of F , satisfying pq = 1 (mod n).From now on put nF := n and charF := p. The following result 
omes from [8℄.Lemma 1If F : S1 → S1 is an orientation-preserving homeomorphism with PerF 6= ∅, thenfor every z ∈ PerF ,

Arg
F k char F (z)

z
< Arg

F (k+1) char F (z)

z
, k = 0, . . . , nF − 2.For �xed z ∈ PerF we de�ne the partition of S1 onto the following ar
s

Ik = Ik(z) :=
−−−−−−−−−−−−−−−−−−−−−−→[

F k char F (z), F (k+1) charF (z)
)

, k ∈ {0, . . . , nF − 1}. (1)Let us note that
F [Ik] =

−−−−−−−−−−−−−−−−−−−−−−−−−−→[

F k char F+1(z), F (k+1) char F+1(z)
)

=
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→[

F k char F+q char F (z), F (k+1) char F+q char F (z)
)

= I(k+q) (mod nF ), k ∈ {0, . . . , nF − 1},where q = nF α(F ).We shall use the following property (see [9℄).



A note on some iterative roots [59℄Remark 1Let n ∈ N and p, q ∈ {0, . . . , n − 1} satisfy pq = 1 (mod n) and gcd(q, n) = 1. Themapping {0, . . . , n − 1} ∋ d 7→ id := −dp (mod n) ∈ {0, . . . , n − 1} is a bije
tion.Moreover, d + idq = 0 (modn).The next theorem also 
omes from [9℄ and it is a modi�
ation of the fa
toriza-tion theorem (see [9℄, Theorems 5 and 9).Theorem 1Let F : S1 → S1 be an orientation-preserving homeomorphism, z ∈ PerF andlet {Id}d∈{0,...,nF −1} be the family de�ned in (1). Then there exists a uniqueorientation-preserving homeomorphism T : S1 → S1 having periodi
 points of order
nF and su
h that PerT = S1 and

F k+jnF

|Id
= T α(F )nF k ◦

{

T d ◦ (FnF )j+1 ◦ T−d
|Id

, if id ≤ k − 1,

T d ◦ (FnF )j ◦ T−d
|Id

, if id > k − 1for d, k ∈ {0, 1, . . . , nF − 1}, j ∈ N.Let us stress that T is unique up to a periodi
 point of F . Moreover, FnF [Id] =
Id, T [Id] = I(d+1) (mod n) for d ∈ {0, . . . , nF − 1} and T nF = idS1 . Su
h a fun
tion
T will be 
alled a Babbage fun
tion of F (see [9℄).In view of the above theorem (see also [9℄, Corollary 6) for every orientation-preserving homeomorphism F : S1 → S1 with ∅ 6= PerF and for every z0 ∈ PerFwe have

F (z) :=

{

T q (FnF (z)) , z ∈ I0(z0),

T q(z), z ∈ S1 \ I0(z0),
(2)where q = α(F )nF and T is a Babbage fun
tion of F .We start with the followingRemark 2Let n, m ≥ 2 be integers and let q, q′ ∈ {1, . . . , n − 1} be su
h that gcd(q, n) = 1and mq′ = q (mod n), then gcd(m, n) = 1.Proof. To obtain a 
ontradi
tion suppose that m = ka and n = kb for someintegers k > 1 and a, b ≥ 1. This and the fa
t that mq′ = q (mod n) give kaq′ =

q + jkb for some j ∈ Z. Therefore k(aq′ − jb) = q, whi
h 
ontradi
ts the fa
t that
gcd(q, n) = 1.Remark 3Let n, m ≥ 2 be relatively prime integers and let q ∈ {1, . . . , n − 1} be su
h that
gcd(q, n) = 1. There is a unique q′ ∈ {1, . . . , n − 1} su
h that gcd(q′, n) = 1 and
mq′ = q (mod n).Proof. The fa
t that gcd(m, n) = 1 implies that the equation mx + ny = qhas integer solutions x, y. In parti
ular, there is exa
tly one pair (q′, j), where
q′ ∈ {0, . . . , n − 1} and j ∈ Z su
h that mq′ + jn = q. Thus mq′ = q (mod n).Moreover, q′ 6= 0 as gcd(q, n) = 1. In the same manner as in the proof of Remark 2we 
an see that gcd(q′, n) = 1.



[60℄ Paweª SolarzFrom Remark 2 we 
an 
on
lude thatCorollary 1Let F : S1 → S1 be an orientation-preserving homeomorphism with ∅ 6= PerF andlet m ≥ 2 be an integer. If equation
Gm(z) = F (z), z ∈ S1 (3)has 
ontinuous and orientation-preserving solution su
h that nG = nF , then

gcd(m, nF ) = 1.It appears that gcd(m, nF ) = 1 is also a su�
ient 
ondition for the existen
e of
ontinuous and orientation-preserving solutions of (3) with nG = nF . The proofof this property and the des
ription of the solution of (3) in the 
ase PerF = S1
an be found in [6℄. Therefore, from now on assume that PerF 6= S1. Before wepresent some results let as re
all that if (3) holds, then PerF = PerG.Lemma 2Let F, G: S1 → S1 be orientation-preserving homeomorphisms possessing periodi
points of order nF = nG = n and satisfying equation (3) for an m ≥ 2. Letmoreover z0 ∈ PerF = PerG and Jk :=
−−−−−−−−−−−−−−−−−−−−−−−→[

Gk char G(z0), G
(k+1) charG(z0)

), k ∈
{0, . . . , n − 1}. Then(i) Jk = Ik(z0) for k ∈ {0, . . . , n − 1}, where the ar
s Ik(z0) are de�ned by (1);(ii) (GnG)m = FnF ;(iii) if T and V are Babbage fun
tions of F and G, respe
tively, [x] stands foran integer part of x ∈ R and i′d := −d charG (mod n) for d ∈ {0, . . . , n− 1},then

V q
|Id

= T α(F )n ◦ T d ◦ Gnβd ◦ T−d
|Id

, (4)where
βd :=











m −
[

m
n

]

− 1, d = 0,

−
[

m
n

]

− 1, d ∈ {1, . . . , n − 1}, i′d ≤ m −
[

m
n

]

n − 1,

−
[

m
n

]

, d ∈ {1, . . . , n − 1}, i′d > m −
[

m
n

]

n − 1.

(5)Proof. Fix z0 ∈ PerF and assume that (3) holds, nF = nG = n. Put
q := α(F )n, q′ := α(G)n and b :=

[

m
n

]. From the fa
t that gcd(m, n) = 1(see Corollary 1), we get
m = k + bn for some k ∈ {1, . . . , n − 1}. (6)To prove (i) it su�
es to show that G char G(z0) = F charF (z0). Equation (3) yields

mα(G) = α(F ) (mod 1) (see [2℄). Thus mq′ = q (mod n), hen
e
mq′ charF charG = q charF charG (mod n)



A note on some iterative roots [61℄and �nally, in view of the de�nition of charF ,
m charF = charG (mod n). (7)From (7), (3) and sin
e z0 is a periodi
 point of G of order n we obtain

G char G(z0) = Gm char F (z0) = F char F (z0).Note that (ii) is an immediate 
onsequen
e of equation (3) and equality nF =
nG.Now we prove (iii). From Theorem 1, (6) and (i) we get

Gm
|Id

= Gk+bn
|Id

= V q′k ◦

{

V d ◦ (Gn)b+1 ◦ V −d
|Id

, if i′d ≤ k − 1,

V d ◦ (Gn)b ◦ V −d
|Id

, if i′d > k − 1for d ∈ {0, 1, . . . , n−1}. Furthermore, observe that 
ondition mq′ = q (mod n) and(6) give kq′ = q (mod n), whi
h, in view of the fa
t that V is a Babbage fun
tionof G of order n, implies V q′k = V q. Therefore,
Gm

|Id
= V q ◦

{

V d ◦ (Gn)b+1 ◦ V −d
|Id

, if i′d ≤ k − 1,

V d ◦ (Gn)b ◦ V −d
|Id

, if i′d > k − 1
(8)for d ∈ {0, 1, . . . , n − 1}.On the other hand, we may write (5), as follows

βd =











m − b − 1, d = 0,

−b − 1, d ∈ {1, . . . , n − 1}, i′d ≤ k − 1,

−b, d ∈ {1, . . . , n − 1}, i′d > k − 1.Let d = 0, then i′0 = 0 ≤ k − 1 and b = m − β0 − 1. Combining these with (8) weobtain
Gm

|I0
= V q ◦ (Gn

|I0
)b+1 = V q ◦ (Gn

|I0
)m−β0 .Let d ∈ {1, . . . , n − 1}. Repla
ing b by −βd − 1 if i′d ≤ k − 1 (resp. by −βd if

i′d > k − 1) in (8) yields
Gm

|Id
= V q ◦ V d ◦ G−nβd ◦ V −d

|Id
.Finally,

Gm
|Id

= V q ◦

{

V d ◦ G−nβd+mn ◦ V −d
|Id

, d = 0,

V d ◦ G−nβd ◦ V −d
|Id

, d ∈ {1, . . . , n − 1}.
(9)Equating (9) with (2) yields for d ∈ {1, . . . , n − 1},

T q
|Id

= V q ◦ V d ◦ G−nβd ◦ V −d
|Id

. (10)While, for d = 0, we get
T q ◦ Fn

|I0
= V q ◦ G−nβ0+nm

|I0
.



[62℄ Paweª Solarzwhi
h, in view of (ii), gives
T q
|I0

= V q ◦ G−nβ0

|I0
. (11)From (10) and (11) we have

T q
|Id

= V q ◦ V d ◦ G−nβd ◦ V −d
|Id

, d ∈ {0, . . . , n − 1}. (12)Hen
e
T q
|Ip (mod n)

= V q ◦ V p (mod n) ◦ G−nβp (mod n) ◦ V
−p (mod n)
|Ip (mod n)

, p ∈ N.As V p = V p (mod n) for p ∈ N we obtain
T q
|Ip (mod n)

= V q ◦ V p ◦ G−nβp (mod n) ◦ V −p
|Ip (mod n)

, p ∈ N. (13)Now let us re
all that T q[Id] = I(d+q) (mod n) for d ∈ {0, . . . , n− 1}. This, (11) and(13) imply
T lq
|I0

= (T q)
l
|I0

=
(

V q ◦ V (l−1)q ◦ G−nβq(l−1) (mod n) ◦ V −(l−1)q
)

◦
(

V q ◦ V (l−2)qG−nβq(l−2) (mod n) ◦ V −(l−2)q
)

◦ . . . ◦
(

V q ◦ V q ◦ G−nβq ◦ V −q
)

◦
(

V q ◦ G−nβ0

|I0

)

= V lq ◦ G
−n(βq(l−1) (mod n)+βq(l−2) (mod n)+...+βq+β0)
|I0

,whi
h gives
V lq
|I0

= T lq ◦ G
n(βq(l−1) (mod n)+βq(l−2) (mod n)+...+βq+β0)
|I0

(14)for l ∈ {1, . . . , n}. Now �x d ∈ {1, . . . , n−1}. Sin
e gcd(q, n) = 1 there is a unique
l ∈ {1, . . . , n} su
h that lq = d (mod n). Hen
e by (13) we have

T q
|Id

= T q
|Ilq (mod n)

= V q ◦ V lq ◦ G−nβlq (mod n) ◦ V −lq
|Ilq (mod n)

.By substituting (14) twi
e to the above equation we obtain
T q
|Id

= V q ◦
(

T lq ◦ Gn(βq(l−1) (mod n)+βq(l−2) (mod n)+...+βq+β0)
)

◦ G−nβlq (mod n)

◦
(

G−n(βq(l−1) (mod n)+βq(l−2) (mod n)+...+βq+β0) ◦ T−lq
|Ilq (mod n)

)

= V q ◦ T lq ◦ G−nβlq (mod n) ◦ T−lq
|Ilq (mod n)

.This and the fa
t that T is a Babbage homeomorphism of F of order n, i.e.,
T lq = T lq (mod n) = T d, yield

V q
|Id

= T q ◦ T d ◦ Gnβd ◦ T−d
|Id

,whi
h in view of (11) 
ompletes the proof of (4).



A note on some iterative roots [63℄Lemma 3Let u, w ∈ S1, u 6= w and I :=
−−−→
[u, w]. For every integer m ≥ 2 and everyorientation-preserving homeomorphism F : I → I with Fix F 6= ∅ there exist in-�nitely many orientation-preserving homeomorphisms G: I → I satisfying (3) andsu
h that Fix G 6= ∅.Proof. Let a, b ∈ R be su
h that a < b < a + 1 and u = e2πia and w = e2πib.Then

F
(

e2πix
)

= e2πif(x), x ∈ [a, b]for a unique in
reasing homeomorphism f : [a, b] → [a, b]. Clearly, f possesses �xedpoints. By Theorem 11.2.2 (see [4℄ 
h. 11), there exist in�nitely many stri
tlyin
reasing 
ontinuous solutions of
gm(x) = f(x), x ∈ [a, b],with Fix g 6= ∅. For every su
h fun
tion g: [a, b] → [a, b] de�ne G: I → I by

G
(

e2πix
)

:= e2πig(x), x ∈ [a, b].Then Fix G 6= ∅ and
Gm

(

e2πix
)

= e2πigm(x) = e2πif(x) = F (e2πix), x ∈ [a, b].In the proof of the next theorem we will use the following result (see for example[7℄).Lemma 4Suppose that F : S1 → S1 is an orientation-preserving homeomorphism, z ∈ PerF ,
{z, F (z), . . . , FnF −1(z)} = {z0, z1, . . . , znF −1}, where z0 = z,

Arg
zd

z0
< Arg

zd+1

z0
< 2π, d ∈ {0, . . . , nF − 2}and F (z0) = zq. Then α(F ) = q

nF
.Theorem 2Let F : S1 → S1 be an orientation-preserving homeomorphism and let m ≥ 2 be aninteger su
h that gcd(m, nF ) = 1. There exists an orientation-preserving homeo-morphism G: S1 → S1 satisfying (3) and su
h that nG = nF .For every su
h an m and every z0 ∈ PerF , providing that Id = Id(z0) for

d ∈ {0, . . . , nF − 1} are de�ned by (1), the solution of (3) is of the form:
G(z) :=







(

Ψ char F
)q′

(H(z)) , z ∈ I0,
(

Ψ char F
)q′

(z), z ∈ S1 \ I0,
(15)where q′ ∈ {1, . . . , nF − 1} ful�ls mq′ = q (mod nF ), q := nF α(F ), H : I0 → I0 isan orientation-preserving homeomorphism su
h that Fix H 6= ∅, Hm = FnF

|I0
and

Ψ(z) := T q ◦ T d ◦ Hβd ◦ T−d(z), z ∈ Id, d ∈ {0, . . . , nF − 1}, (16)



[64℄ Paweª Solarzwhere T : S1 → S1 is a Babbage fun
tion of F and βd for d ∈ {0, . . . , nF − 1} arede�ned by (5) with n = nF and i′d uniquely determined by (d + i′dq
′) (mod nF ) = 0for d ∈ {0, . . . , nF − 1}.Proof. Fix z0 ∈ PerF and a mapping H : I0 → I0 su
h that Fix H 6= ∅ and

Hm = FnF

|I0
(by Lemma 3 there are in�nitely many su
h mappings). Observe that

Ψ[Id] = T q ◦ T d ◦Hβd [I0] = T q[Id] = I(d+q) (mod n), d ∈ {0, . . . , nF − 1}. (17)Moreover, as a 
omposition of orientation-preserving homeomorphisms, Ψ|Id
is anorientation-preserving homeomorphism. Hen
e Ψ: S1 → S1 and G are orientation-preserving homeomorphisms.Now we show that nG = nF . Put zd := F d charF (z0) for d ∈ {1, . . . , nF − 1}.Thus by (1), (17) and sin
e Ψ preserves the orientation we get

Ψ(zd) = z(d+q) (mod nF ), d ∈ {0, . . . , nF − 1}.This, Lemma 1 and Lemma 4 yield α(Ψ) = q
nF

= α(F ) and, in 
onsequen
e,
nΨ = nF and charΨ = charF . Next note that H(z0) = z0 and H(z1) = z1.Therefore, by (15) and the de�nition of charF ,

G(zd) = Ψq′ char F (zd) = z(d+qq′ char F ) (mod nF ) = z(d+q′) (mod nF ), (18)for d ∈ {0, . . . , nF − 1}. As gcd(q′, nF ) = 1 (see Remark 3) we get nF = nG.Our next goal is to prove that ΨnF = idS1 . From (17) and (16), in view of thefa
t that T p = T p (mod nF ) for p ∈ N, we obtain
ΨnF

|Id
=

(

T q ◦ T d+(nF−1)q ◦ Hβ(d+(nF −1)q) (mod nF ) ◦ T−d+(nF−1)q
)

◦ . . . ◦
(

T q ◦ T d+q ◦ Hβ(d+q) (mod nF ) ◦ T−d+q
)

◦
(

T q ◦ T d ◦ Hβd ◦ T−d
|Id

)

= T q ◦ T d+(nF−1)q ◦ Hβ(d+(nF −1)q) (mod nF )+...+βd ◦ T−d
|Idfor d ∈ {0, . . . , nF − 1}. Moreover, sin
e gcd(q, nF ) = 1 we get

{d, (d + q) (mod nF ), . . . , (d + (nF − 1)q) (mod nF )} = {0, 1, . . . , nF − 1}.We thus get
ΨnF

|Id
= T q ◦ T d+(nF−1)q ◦ HβnF −1+...+β0 ◦ T−d

|Id
, d ∈ {0, . . . , nF − 1}. (19)Putting b :=

[

m
nF

] we have (6) with n = nF . By Remark 3 and Remark 1 itfollows that the mapping {0, . . . , nF −1} ∋ d 7→ i′d ∈ {0, . . . , nF −1} is a bije
tion.Therefore, i′d ≤ m − bnF − 1 = k − 1 holds true for exa
tly k arguments and oneof them is 0, as i′0 = 0 ≤ k − 1. Hen
e in view of (5),
βnF −1 + . . . + β0 = (nF − k)(−b) + (k − 1)(−b − 1) + m − b − 1 = 0.This and (19) give ΨnF = idS1 .



A note on some iterative roots [65℄What is left is to show that (3) holds. Put Ψ char F = V . By Theorem 1homeomorphism V is a Babbage fun
tion of G. Sin
e q charF = 1 (mod nF ) and
ΨnF = idS1 we have Ψ = Ψq charF = V q. Hen
e by (16),

V q
|Id

= T q ◦ T d ◦ Hβd ◦ T−d
|Id

, d ∈ {0, . . . , nF − 1}. (20)Applying the similar reasoning as in the proof of (iii) of Lemma 2 we obtain
T q
|Id

= V q ◦ V d ◦ H−βd ◦ V −d
|Id

, d ∈ {0, . . . , nF − 1}. (21)Indeed, as T p = T p (mod nF ) for p ∈ N from (20) we get
V q
|Ip (mod nF )

= T q ◦ T p ◦ Hβp (mod nF ) ◦ T−p
|Ip (mod nF )

, p ∈ N. (22)Thus
V lq
|I0

= T lq ◦ H
(βq(l−1) (mod nF )+βq(l−2) (mod nF )+...+βq+β0)
|I0

,whi
h gives
T lq
|I0

= V lq ◦ H
−(βq(l−1) (mod nF )+βq(l−2) (mod nF )+...+βq+β0)
|I0

(23)for l ∈ {1, . . . , nF }. Now �x d ∈ {1, . . . , nF − 1}. Sin
e gcd(q, nF ) = 1 there isa unique l ∈ {1, . . . , nF } su
h that lq = d (mod nF ). Hen
e by (22) we have
V q
|Id

= V q
|Ilq (mod nF )

= T q ◦ T lq ◦ Hβlq (mod nF ) ◦ T−lq
|Ilq (mod nF )

.By substituting (23) twi
e to the above equation we obtain
V q
|Id

= T q ◦
(

V lq ◦ H−(βq(l−1) (mod nF )+βq(l−2) (mod nF )+...+βq+β0)
)

◦ Hβlq (mod nF )

◦
(

H(βq(l−1) (mod nF )+βq(l−2) (mod nF )+...+βq+β0) ◦ V −lq
|Ilq (mod nF )

)

= T q ◦ V lq ◦ Gβlq (mod nF ) ◦ V −lq
|Ilq (mod nF )

.This and the fa
t that V is a Babbage homeomorphism of G of order nF , i.e.,
V lq = V lq (mod nF ) = T d, yield (21).Now observe that from (2) and (21), sin
e Hm = FnF

|I0
and kq′ = q (mod nF ),we get

F|Id
= V kq′

◦

{

V d ◦ H−βd+m ◦ V −d
|Id

, d = 0,

V d ◦ H−βd ◦ V −d
|Id

, d ∈ {1, . . . , nF − 1},whi
h in view of (15), (6) and Theorem 1 gives F = Gm.We �nish with the following observationsRemark 4If the assumptions of Theorem 2 are ful�lled, then(i) from (18), Lemma 4, Lemma 1 it follows that α(G) = q′

nF
,(ii) by Lemma 3 there are in�nitely many solutions of (3) with nG = nF ,(iii) Lemma 2 and Theorem 2 imply that every orientation-preserving 
ontinuoussolution of (3) with nG = nF is given by (15) and (16).
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FOLIA 70Annales Universitatis Paedagogi
ae Cra
oviensisStudia Mathemati
a VIII (2009)
Za
h TeitlerBounding symboli
 powers via asymptoti
 multiplieridealsAbstra
t. We revisit a bound on symboli
 powers found by Ein�Lazarsfeld�Smith and subsequently improved by Takagi�Yoshida. We show that theoriginal argument of [6℄ a
tually gives the same improvement. On the otherhand, we show by examples that any further improvement based on thesame te
hnique appears unlikely. This is primarily an exposition; only someexamples and remarks might be new.1. Uniform bounds for symboli
 powersFor a radi
al ideal I, the symboli
 power I(p) is the 
olle
tion of elementsthat vanish to order at least p at ea
h point of Zeros(I). If I is a
tually prime,then I(p) is the I-asso
iated primary 
omponent of Ip; if I is only radi
al, writing
I = C1 ∩ . . . ∩ Cs as an interse
tion of prime ideals, I(p) = C

(p)
1 ∩ . . . ∩ C

(p)
s .The in
lusion Ip ⊆ I(p) always holds, but the reverse in
lusion holds only in somespe
ial 
ases, su
h as when I is a 
omplete interse
tion.Swanson [15℄ showed that for rings R satisfying a 
ertain hypothesis, for ea
hideal I, there is an integer e = e(I) su
h that the symboli
 power I(er) ⊆ Irfor all r ≥ 0. Ein�Lazarsfeld�Smith [6℄ showed that in a regular lo
al ring Rin equal 
hara
teristi
 0 and for I a radi
al ideal, one 
an take e(I) = bight(I),the big height of I, whi
h is the maximum of the 
odimensions of the irredu
ible
omponents of the 
losed subset of zeros of I. In parti
ular, bight(I) is at mostthe dimension of the ambient spa
e, so e = dimR is a single value that works forall ideals. More generally, for any k ≥ 0, I(er+kr) ⊆ (I(k+1))r for all r ≥ 1. Veryshortly thereafter, Ho
hster�Huneke [9℄ generalized this result by 
hara
teristi
 pmethods.It is natural to regard these results in the form I(m) ⊆ Ir for m ≥ f(r) = er,

e = bight(I). Repla
ing f(r) = er with a smaller fun
tion would give a strongerbound on symboli
 powers (
ontainment in Ir would begin sooner). So it is naturalto ask, how far 
an one redu
e the bounding fun
tion f(r) = er?AMS (2000) Subje
t Classi�
ation: 14B05.Volumes I-VII appeared as Annales A
ademiae Paedagogi
ae Cra
oviensis Studia Mathemati
a.



[68℄ Za
h TeitlerBo

i�Harbourne [3℄ introdu
ed the resurgen
e of I, ρ(I)= sup{m
r : I(m) 6⊆ Ir}.Thus if m > ρ(I)r, I(m) ⊆ Ir. The Ein�Lazarsfeld�Smith and Ho
hster�Hunekeresults show ρ(I) ≤ bight(I) ≤ dim R. It 
an be smaller. For example, if I issmooth or a redu
ed 
omplete interse
tion, ρ(I) = 1. More interestingly, Bo

i�Harbourne [3℄ show that if I is an ideal of n redu
ed points in general positionin P2, ρ(I) = ρn ≤ 3

2 . On the other hand, Bo

i�Harbourne show for ea
h n,
1 ≤ e ≤ n, and ǫ > 0 there are ideals I on Pn with bight(I) = e su
h that
ρ(I) > e − ǫ. This suggests that one 
annot expe
t improvement in the slope ofthe linear bound m ≥ er, at least not in very general terms. So one naturallyturns toward the possibility of subtra
ting a 
onstant term.Huneke raised the question of whether, for I an ideal of redu
ed points in P2,
I(3) ⊆ I2. Bo

i�Harbourne's result ρ ≤ 3

2 gives an a�rmative answer to Huneke'squestion, and mu
h more, for points in general position. Some other 
ases havebeen treated, e.g., points on a 
oni
, but the general 
ase, i.e., points in arbitraryposition, remains open.A 
onje
ture of Harbourne (Conje
ture 8.4.3 in [1℄) states that for a homoge-neous ideal I on Pn, I(m) ⊆ Ir for all m ≥ nr − (n − 1), and even stronger, thatthe 
ontainment holds for all m ≥ er − (e − 1), where e = bight(I). Huneke'squestion would follow at on
e as the 
ase n = e = r = 2.Some results in this dire
tion have been obtained by various authors. Hunekehas observed that Harbourne's 
onje
ture holds in 
hara
teristi
 p for values
r = pk, k ≥ 1, see Example IV.5.3 of [8℄ or Example 8.4.4 of [1℄. Takagi�Yoshida [17℄ and Ho
hster�Huneke independently showed by 
hara
teristi
 p meth-ods that I(er+kr−1) ⊆ (I(k+1))r for all k ≥ 0 and r ≥ 1 when I is F -pure (seebelow). More generally, Takagi�Yoshida show a 
hara
teristi
 p version of thefollowing:Theorem 1.1 ([17℄)Let R be a regular lo
al ring of equal 
hara
teristi
 0, I ⊆ R a redu
ed ideal,
e = bight(I) the greatest height of an asso
iated prime of I, and ℓ an integer,
0 ≤ ℓ < lct(I(•)), where lct(I(•)) is the log 
anoni
al threshold of the graded systemof symboli
 powers of I, see below. Then I(m) ⊆ Ir whenever m ≥ er − ℓ. Moregenerally, for any k ≥ 0, I(m) ⊆ (I(k+1))r whenever m ≥ er + kr − ℓ.This statement is a slight modi�
ation of Remark 3.4 of [17℄.The Ein�Lazarsfeld�Smith uniform bounds on symboli
 powers des
ribed aboveare the 
ase ℓ = 0. The F -pure 
ase implies lct(I(•)) > 1, so we may take ℓ = 1.(More pre
isely, F -pure means lct(I) > 1, and we will see lct(I(•)) ≥ lct(I).)The idea of the proof is to produ
e an ideal J with I(m) ⊆ J and J ⊆ (I(k+1))r.Ein�Lazarsfeld�Smith introdu
ed asymptoti
 multiplier ideals in [6℄ and, amongother results, proved the uniform bounds des
ribed above by taking J to bean asymptoti
 multiplier ideal. For Takagi�Yoshida the ideal J is a generalized testideal, a 
hara
teristi
 p analogue of the asymptoti
 multiplier ideals introdu
ed byHara�Yoshida [11℄.In this note, J will be an asymptoti
 multiplier ideal. We will review multiplierideals in �2 and dis
uss some examples in �3: the asymptoti
 multiplier idealsof monomial ideals and hyperplane arrangements. We will revisit the argument



Bounding symboli
 powers via asymptoti
 multiplier ideals [69℄given by Ein�Lazarsfeld�Smith in the 
ase ℓ = 0 to show that it a
tually givesTheorem 1.1 in �4.In �5 we 
onsider two ways in whi
h the argument of �4 falls short of theimproved bounds we hope for. First, the 
ondition 0 ≤ ℓ < lct(I(•)), while gen-eralizing the result of [6℄, is nevertheless quite restri
tive. Se
ond, the argumentof [6℄ a
tually produ
es two ideals, I(m) ⊆ J1 ⊆ J2 ⊆ (I(k+1))r. We will 
onsideras an example the ideal I = (xy, xz, yz) of the union of the three 
oordinate axesin C3. We will show that in this example the �rst and last in
lusions are a
tuallyequalities, while the middle in
lusion J1 ⊆ J2 is very far. So if any improvementremains to be found, one must 
onsider the middle in
lusion.2. Multiplier idealsHen
eforth we �x X = C
n and 
onsider ideals in the ring R = C[x1, . . . , xn].Note that for a prime homogeneous ideal I, a homogeneous form F vanishes toorder p along the proje
tive variety de�ned by I in Pn−1 if and ony if it vanishes toorder p on the a�ne variety de�ned by I in C

n. In this way the Bo

i�Harbourneresults and Huneke question for points in P2 translate to questions about symboli
powers of (homogeneous) ideals in the a�ne setting.2.1. Ordinary multiplier idealsTo an ideal I ⊆ C[x1, . . . , xn], regarded as a sheaf of ideals on X = Cn,and a real parameter t ≥ 0 one may asso
iate the multiplier ideal J (It) ⊆
C[x1, . . . , xn]. The multiplier ideals are de�ned in terms of a resolution of sin-gularities of I. For details, see [4℄, [12℄.Note, in the notation J (It) the t indi
ates dependan
e on the parameter t,rather than a power of I. In parti
ular, J (It) is de�ned for all real t ≥ 0, whereas
It on its own only makes sense for integer t ≥ 0. See, however, Property 2.2.Rather than present the somewhat involved de�nition here, we give a shortlist of properties of multiplier ideals whi
h are all that we will use. (The readermay take these as axioms, although the properties listed here do not 
hara
terizemultiplier ideals.)Property 2.1For any nonzero ideal I, J (I0) = (1), the unit ideal. As the parameter t in
reases,the multiplier ideals get smaller: if t1 < t2, then J (It1) ⊇ J (It2).On the other hand, if I1 ⊆ I2, then J (It

1) ⊆ J (It
2).Thus multiplier ideals, as fun
tions of two arguments, are �order-preserving� inthe ideal and �order-reversing� in the real parameter.Property 2.2For any real number t ≥ 0 and integer k > 0, J (Ikt) = J ((Ik)t).Property 2.3For any t ≥ 0 and integer p ≥ 0, IpJ (It) ⊆ J (Ip+t). See Proposition 9.2.32 (iv)of [12℄.



[70℄ Za
h TeitlerProperty 2.4When Zeros(I) is smooth and irredu
ible with 
odimension codim(Zeros(I)) = e =

bight(I), J (It) = I⌊t⌋−e+1. In parti
ular, J (It) ⊆ I for t ≥ e. More generally, if
I is redu
ed and Zeros(I) = V1 ∪ . . . ∪ Vs, then restri
ting to a neighborhood ofa general point on ea
h Vi, we see J (It) vanishes on Vi for t ≥ codim Vi, hen
e
J (It) ⊆ I for t ≥ max codim Vi = bight(I).The above list is a small sele
tion of the many interesting properties of multi-plier ideals. See [4℄, [12℄ for more, in
luding ex
ellent expositions of the de�nition(from whi
h all the above properties follow immediately). Among these manyother properties we single out one whi
h we will use here, due to Demailly�Ein�Lazarsfeld [5℄.Subadditivity Theorem
J (It1+t2) ⊆ J (It1)J (It2). In parti
ular for any integer r ≥ 0, J (Irt) ⊆ J (It)r.2.2. Asymptoti
 multiplier idealsA graded system of ideals a• = {an}

∞
n=1 is a 
olle
tion of ideals satisfying apaq ⊆

ap+q, and (to avoid trivialities) at most �nitely many of the an may be zero. Notethat ap, ap+1 are not required to satisfy any parti
ular relation, but (ap)
k ⊆ akp.By 
onvention, a0 = C[x1, . . . , xn], so that ⊕∞

n=0 an is a C[x1, . . . , xn]-algebra.A trivial graded system is one of the form an = a
n
1 . Our main interest will be inthe graded system of symboli
 powers of a (redu
ed) ideal I, I(•) = {I(n)}n≥0.To a graded system a• and real parameter t ≥ 0 one 
an asso
iate an asymptoti
multiplier ideal J (at

•), or J (t · I(•)), de�ned by
J (at

•) = max
p≥1

J
(

a

t
p
p

)

.This de�nition was given in [6℄. We must justify the existen
e and well-de�nednessof this maximum; we repeat the argument of [6℄. Note that sin
e (ap)
q ⊆ aqp, bythe properties of multiplier ideals we have

J
(

a

t
p

p

)

= J
(

(aq
p)

t
pq

)

⊆ J
(

a

t
pq

pq

)

.The Noetherian property assures that among the ideals J (

a

t
p
p

), one is a (relative)maximum. If J (

a

t
p
p

) is a maximum, then by the above, J (

a

t
p
p

)

= J
(

a

t
pq
pq

). Hen
eif J (

a

t
p
p

) and J
(

a

t
q
q

) both are maxima, then they 
oin
ide with ea
h other. Thusthere is a unique maximum of this 
olle
tion of ideals.In parti
ular, J (at
•) = J

(

a

t
p
p

) for p ≫ 0 and su�
iently divisible, i.e., forall su�
iently large multiples of some p0. We say that su
h a p 
omputes theasymptoti
 multiplier ideal.Example 2.5In the trivial 
ase an = a
n
1 , the asymptoti
 multiplier ideals redu
e to the ordinarymultiplier ideals: J (at

•) = J (at
1). This has the following 
onsequen
e: If I is a



Bounding symboli
 powers via asymptoti
 multiplier ideals [71℄redu
ed ideal de�ning a smooth and irredu
ible variety of 
odimension e, then
J (t · I(•)) = J (It) = I⌊t⌋+1−e.As before, if I is only redu
ed, then by restri
ting to a neighborhood of a smoothpoint on ea
h irredu
ible 
omponent of Zeros(I), we see that J (t · I(•)) ⊆ I for

t ≥ e = bight(I). And, more generally, J ((e + k) · I(•)) ⊆ I(k+1) for any k ≥ 0and any redu
ed ideal I.Remark 2.6Conversely, an ⊆ J (an
• ). In fa
t, for every n, t, an · J (at

•) ⊆ J (at+n
• ) (Theo-rem 11.1.19 (iii) of [12℄). This is exa
tly the extra pie
e we will add to the argumentof [6℄ to dedu
e Theorem 1.1.As before, J (a0

•) = (1) and if t1 < t2, then J (at1
• ) ⊇ J (at2

• ). The asymptoti
multiplier ideals satisfy subadditivity: J (at1+t2
• ) ⊆ J (at1

• )J (at2
• ), so J (art

• ) ⊆
J (at

•)
r [12, 11.2.3℄. This follows immediately from the subadditivity theoremfor ordinary multiplier ideals. (Let p large and divisible enough 
ompute all theasymptoti
 multiplier ideals appearing in the equation, then apply the ordinarysubadditivity theorem for ap.)2.3. Log 
anoni
al thresholdsFor an ideal I 6= (0), (1), we de�ne lct(I) = sup{t | J (It) = (1)}. This isa positive rational number. It turns out that J (I lct(I)) 6= (1). (See [7℄ or [12℄.)Let I be a radi
al ideal and let e′ be the minimum of the 
odimensions of theirredu
ible 
omponents of Zeros(I). Then lct(I) satis�es

0 < lct(I) ≤ e′.(Restri
ting to a neighborhood of a general point on a 
odimension e′ 
omponentof Zeros(I), J (Ie′

) vanishes on the 
omponent by Property 2.4.)For a graded system of ideals a•, we de�ne lct(a•) = sup{t | J (at
•) = (1)}.This may be in�nite or irrational. However for the graded system of symboli
powers of a radi
al ideal I, we have lct(I(•)) ≤ e′ as above.As shown in [13, Remark 3.3℄,

lct(a•) = sup p lct(ap) = lim p lct(ap).Taking p = 1, this shows lct(I(•)) ≥ lct(I) for a radi
al ideal I.3. ExamplesIn this se
tion we give the asymptoti
 multiplier ideals of graded systems ofmonomial ideals, espe
ially for the symboli
 powers of a radi
al (i.e., squarefree)monomial ideal, and the asymptoti
 multiplier ideals of graded systems of divisorand hyperplane arrangements.



[72℄ Za
h Teitler3.1. Monomial idealsThe following theorem gives the ordinary multiplier ideals of a monomial ideal.Theorem 3.1 ([10℄)Let I be a monomial ideal with Newton polyhedron N = Newt(I). Then J (It) isthe monomial ideal 
ontaining xv if and only if v + (1, . . . , 1) ∈ Int(t · N).Here Int( ) denotes topologi
al interior. In parti
ular, lct(I) = 1
t , where

t · (1, . . . , 1) is in the boundary of Newt(I).Let I• = {Ip} be a graded system of monomial ideals. Let Np = Newt(Ip).Then Ik
p ⊆ Ipk, so k ·Np ⊆ Npk, whi
h means 1

pNp ⊆ 1
pkNpk. Let N(I•) =

⋃

1
pNp.Sin
e this is an as
ending union of 
onvex sets, it is 
onvex.Theorem 3.2 ([13℄)

J (It
•) is the monomial ideal 
ontaining xv if and only if v + (1, . . . , 1) ∈

Int(t · N(I•)).Proof. If p 
omputes J (It
•) and xv ∈ J (It

•) = J
(

I
t
p
p

), then v + (1, . . . , 1) ∈
Int( t

pNp) ⊆ Int(t · N(I•)). Conversely if v + (1, . . . , 1) ∈ Int(t · N(I•)), then
v + (1, . . . , 1) ∈ Int( t

pNp) for some p, when
e xv ∈ J
(

I
t
p

p

)

⊆ J (It
•).For a graded system of monomial ideals, lct(I•) = 1

t , where t · (1, . . . , 1) is inthe boundary of N(I•).More 
an be said in a spe
ial situation:Proposition 3.3If a graded system is given by Ip = Cp
1 ∩ . . . ∩ Cp

r for �xed monomial ideals
C1, . . . , Cr, then in the above notation, N(I•) =

⋂

Newt(Ci).Proof. For a monomial ideal a, let monom(a) denote the set of exponent ve
-tors of monomials in a, so that Newt(a) is the 
onvex hull conv(monom(a)). For
p ≥ 1 we have monom(Ip) =

⋂

monom(Cp
i ), so

Newt(Ip) ⊆
⋂

Newt(Cp
i ) = p ·

⋂

Newt(Ci).This shows N(I•) ⊆
⋂

Newt(Ci).For the reverse in
lusion, note ⋂

Newt(Ci) is a rational polyhedron. For psu�
iently divisible, p ·
⋂

Newt(Ci) is a latti
e polyhedron; in parti
ular all itsextremal points (verti
es) have integer 
oordinates, and p·
⋂

Newt(Ci) is the 
onvexhull of the integer (latti
e) points it 
ontains. So let v be an integer point in
p ·

⋂

Newt(Ci) =
⋂

Newt(Cp
i ). Then xv ∈ Cp

i for ea
h i, so xv ∈
⋂

Cp
i = Ip. Thisshows p ·

⋂

Newt(Ci) ⊆ conv(monom(Ip)). Therefore ⋂

Newt(Ci) ⊆
1
pNewt(Ip) ⊆

N(I•).One 
an 
he
k that in the situation of the above proposition, lct(I•) =
min lct(Ci).



Bounding symboli
 powers via asymptoti
 multiplier ideals [73℄Proposition 3.4Let I = I1 be a redu
ed monomial ideal and Ip = I(p). Suppose I is not the maximalideal. Let N be the 
onvex region de�ned by the linear inequalities that 
orrespondto unbounded fa
ets of Newt(I). Then N = N(I(•)); in parti
ular J (t · I(•)) is themonomial ideal 
ontaining xv if and only if v + (1, . . . , 1) ∈ Int(t · N).Proof. Let I = C1 ∩ . . . ∩ Cr, the Ci minimal primes of I. Then I(p) =
Cp

1 ∩ . . .∩Cp
r . As long as I is non-maximal, equivalently ea
h Ci is non-maximal,the Newt(Ci), together with the fa
ets of the positive orthant, 
orrespond pre-
isely to the unbounded fa
ets of Newt(I). The result follows by the previouspropositions.In parti
ular, ea
h lct(Ci) = htCi, so lct(I(•)) = min htCi = e′, where e′ isthe minimum 
odimension of any irredu
ible 
omponent of the variety V (I).3.2. Hyperplane arrangementsLet D be a divisor with real (or rational or integer) 
oe�
ients. The multiplierideals J (t · D) are de�ned similarly to the multiplier ideals of ideals. All theproperties des
ribed above hold for multiplier ideals of divisors. In fa
t, when D isa divisor with integer 
oe�
ients with de�ning ideal I, J (t ·D) = J (It). See [12℄for details.The multiplier ideals of hyperplane arrangements were 
omputed in [14℄, withthe following result.Theorem 3.5Let D = b1H1 + . . . + brHr be a weighted 
entral arrangement, where the Hi arehyperplanes in Cn 
ontaining the origin and the bi are nonnegative real numbers,the weights. Let L(D) be the interse
tion latti
e of the arrangement D, the setof proper subspa
es of Cn whi
h are interse
tions of the Hi. For W ∈ L(D),let r(W ) = codim(W ) and s(W ) =

∑

{bi | W ⊆ Hi} = ordW (D). Then themultiplier ideals of D are given by
J (t · D) =

⋂

W∈L(D)

I
⌊t·s(W )⌋+1−r(W )
W ,where IW is the ideal of W .In fa
t, the interse
tion over W ∈ L(D) 
an be redu
ed to an interse
tionover W ∈ G for 
ertain subsets G ⊆ L(D) 
alled building sets; see [16℄. The log
anoni
al threshold is given by lct(D) = minW∈L(D)

r(W )
s(W ) ; this may be redu
ed toa minimum over W ∈ G.With this in hand it is easy to des
ribe a similar result for graded systems ofhyperplane arrangements.We will say a graded system of divisors is a sequen
e D• = {Dp}p≥1 su
hthat Dp + Dq ≥ Dp+q. Equivalently, for ea
h 
omponent E, the ordE(Dp) satisfy

ordE(Dp) + ordE(Dq) ≥ ordE(Dp+q). If the Dp have integer weights, then the
ondition of the Dp forming a graded system of divisors is equivalent to requiring



[74℄ Za
h Teitlerthe ideals Ip = I(Dp) to form a graded system of ideals. De�ne the asymptoti
multiplier ideal J (t · D•) = maxp J ( t
pDp), as for graded systems of ideals.The following lemma will be helpful:Lemma 3.6 ([13℄, Lemma 1.4)Let {ap} be a sequen
e of non-negative real numbers su
h that ap + aq ≥ ap+q forall p, q. Then 1

pap 
onverges to a �nite limit; in fa
t 1
pap → inf 1

pap.For a graded system D• of divisors, let
D∞ =

∑

aEE, where aE = lim
p→∞

1

p
ordE(Dp).Proposition 3.7Let D• be a graded system of divisors. Then J (t · D•) = J (t · D∞).This follows from 
onsidering a 
ommon resolution of singularities of all the

Dp and D∞. The following is an immediate 
onsequen
e.Proposition 3.8Let D• be a graded system of divisors, where ea
h Dp is a 
entral hyperplanearrangement. Let the hyperplanes be H1, . . . , Hr. Let Dp = b1,pH1 + . . . + br,pHr,and let bi,∞ = lim
bi,p

p . Let L(D0) be the interse
tion latti
e of the (redu
ed)arrangement D0 = H1 ∪ . . . ∪ Hr, and for W ∈ L(D0) let s∞(W ) =
∑

{bi,∞ :
W ⊆ Hi}, r(W ) = codim(W ). Then

J (t · D•) =
⋂

W∈L(D0)

I
⌊t·s∞(W )⌋+1−r(W )
W = J (t · D∞),where D∞ is de�ned as above.Again the interse
tion 
an be redu
ed to W ∈ G for a building set G ⊆ L(D0).The log 
anoni
al threshold is given by lct(D•) = lct(D∞) = minW

r(W )
s∞(W ) .4. Proof of TheoremAt this point the theorem is easy to prove. The real work was to develop thede�nition of multiplier ideals and show they have the properties des
ribed in �2.We have J (Ie) ⊆ I. Together with the subadditivity theorem this gives thefollowing 
hain of in
lusions:

J (Ier) ⊆ J (Ie)r ⊆ Ir.Unfortunately I(er) is not ne
essarily 
ontained in J (Ier). We must enlarge thesemultiplier ideals enough to 
ontain I(er) but not too mu
h to destroy the 
ontain-ment in Ir. First rewrite the above as
J ((Ip)

er
p ) ⊆ J ((Ip)

e
p )r ⊆ Ir.



Bounding symboli
 powers via asymptoti
 multiplier ideals [75℄These are the same ideals by Property 2.2. Now let p be su�
iently large anddivisible and enlarge Ip to I(p). The multiplier ideals be
ome asymptoti
 multiplierideals, and we will see in a moment that the in
lusions above still hold:
J (er · I(•)) ⊆ J (e · I(•))r ⊆ Ir.By Remark 2.6 we have I(er) ⊆ J (er ·I(•)). So this shows I(er) ⊆ Ir. This explainswhy we use asymptoti
 multiplier ideals rather than ordinary multiplier ideals inthis proof. We arrive at the following proof of Theorem 1.1.Proof. We have the following 
hain of in
lusions:

I(er+kr−ℓ) = I(er+kr−ℓ)J (ℓ · I(•))

⊆ J ((er + kr) · I(•)) ⊆ J ((e + k) · I(•))r

⊆ (I(k+1))r

(⋆)whi
h is justi�ed as follows. For ℓ < lct(I(•)), J (ℓ · I(•)) = (1). The �rst in
lusionis Remark 2.6. The se
ond in
lusion holds by the subadditivity theorem. The lastin
lusion is Example 2.5.Theorem 2.2 of [6℄ is shown by exa
tly the above argument with ℓ = 0.5. Non-improvementUsing �
lassi
al� methods, Bo

i�Harbourne have given some improvementsin spe
ial 
ases to the Ein�Lazarsfeld�Smith theorem that I(er) ⊆ Ir for everyredu
ed ideal I with bight(I) = e. For example [3℄ shows the resurgen
e of anideal I of general points in P2 is at most 3
2 , so I(m) ⊆ Ir for m ≥ 3r

2 . However,the argument given above for the proof of Theorem 1.1, either via asymptoti
multiplier ideals or via 
hara
teristi
 p methods, is the only way I am aware of toshow for every redu
ed ideal I of height e that I(er) ⊆ Ir (i.e., the resurgen
e isat most e) or even that the resurgen
e is �nite for every redu
ed ideal.One may ask, how far 
an the same multiplier ideal methods be pushed toimprove the bounds in the Ein�Lazarsfeld�Smith theorem?5.1. Restri
tion of log 
anoni
al thresholdThe value ℓ in Theorem 1.1 is severely restri
ted. Let e′ be the minimum of the
odimensions of the irredu
ible 
omponents of Zeros(I). We saw 0 < lct(I) ≤ e′,but it often happens that lct(I) is mu
h smaller than e′. For I a homogeneousideal in C[x1, . . . , xn], we have
1

mult0(I)
≤ lct(I) ≤

n

mult0(I)([12, 9.3.2-3℄), where mult0(I) is the multipli
ity of I at the origin, equivalently,the least degree of a nonzero form in I. So if lct(I) > 1, then I must 
ontain aform of degree stri
tly less than n.



[76℄ Za
h TeitlerFor ideals of redu
ed sets of points in P
2 one 
an show the 
onverse, so lct(I) > 1if and only if the points lie on a 
oni
 (whi
h may be redu
ible). So Theorem 1.1implies Harbourne's 
onje
ture and answers Huneke's question only for points ona 
oni
, whi
h (for smooth 
oni
s at least) had already been treated by Bo

i�Harbourne [2℄.We only need ℓ < lct(I(•)), whi
h is a priori less restri
tive than ℓ < lct(I),but still restri
ts us to ℓ ≤ e′ − 1. Indeed, there are radi
al ideals I with lct(I) <

lct(I(•)). However I do not know of an ideal I su
h that there is an integer ℓ,
lct(I) ≤ ℓ < lct(I(•)).For a radi
al homogeneous ideal I,

lct(I(•)) ≤
n

lim
p→∞

1
p mult0(I(p))

,where the limit exists be
ause mult0(I
(p)) + mult0(I

(q)) ≥ mult0(I
(p+q)). If

lct(I(•)) > 1, then for some p there must be a homogeneous form F vanishingto order p along the variety de�ned by I, of degree stri
tly less than pn. Thisis weaker than the requirement that if lct(I) > 1, then I must 
ontain a form ofdegree less than n, whi
h is the same statement with the added 
ondition p = 1;but it does not seem very mu
h weaker.5.2. The se
ond in
lusionLet I = (xy, xz, yz) ⊆ C[x, y, z] be the ideal of the union of the three 
oordinateaxes. Using Howald's theorem and its asymptoti
 version one 
an 
ompute all theideals appearing in (⋆). Sin
e they are all integrally 
losed monomial ideals, wegive them by giving their Newton polyhedra. Here e = 2; we take k = 0. First,
N• = {(a, b, c) | a + b, a + c, b + c ≥ 1} ∋

(1

2
,
1

2
,
1

2

)

.We have lct(I) = 3
2 and lct(I(•)) = 2, so we take ℓ = 1. Now,

Newt[I(2r−1)] = {(a, b, c) | a + b, a + c, b + c ≥ 2r − 1, a + b + c ≥ 3r − 1},

Newt[J (2r · I(•))] = {(a, b, c) | a + b, a + c, b + c ≥ 2r − 1, a + b + c ≥ 3r − 1},

Newt[(J (2 · I(•)))r] = {(a, b, c) | a + b, a + c, b + c ≥ r, a + b + c ≥ 2r},

Newt[Ir] = {(a, b, c) | a + b, a + c, b + c ≥ r, a + b + c ≥ 2r}.This example shows that the pla
e where improvements are needed is the se
-ond in
lusion in (⋆), whi
h relies on the subadditivity theorem.A
knowledgementI am grateful to Brian Harbourne for inviting me to write this material (origi-nally as an appendix to le
ture notes [8℄ for a 
ourse he gave at a summer s
hoolin Cra
ow in Mar
h, 2009) and for numerous helpful 
onversations.
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FOLIA 70Annales Universitatis Paedagogi
ae Cra
oviensisStudia Mathemati
a VIII (2009)
Mar
in Dumni
kiA 
ombinatorial proof of non-spe
iality of systemswith at most 9 imposed base pointsAbstra
t. It is known that the Segre�Gimigliano�Harbourne�Hirs
howitzConje
ture holds for linear systems of 
urves with at most 9 imposed basefat points. We give a ni
e proof based on a 
ombinatorial method of showingnon-spe
iality of su
h systems. We will also prove, by the same method, thatsystems L(km;m×k

2

) and L(km + 1; m×k
2

) are non-spe
ial.1. Introdu
tionLet p1, . . . , pr ∈ P2 = P2(K) be distin
t points, where K is a �eld of 
hara
ter-isti
 0. The points p1, . . . , pr will be 
alled imposed base points. Let m1, . . . , mrbe nonnegative integers. By L(d; m1p1, . . . , mrpr) we denote the linear systemof plane 
urves of degree d with multipli
ity at least mj at pj , j = 1, . . . , r.The dimension of L(d; m1p1, . . . , mrpr) is upper semi
ontinuous in the position ofimposed base points and rea
hes minimum for points in general position. Thisminimum will be denoted by
dimL(d; m1, . . . , mr).We will also write L(d; m1, . . . , mr) for a system with imposed base points ingeneral position, and L(d; m×s1

1 , . . . , m×sr
r ) for repeated multipli
ities. De�ne thevirtual dimension of L(d; m1, . . . , mr)

vdimL(d; m1, . . . , mr) =
d(d + 3)

2
−

r
∑

j=1

(

mj + 1

2

)and the expe
ted dimension of L(d; m1, . . . , mr)

edimL(d; m1, . . . , mr) = max{vdimL(d; m1, . . . , mr),−1}.By linear algebra one has
dimL(d; m1, . . . , mr) ≥ edimL(d; m1, . . . , mr)AMS (2000) Subje
t Classi�
ation: 14H50, 13P10.Volumes I-VII appeared as Annales A
ademiae Paedagogi
ae Cra
oviensis Studia Mathemati
a.



[80℄ Mar
in Dumni
kiand L(d; m1, . . . , mr) is said to be spe
ial if stri
t inequality holds for points ingeneral position, non-spe
ial otherwise.For systems L = L(d; m1, . . . , mr), L′ = L(d′; m′
1, . . . , m

′
r) we have the inter-se
tion number denoted by L · L′,

L · L′ = dd′ −

r
∑

j=1

mjm
′
j .Definition 1The system L = L(d; m1, . . . , mr) satisfying

• dimL = edimL = 0,
• self-interse
tion L2 = L · L = −1,
• the only 
urve in L is irredu
ible,will be 
alled a −1-system.A 
urve C ⊂ P2 is said to be in the base lo
us of L(d; m1, . . . , mr) if C is the
omponent of ea
h 
urve in L(d; m1, . . . , mr). Observe that, by Bézout Theorem,if L is nonempty and L ·L′ = −t < 0 for −1-system L′, then the 
urve C ∈ L′ is inthe base lo
us of L at least t times, i.e., the equation of ea
h 
urve in L is divisibleby f t, where f is the equation of C. Su
h C is said to be a multiple −1-
urve inthe base lo
us, and it for
es the system to be spe
ial:

dimL
(by Lemma 2)

= dim(L− tL′) ≥ vdim(L− tL′)
(by Lemma 2)

> vdimL,thus, by nonemptiness of L, we have also
dimL > edim L.Lemma 2Let L = L(d; m1, . . . , mr), let L′ = L(d′; m′

1, . . . , m
′
r) be a −1-system, let L−tL′ =

L(d− d′; m1 −m′
1, . . . , mr −m′

r). If L · L′ = −t < 0, then
dim(L − tL′) = dimL,

vdim(L − tL′) = vdimL +
t2 − t

2
.The proof of the Lemma is postponed to the next se
tion. The system withmultiple −1-
urve in the base lo
us will be 
alled −1-spe
ial. We have seen thatevery −1-spe
ial system is spe
ial. The following 
onje
ture due to Harbourne[13℄, Gimigliano [10℄ and Hirs
howitz [15℄ states the following.Conje
ture 3A system L(d; m1, . . . , mr) with imposed base points in general position is spe
ialif and only if it is −1-spe
ial.In [5℄ it is shown that the above Conje
ture is equivalent to the 
onje
tureposed by Segre [18℄.



A 
ombinatorial proof of non-spe
iality of systems [81℄Conje
ture 4If a system L = L(d; m1, . . . , mr) with imposed base points in general position isspe
ial, then every 
urve in L is non-redu
ed.We will refer to either one of the above 
onje
tures as to Segre�Harbourne�Gimigliano�Hirs
howitz (SHGH for short) Conje
ture. From now on we will as-sume that imposed base points are always in general position.The SHGH Conje
ture 
an be reformulated using standard systems. A system
L(d; m1, . . . , mr) is 
alled standard if m1 ≥ m2 ≥ . . . ≥ mr and

d ≥ m1 + m2 + m3.Theorem 5In order to show that the SHGH Conje
ture holds for at most r points it su�
esto show that ea
h standard system for at most r points is non-spe
ial.For 
ompleteness, we will give a proof of this well-known Theorem in the nextse
tion.The fa
t that the SHGH Conje
ture holds for r ≤ 9 points has been shown byvarious methods in [16℄, [10℄ and [12℄, but the �rst results appeared already in [2℄.A ni
e idea is to use the following well-known fa
t.Proposition 6Let d, m1, m2, m3 be nonnegative integers. If d ≥ m1 + m2 + m3, m1 ≥ m2 ≥

m3 and the system L(d; m1, m
×3
2 , m×5

3 ) is non-spe
ial, then any standard system
L(d; m1, m2, m3, m4, . . . , m9) is non-spe
ial.For 
ompleteness, we will give a proof of this proposition in the next se
tion.In the paper we will prove that SHGH holds for r ≤ 9 points using onlyelementary fa
ts based on linear algebra. In fa
t we must prove the following.Theorem 7Let d, m1, m2, m3 be nonnegative integers. If d ≥ m1 +m2 +m3 and m1 ≥ m2 ≥

m3, then the system L(d; m1, m
×3
2 , m×5

3 ) is non-spe
ial.One of the main ingredients is the 
utting diagram algorithm from [7℄. Brie�y,it is proved that in order to show non-spe
iality of a given system it su�
es to �ndan appropriate �nite set of points in N2 enjoying some 
ombinatorial properties.To be pre
ise, we must �rst de�ne, for any �nite D ⊂ N2, the system
L(D; m1, . . . , mr)of polynomials with support in D and with multipli
ity at least mj at pj , j =

1, . . . , r. Formally, we identify N2 with monomials in K[X, Y ]

N
2 ∋ (x, y) 7→ XxY y ∈ K[X, Y ]and put

L(d; m1, . . . , mr) = {f ∈ K[X, Y ] : supp(f) ∈ D, multpj
(f) ≥ mj , j = 1, . . . , k}.



[82℄ Mar
in Dumni
kiThe set L(D; m1, . . . , mr) is a K-linear subspa
e of K[X, Y ]. We say that 
onditionsin L(D; m1, . . . , mr) are independent if
dimK L(D; m1, . . . , mr) = #D −

r
∑

j=1

(

mj + 1

2

)

.The system L(D; m1, . . . , mr) is 
alled empty if
dimK L(D; m1, . . . , mr) = 0.Observe that, by dehomogenizing and generality assumption, if 
onditions in

L(D; m1, . . . , mr) are independent for D = {(x, y) : x + y ≤ d}, then
L(d; m1, . . . , mr) is non-spe
ial, similarly L(D; m1, . . . , mr) is empty if and only if
L(d; m1, . . . , mr) is empty.The 
utting diagram algorithm is based on the following two theorems.Theorem 8 ([7℄, Theorem 14)Let D, D′ ⊂ N2 be �nite, let m1, . . . , mr, m

′
1, . . . , m

′
s be nonnegative integers. If

• D ∩D′ = ∅,
• 
onditions in L(D; m1, . . . , mr) are independent (resp. L(D; m1, . . . , mr) isempty),
• 
onditions in L(D′; m′

1, . . . , m
′
s) are independent (resp. L(D′; m′

1, . . . , m
′
s) isempty),

• there exists an a�ne fun
tion N2: f ∋ (a, b) 7→ q1a+q2b+q3 ∈ Q, q1, q2, q3 ∈
Q su
h that f has stri
tly negative values on D and nonnegative values on
D′,then 
onditions in

L = L(D ∪D′; m1, . . . , mr, m
′
1, . . . , m

′
s)are independent (resp. L is empty).Theorem 9 ([7℄, Proposition 13)Let D ⊂ N2 be �nite, let m1 be a nonnegative integer. Then 
onditions in L(D; m1)are independent if and only if D, 
onsidered as a set of points in Q

2, does not lieon a 
urve of degree m1 − 1. If #D =
(

mj+1
2

) and 
onditions in L(D; m1) areindependent, then L(D; m1) is empty.The proofs are te
hni
al but use only simple linear algebra.Theorem 10Let k, m be nonnegative integers. Then systems L(km; m×k2

) and L(km+1; m×k2

)are non-spe
ial.



A 
ombinatorial proof of non-spe
iality of systems [83℄It is known that the above theorem holds. More generally, homogeneous sys-tems with the square number of imposed base points are always non-spe
ial, see[8℄. Su
h systems, i.e., homogeneous with the number of imposed base pointssatisfying some property have been widely studied. For example, systems of theform L(d; m×4h

) have been 
onsidered in [9℄; this 
onsideration has been extendedto systems of the form L(d; m×4h9k

) in [1℄; systems with the number of imposedbase points being nearly a square have been 
onsidered in [4℄; systems of the form
L(d; m×9

1 , m2, . . . , mr) for m1 ≥ m2 ≥ . . . ≥ mr (so 
alled quasiuniform) in [14℄,and systems of the form L(d; m×r) for r ≥ 4m2 in [17℄.The proof of Theorem 10 using tori
 degenerations 
an be found in [3℄. We willgive a simple 
ombinatorial proof in a sequen
e of lemmas. Both proofs exploitthe natural disse
tion of a two-dimensional simplex into k2 simplexes:
but the idea behind is slightly di�erent. In the degeneration approa
h one 
ontrolsthe behaviour of the system �along� the interse
tion of two meeting regions (givenalways by weak inequalities). In our approa
h it is better to 
ompletely separateregions by de�ning them with stri
t inequalities.Lemma 11Conditions in the system L(D; m×16) are independent for

D = {(x, y) ∈ N
2 : x + y ≤ 4m + 1};
onditions in the system L(D; m×25) are independent for

D = {(x, y) ∈ N
2 : x + y ≤ 5m + 1};thus systems L(4m + 1; m×16) and L(5m + 1; m×25) are non-spe
ial.Lemma 12Systems L(4m; m×16), L(5m; m×25), L(6m; m×36) and L(6m+1; m×36) are empty.Lemma 13Systems L(km; m×k2

) and L(km + 1; m×k2

) are empty for k ≥ 7.Proofs of lemmas are postponed to the next se
tion.



[84℄ Mar
in Dumni
ki2. ProofsProof of Lemma 2. To prove that dim(L − tL′) = dimL observe that multi-pli
ation by the equation of C ∈ L′ in tth power indu
es an isomorphism between
L− tL′ and L. By a straightforward 
al
ulation one shows that

vdim(L− tL′) = vdimL− tL · L′ +
t2L′2

2
+

t(−3d′ +
∑r

j=1 m′
j)

2
.Moreover,

L′2 − 2vdimL′ = −3d′ +

r
∑

j=1

m′
j ,whi
h 
ompletes the proof.Proof of Theorem 5. Let L = L(d; m1, . . . , mr). Consider the following pro-
edure:Step 1. Sort multipli
ities in non-in
reasing order.Step 2. If k = d−m1−m2 < 0, then take d←− d+k, m1 ←− m1+k, m2 ←− m2+kand go ba
k to Step 1.Step 3. If k = d −m1 −m2 −m3 < 0, then take d←− d + k, mj ←− mj + k for

j = 1, 2, 3 and go ba
k to Step 1.We �nish with a system L′. We will show that in ea
h step the dimensiondoes not 
hange. Indeed, if k = d − m1 − m2 is negative, then ea
h 
urve in
L(d; m1, m2, m3, . . .) is redu
ible and 
ontains the line passing through p1, p2 atleast −k times. In other words, we have the isomorphism

ϕ:L(d− k; m1 − k, m2 − k, m3, . . .)→ L(d; m1, m2, m3, . . .)given by multipli
ation by the equation of the line in kth power. In Step 3 theresult follows from applying the Cremona transformation based on p1, p2, p3 toour system (see eg. [11, Se
tion 3℄). This transformation indu
es the isomorphism
ϕ:L(d− k; m1 − k, m2 − k, m3 − k, m4, . . .)→ L(d; m1, m2, m3, m4, . . .)(the proof of this fa
t using only linear algebra 
an be found in [6, proof of The-orem 3℄; we use the fa
t that the system passed Step 2, so d − m1 − m2 ≥ 0).By an easy 
omputation one 
an show that the virtual dimension does not 
hangein Step 3, while in Step 2 it in
reases by k2+k

2 . Thus for k ≤ −2 we obtain Lto be either empty or spe
ial. In the se
ond 
ase, we know that after some Cre-mona transformations there exists a multiple line in the base lo
us. Again, byeasy 
omputations we 
an show that Cremona transformation preserves the inter-se
tion number, hen
e the multiple line from the base lo
us will be mapped, bythe reversed pro
ess, into a multiple −1-
urve in the base lo
us of L. Therefore Lis either −1-spe
ial or enjoys the same properties (dimension, virtual dimension,emptiness, spe
iality. . . ) as L′, whi
h is standard.



A 
ombinatorial proof of non-spe
iality of systems [85℄Proof of Proposition 6. Assume, by hypothesis, that L2 = L(d; m1, . . . , m9)is spe
ial. We will show that L1 = L(d; m1, m
×3
2 , m×5

3 ) is spe
ial. Let c be thedi�eren
e between the number of 
onditions in L1 and the number of 
onditionsin L2,
c =

(

m1 + 1

2

)

+ 3

(

m2 + 1

2

)

+ 5

(

m3 + 1

2

)

−
9

∑

j=1

(

mj + 1

2

)

.Sin
e ea
h 
ondition 
an lower the dimension by at most one, we have
dim L1 ≥ dimL2 − c > edim L2 − c ≥ vdimL2 − c = vdimL1.Sin
e for d ≥ m1 + m2 + m3, the virtual dimension
vdimL1 ≥

(m1 + m2 + m3)(m1 + m2 + m3 + 3)

2

−
m1(m1 + 1) + 3m2(m2 + 1) + 5m3(m3 + 1)

2
= (m1 −m3) + m2(m1 −m2) + m3(m1 + m2 − 2m3)

≥ 0,we have vdimL1 = edimL1 and 
onsequently
dimL1 > edim L1.Before proving Theorem 7 we must prepare some helpful systems with inde-pendent 
onditions.Definition 14Let m be a positive integer. De�ne an m-re
tangle to be the set

{

(x, y) ∈ N
2 : a−

1

2
< x < a + m +

1

2
, b−

1

2
< y < b + m−

1

2

}or the set
{

(x, y) ∈ N
2 : a−

1

2
< x < a + m−

1

2
, b−

1

2
< y < b + m +

1

2

}for some nonnegative integers a, b. De�ne an m-triangle to be the set
{

(x, y) ∈ N
2 : x > a−

1

2
, y > a−

1

2
, x + y < 2a + m−

1

2

}for some nonnegative integer a. The examples are shown on Figure 1.
Figure 1. Example of 4-re
tangles and 4-triangleLemma 15Let T be an m-triangle, let R be an m-re
tangle. Then 
onditions in the systems

L(T ; m) and L(R; m×2) are independent and these systems are empty.



[86℄ Mar
in Dumni
kiProof. Observe that there exists parallel lines ℓ1, . . . , ℓm su
h that #(T ∩ℓj) =
j. The proof for L(T ; m) is 
ompleted by Theorem 9 and Bézout Theorem.To deal with L(R; m×2) observe that R 
an be divided into two pie
es R1, R2,su
h that R1 is an m-triangle, while R2 is a rotated m-triangle. By Theorem 8the proof is 
ompleted.Proof of Theorem 7. Let D = {(x, y) ∈ N2 : x+y ≤ d}. We want to show that
onditions in L(D; m1, m

×3
2 , m×5

3 ) are independent. Take the following 
utting of
D into three pie
es:
D1 =

{

(x, y) ∈ D : y > m2 + m3 +
1

2

}

,

D2 =
{

(x, y) ∈ D : y < m2 + m3 +
1

2
and (m3 + 2)y + x > m2

3 + 3m3 −
1

2

}

,

D3 =
{

(x, y) ∈ D : (m3 + 2)y + x < m2
3 + 3m3 −

1

2

}

.By Theorem 8 it is enough to show that 
onditions in systems L(D1; m1),
L(D2; m

×3
2 ), L(D3; m

×5
3 ) are independent. Observe that, by easy 
omputations,an m1-triangle with verti
es (0, m2 + m3 +1), (m1− 1, m2 + m3 +1) and (0, m1 +

m2 + m3) is 
ontained in D1. Similarly, observe that an m2-re
tangle with ver-ti
es (0, m3 + 1), (m2, m3 + 1), (m2, m3 + m2), (0, m3 + m2) and an m2-trianglewith verti
es (m2 + 1, m3), (2m2, m3), (m2 + 1, m3 + m2 − 1) are 
ontainedin D2. Moreover, these two shapes 
an be separated from ea
h other by ana�ne line. For D3, we take three shapes � an m3-re
tangle with verti
es (0, 0),
(m3 − 1, 0), (m3 − 1, m3), (0, m3), another m3-re
tangle with verti
es (m3, 0),
(2m3, 0), (2m3, m3 − 1), (m3, m3 − 1) and �nally an m3-triangle with verti
es
(2m3 + 1, 0), (3m3, 0), (2m3 + 1, m3− 1). By Theorem 8 and Lemma 15 the proofis 
ompleted.

y = m2 + m3 + 1
2

(m3 + 2)y + x = m2
3 + 3m3 − 1

2Figure 2. Example of divisions for m1 = 6, m2 = 5, m3 = 4



A 
ombinatorial proof of non-spe
iality of systems [87℄Proof of Lemma 11. The proofs 
an be easily read o� from Figures 3 and 4.The pi
tures are drawn for m = 3, but 
an be easily res
aled. Less obvious 
uttingsare presented, the details are left to the reader. By ε we denote a su�
iently smallpositive rational number.
y = m + 1

2

the same 
uttingas for L(3m; m×9)

Figure 3. Divisions for L(4m + 1; m×16)

y + εx = ε(2m − 1) + m

x
=

ε
y
−

ε
(2

m
+

2
)
+

m

x
=

ε
y
−

ε
(2

m
−

1
)
+

2
m

+
1

Figure 4. Divisions for L(5m + 1; m×25)Proof of Lemma 12. Emptiness of L(6m; m×36) would follow from emptinessof L(6m+1; m×36). Again, the proofs 
an be easily read o� from Figures 5, 6 and7. Observe that if R ⊂ N2 is 
ontained in some m-re
tangle, then L(R; m×2) isempty.
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y + εx = ε(2m − 1) + m

x
=

m
+

1 2

Figure 5. Divisions for L(4m; m×16)

y = m − 1
2

the same 
uttingas for L(4m; m×16)Figure 6. Divisions for L(5m; m×25)

y = 2m + 1
2

y + εx = ε(3m − 1) + m

the same 
uttingas for L(4m; m×16)

Figure 7. Divisions for L(6m + 1; m×36)Proof of Lemma 13. Emptiness of L(km; m×k2

) would follow from emptinessof L(km + 1; m×k2

). The �rst 
utting, into upper and bottom part, is given bythe line y = m− 1
2 . Sin
e k − 1 ≥ 6, we use indu
tion to the upper part, 
uttingit exa
tly as L((k − 1)m + 1; m×(k−1)2). The bottom part
B = {(x, y) ∈ N

2 : x + y ≤ km + 1, y ≤ m}



A 
ombinatorial proof of non-spe
iality of systems [89℄gives the system L(B; m×(2k−1)). We will 
over B from right to left with one
m-triangle and (k− 1) m-re
tangles of hight m. This allows to 
over (k − 1)(m +
1) + m = km + k − 1 latti
e points (x, 0) ∈ B, while #{(x, 0) ∈ B} = km + 2.Thus we 
an entirely 
over B and the proof is 
ompleted.Remark 16There is no theoreti
al obstru
tion to make similar proofs for systems of the form
L(km+k0; m

×k2

) for �xed k0. In fa
t, for k satisfying k ≥ k0+2 the indu
tion step(emptiness of L(km + k0; m
×k2

) implies emptiness of L((k + 1)m + k0; m
×(k+1)2))will work. One 
an even hope that for k's satisfying k ≤ K + 1,

K = max{k : vdimL(km + k0; m
×k2

) ≥ 0 for some m},it is always possible to prove non-spe
iality by the presented method.Referen
es[1℄ A. Bu
kley, M. Zompatori, Linear systems of plane 
urves with a 
omposite num-ber of base points of equal multipli
ity, Trans. Amer. Math. So
. 355 (2003), no. 2,539�549.[2℄ G. Castelnuovo, Ri
er
he generali sopra i sistemi lineari di 
urve piane, Mem.A

ad. S
i Torino, II 42 (1891).[3℄ C. Ciliberto, O. Dumitres
u, R. Miranda, Degenerations of the Veronese and appli-
ations, preprint, http://www.math.
olostate.edu/�miranda/arti
les.html (2009).[4℄ C. Ciliberto, R. Miranda, Nagata's 
onje
ture for a square or nearly-square numberof points, Ri
. Mat. 55 (2006), no. 1, 71�78.[5℄ C. Ciliberto, R. Miranda, The Segre and Harbourne-Hirs
howitz Conje
tures, in:Appli
ations of algebrai
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oding theory, physi
s and 
omputation(Eilat 2001), NATO S
i. Ser. II Math. Phys. Chem. 36, Kluwer A
ad. Publ.,Dordre
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R. WojnarKineti
 equation for a gas with attra
tive for
es asa fun
tional equationAbstra
t. Di�usion problems studied in the time s
ale 
omparable with timeof parti
les 
ollision lead to kineti
 equations whi
h for step-wise potentialsare fun
tional equations in the velo
ity spa
e. After a survey of derivation ofkineti
 equations by proje
tive operator method, an attention is paid to theLorentz gas with step potential. The gas is 
omposed of N parti
les: N−1 ofwhi
h are immovable; between those N −1 immovable parti
les � s
atterers,parti
le number 1 is moving, and we des
ribe its movement by means ofone-parti
le distribution fun
tion satisfying a kineti
 equation. Solutions ofthe kineti
 equation for some simple potentials are given. We derive alsoa kineti
 equation for one-dimensional Lorentz gas, whi
h is a fun
tionalequation.1. Introdu
tionGeneral kineti
 equations with 
onvolution time integral (hen
e nonlo
al intime and non-markovian) were �rst derived and dis
ussed by the Brussels group,headed by Ilya Prigogine, [1℄. Di�erent 
orrelation fun
tions used to des
ribenon-equilibrium pro
esses satisfy su
h equations, [2℄ � [7℄.A 
omparison of the theory of the Brussels group, with the Bogolyubov theory,then being developed by the Uhlenbe
k group was given in a paper by Ste
ki andTaylor, [8℄. These results were next extended and ordered by the Brussels group,[9℄. Robert Zwanzig, [4, 10℄ des
ribed a new method of derivation of kineti
 equa-tions. The main tool of this derivation is the use of proje
tion operators in theHilbert spa
e of Gibbsian ensemble densities. It was noted by Nelkin and Ghatakthat the Van Hove self-
orrelation fun
tion Gs(r, t) for a dilute �uid is determinedby a linearized Boltzmann equation identi
al to that o

uring in the theory ofneutron di�usion, [11℄.The kineti
 equation (KE) des
ribing di�usion in time s
ale 
omparable withtime of the parti
les 
ollision, is also a time 
onvolution kineti
 equation, whi
h forAMS (2000) Subje
t Classi�
ation: 82C41, 82C70, 92B05.Volumes I-VII appeared as Annales A
ademiae Paedagogi
ae Cra
oviensis Studia Mathemati
a.



[92℄ R. Wojnara step-wise intera
tion potential takes form of a fun
tional equation in the velo
ityspa
e.We work in the framework of kineti
 theory of a Boltzmann gas, with useof statisti
al me
hani
s methods. The gas is 
omposed of N parti
les, and theproblem dis
ussed 
on
erns the di�usion of a marked parti
le (number 1) amid
(N − 1) other 
lassi
al dilute gas parti
les.Applying to the Liouville equation the proper proje
tion operator, a kineti
equation for one-parti
le distribution fun
tion f(k,v1, t) is derived. Here k denotesthe Fourier ve
tor variable (wave ve
tor) after transformation of spa
ial 
oordinate
r1, whi
h denotes the position of parti
le number 1. The ve
tor v1 is the velo
ityof this parti
le, while t is a time. Fun
tion f(k,v1, t) is Fourier transform ofone-parti
le distribution fun
tion fs(r,v1, t), whi
h represents the probability of�nding a parti
le at time t at r with velo
ity v1, if the same parti
le was at time
t = 0 at r = 0 with the given distribution of velo
ity v1, e.g. the Maxwellian.Right-hand side of KE has a form of time 
onvolution of a s
attering operator
G = G(k, t) and fun
tion f = f(k,v1, t). It is valid not only for long times (in
omparison with time of 
ollision, as it is in 
ase of the Boltzmann equation andin Brownian movement theory) but also for short times.KE 
onsidered here was found previously by Jan Ste
ki, [12℄, 
f. also [13, 14℄.This is a time 
onvolution equation for a gas whi
h parti
les intera
t by attra
tive-repelling potential with step dependen
e on distan
e. In su
h a 
ase the phasespa
e 
onsists of distin
ly separated regions and the kineti
 equations is trans-formed from a 
onvolutive one into a fun
tional equation.1.1. NotationThe gas o

upies volume V and 
onsists ofN parti
les, numbered by indi
es i =
1, . . . , N , and mi, vi and ri are the mass, velo
ity and position of parti
le number
i, respe
tively. Cartesian 
oordinates of ve
tor vi are denoted by vix, viy, viz andthose of ri by xi, yi, zi.The Maxwell distribution fun
tion of the velo
ity is denoted by

ϕM (vi) =

√

(

β
m

2π

)3

exp
(

− βm
v2

i

2

)

.Here the velo
ity modulus vi = |vi| is used and v2
i = v2

ix + v2
iy + v2

iz , while β−1 =
kBT with the Boltzmann 
onstant kB and absolute temperature T .The temperature of an ideal gas is related to its average kineti
 energy perparti
le by the relation

Ēkin =
3

2
kBT =

3

2β
.The se
ond law of thermodynami
s states that any two intera
ting systems willrea
h the same average energy per parti
le and hen
e the same temperature.In equilibrium, the probability of �nding a parti
le with velo
ity vi in the in-�nitesimal element dvi = [dvix, dviy, dviz ] about velo
ity vi = [vix, viy , viz] is

ϕM (vi)dvixdviydviz or ϕM (vi)dvi.



Kineti
 equation for a gas with attra
tive for
es as a fun
tional equation [93℄The intera
tion potential uij between parti
les number i and number j dependson distan
e between these parti
les only:
uij = uij(|ri − rj |).Hen
e the total potential energy of the system

U =

N
∑

i<j

u(|ri − rj |) =

N−1
∑

i=1

N
∑

j=i+1

uij(rij) =
∑

i<j

uij ,where rij = |rij | = |ri − rj |.1.2. Physi
al meaningThe fun
tion f = f(k,v1, t) is related to s
attering phenomena. Essential forinterpretation of in
oherent s
attering experiments is the Van Hove fun
tion
Gs(|r − r0|, t) =

〈V

N

N
∑

i=1

δ(ri(0) − r0)δ(ri(t) − r)
〉 (1)where

〈(. . .)〉 =

∫

1

ZN
e−βH(. . .) dvNdrN with ZN =

∫

e−βH dvNdrNdenotes the 
anoni
al average.The fun
tion Gs(r, t) represents the probability of �nding a parti
le at r attime t if the same parti
le was at r = 0 at time t = 0.Van Hove law for in
oherent s
attering reads
Ss(k, ω) =

1

2π

∫

exp[i(kr − ωt)]Gs(r, t) drdt =
1

2π

∫

exp(−iωt)Is(k, t) dt,where
Is(k, t) =

∫

exp(ikr)Gs(r, t) dr
f. [15℄ � [19℄. On the other hand, we have
Is(k, t) =

∫

f(k,v1, t) dv1and Is(k, t) is the Fourier transform of Gs(r, t) and fun
tion f(k,v1, t) 
an befound by kineti
 theory. Namely, it satis�es the following linear KE
( ∂

∂t
+ ikv1

)

f(k,v1, t) =

t
∫

0

G(k, τ)f(k,v1 , t− τ) dτ (2)where
f(k,v1, t) =

∫

dr1 e−ikr1

∫

dvN−1 FN (t)



[94℄ R. Wojnarand
FN (t) = e−tKNFN (0)with

FN (0) = eikr1ϕM (v1) · . . . · ϕM (vN )
e−βU

Q
(3)Here U =

∑

i<j uij and
KN =

N
∑

i=1

vi
∂

∂ri
−

∑

i<j

∂U

∂ri

1

mi

∂

∂vi
(4)is the N -parti
le Liouville operator.Normalization fa
tor in (3)

Q =

∫

V

e−βU drN , where drN = dr1dr2 . . . drNis known as the partition fun
tion or sum-over-states.The partition fun
tion Q is related to thermodynami
al properties of the sys-tem, 
f. [20℄, [21℄, [22℄. With a model of the mi
ros
opi
 
onstituents of a system,one 
an 
al
ulate the mi
rostate energies, and thus the partition fun
tion, whi
hwill then allow us to 
al
ulate all the other thermodynami
al properties of thesystem.Resear
h in the predi
tion of binding a�nities has been a 
ontinuing e�ort formore than half a 
entury, [23, 24℄. An important appli
ation of the 
on�gurationintegral lies in the development of 
omputational models for the ligand-re
eptorbinding a�nities. Their study 
onstitutes the most important problem in 
ompu-tational bio
hemistry. Espe
ialy, the predi
tion of absolute ligand-re
eptor bindinga�nities is essential in a wide range of biophysi
al questions, from the study ofprotein-protein intera
tions to stru
ture-based drug design.In a ligand-re
eptor binding, a ligand is in general any mole
ule that binds toanother mole
ule; the re
eiving mole
ule is 
alled a re
eptor, whi
h is a protein onthe 
ell membrane or within the 
ell 
ytoplasm. Su
h binding 
an be represented bythe 
hemi
al rea
tion des
ribing non
ovalent mole
ular asso
iation A+B ↔ AB,where A represents the protein (re
eptor), B the ligand mole
ule, and AB theprotein-ligand 
omplex. The 
hange in the Gibbs free energy 
an be expressed asa ratio of 
on�guration integrals, [25℄.An alternative form of the kineti
 equation (2) is
(−iz + ikv1)f(k,v1, z) − f(k,v1, t = 0) = G(k, z)f(k,v1, z) (5)where f(k,v1, z) is the Lapla
e transform of f(k,v1, t) de�ned as f(z) =

∫ ∞

0 eiztf(t) dt. We use the same letter for a fun
tion and its Lapla
e transform,but it does not lead to 
onfusion, be
ause all arguments are expli
itly written.If m1 ≫ mi, i = 2, 3, . . . , N we have the Brownian di�usion of parti
le num-ber 1. If m1 ≪ mi, i = 2, 3, . . . , N - the Lorentz gas is dealt with, 
f. also[26, 27℄.



Kineti
 equation for a gas with attra
tive for
es as a fun
tional equation [95℄1.3. Diffusion in biologyFor big times and for isotropi
 medium the Van Hove fun
tion Gs = Gs(r, t)is given by a solution of the 
lassi
al Fi
k's equation, namely,
Gs(r, t)t→∞ =

1

8(πDt)
3
2

e
−r2

4Dt ,where D denotes the (ma
ros
opi
) di�usion 
oe�
ient. After tranformations weget Is(k, t)t→∞ = exp(−k2Dt) and
Ss(k, ω) =

1

π

Dk2

ω2 + (Dk2)2
.Hen
e

D = lim
ω→0

lim
k→0

π
ω2Ss(k, ω)

k2
.We have also

D = − lim
t→∞

1

6t

∂2Is(k, t)

∂k2
.In spite of passing to the limit, residual information about the dynami
s of systemis still 
ontained in the di�usion 
oe�
ient D. For example, in the random walkdi�usion the 
oe�
ient D = h2

2τ , with h and τ being the length and duration ofone step in the walk, respe
tively.The laws of di�usion (in whi
h 
oe�
ient D is used) were dis
overed in 1855by physi
ian and physiologist Adolf Eugen Fi
k, [28℄ � [30℄.At the beginning of the 20th 
entury, Einstein and Smolu
howski, indepen-dently, have found relation between ma
ros
opi
 di�usion 
oe�
ient D and theBrownian movement phenomenon, explaining it in mi
ros
opi
, mole
ular terms,
f. [31, 32℄. The phenomenon was �rst expli
itly des
ribed in 1828 by the physi-
ian and botanist Robert Brown, who observed in aqueous suspensions of pollengrains from Clarkia pul
hella a rapid, 
ontinuous, short-range motion of small in-
luded parti
les that �arose neither from 
urrents in the �uid nor from its gradualevaporation, but belonged to the parti
le itself�, [33, 34℄.After dis
overy of Fi
k's laws, in physiology dominated the opinion that dif-fusion laws should explain all problems of metabolism. It was widely believedin XIX 
entury that di�usion is responsible for su
h organi
 pro
esses as gas ex-
hange in the leaves of plants, gas ex
hange in the lungs of animals, the uptake ofthe produ
ts of digestion from the gut.However, the development of knowledge on the 
ell stru
ture has permitted togather an abundant eviden
e on inadequa
y of di�usion theory for explaining mu
hof the movements of substan
es in organisms, studied in biology and medi
ine. TheFi
k di�usion alone 
ould des
ribed physiologi
al pro
esses only in dead tissues.In 1912 medi
al do
tor and physiologist, Otto Heinri
h Warburg publisheda dis
overy: oxygen utilization requires stru
tural elements in the 
ell � a solidphase. These stru
tures, now re
ognized as mito
hondria, had been des
ribed bylight mi
ros
opists two de
ades before Warburg's publi
ation, and 80 years laterwere found to be pla
es where Brownian motors work, [35℄.



[96℄ R. WojnarThe assumptions of the Einstein�Smolu
howski model are not even approxi-mately met in vivo. The 
ell 
ontains a highly 
on
entrated and heterogeneousassembly of deformable, intera
ting and inelasti
ally 
olliding parti
les; mu
h ofthe solvent (water) is bound to solid stru
tures whi
h, although not ne
essarilylong-living, have huge surfa
e areas; and in any 
ase the 
onditions only tendto thermodynami
 equilibrium after death. The model representing the �mi
ro-s
opi
� aspe
t of di�usion theory assumes a dilute, homogeneous suspension ofrigid, non-intera
ting and elasti
ally 
olliding parti
les, a monophasi
 system withthe solvent (largely) unbound, and a tenden
y towards equilibrium. Also, themodel assumes that there are no net solvent movements, and this is undoubtedlyrelevant in intra
ellular transport, [36, 37℄, also [38℄.After the idea arose that the 
ell internum does, at least in part, behave as a gel,the di�usion through gels be
ame an important subje
t of study. Investigationsof di�usion in gels put a question on appli
ability of Fi
k's laws in the �eld.Bigwood has shown in 1930 that not only is di�usion in gels highly dependenton the absolute 
on
entration of di�using substan
e (in 
ontrast to the 
lassi
allinear Fi
k's theory that di�usion rates depend only on 
on
entration gradients),but that it is both slow and unpredi
table, parti
ularly when the gel is made ofprotein, as the gel state of the 
ell internum should be, 
f. [39, 40℄. It be
ame
lear then that in des
ription of biologi
al 
ell extreme order has to be re
on
iledwith a �uid anatomy. Two kinds of intra
ellular transport are possible: one, whi
ha

ounts for the movements of ma
romole
ules and assemblies; and se
ond, whi
hwill a

ount for the movements of small mole
ules and ions, [41℄.In 1949 Hans Ussing 
ondu
ted investigations with use of radioa
tive tra
ersand gave the systemati
 mole
ular level a

ount of a �se
retion� pro
ess in biology,as an opposite to the �di�usion� des
ription. Ussing de�ned the term �a
tivetransport�, whi
h means the 
reation of a genuinely �uphill� 
on
entration gradient,
f. [42, 43℄. A
tive transport is now an a

epted part of biologi
al knowledge, andindividual a
tive transport me
hanisms are frequently obje
ts of resear
h.In 1950 BBC le
ture J.Z. Young 
on
luded: the more we 
ome to know ofthe �ux of 
hemi
al 
hanges in the body, the more one great weakness of thema
hine analogy stands out. The 
on
ept of a dynami
 organization, su
h as thatof a whirlpool, demands a 
onsideration of time � of before and after and of gradualdevelopment and 
hange of pattern, but the ma
hine models of physiology allowno pla
e for this element. In the tissue spa
es, as well as inside the 
ell, there is�uid 
ir
ulation among solid-state elements, [44℄.The di�usion 
on
epts persisted for a long time in des
ription of respiratorypro
esses. Until now, the method of �di�usion 
apa
ity� is pra
ti
ised as a mea-surement of the lungs ability to transfer gases. Oxygen absorption may be limitedby di�usion in 
ir
umstan
es of low ambient oxygen or high pulmonary blood�ow. Carbon dioxide is not limited by di�usion under most 
ir
umstan
es. The�di�usion 
apa
ity� is part of 
omprehensive test series of lung fun
tion 
alled pul-monary fun
tion testing. It is known, however, di�usivity estimates are seriouslyproblemati
 even with modern equipment. Longmuir wrote: �If simple di�usionis the sole me
hanism of tissue oxygen transport as proposed by Krogh (1919),it is di�
ult to see how a

limatization 
ould o

ur without a redu
tion in the



Kineti
 equation for a gas with attra
tive for
es as a fun
tional equation [97℄di�usion 
oe�
ient. The kineti
s of oxygen transport 
annot be explained by pas-sive di�usion alone; the sear
h for other me
hanisms led to the observation thatall kineti
 data 
ould be explained by 
hannels in 
ells along whi
h the oxygendi�uses faster than in water, [45, 46℄.�The 
ell internum is far more 
omplex organised right down to the mole
ularlevel than was hitherto appre
iated, to the point where ideas of a relatively solid-state 
hemistry model have o

oured. The �ow theory of enzyme kineti
s � a roleof solid geometry in the 
ontrol rea
tion velo
ity in live animals. This 
ontrastssharply with the former 
on
ept that di�usion is the way by whi
h mole
ulesintera
t within an aqueous solution of the 
ell internum, [47℄ � [52℄.In living systems, most mole
ules do not generally move, but are moved, whenwe 
onsider what would happen if everything depended upon Brownian motionand the law of mass a
tion. R.P.C. Johnson in 1983 re
ognised a grey area at themole
ular level when 
onsidering the movement of mole
ules within living 
ells:�This is the region of s
ale where �ow and di�usion are not 
learly separated;where the 
on
epts of temperature and mole
ular movement overlap; where it isnot 
lear whether mole
ules move or are moved; where the ideas of a
tive andpassive lose their meaning�, [53, 48℄, also [54℄ and [55℄.Until now, biologists use the term �di�usion� in a twofold meaning. One isFi
k's di�usion, and the se
ond one is verna
ular, for spreading pro
ess, when�di�usion� is not adhered to a spe
i�
, de�ned s
ienti�
 term. For an a
tivetransport the term a
tive di�usion is sometimes used, as an opposite to passive(i.e. Fi
kian) di�usion.The 
ompli
ation in the des
ription of biologi
al pro
esses may be found inappli
ation of the Smolu
howski di�usion with drift equation. In this equation analeatory aspe
t is 
oupled with deterministi
. The drift for
e 
ontrols di�usionand di�usion re�e
ts the in�uen
e of thermal vibrations of the evironment on thepro
ess.All phenomena, biologi
al also, are developing in given thermal 
onditions,and the appli
ation of thermodynami
s is inevitable. The �mi
ros
opi
� aspe
tof di�usion theory, is that random thermal motions of mole
ules in liquids areresponsible for return of di�usion, parti
ularly Brownian movement theories, into
ontemporary biophysi
s.Brownian or mole
ular motors are biologi
al �nanoma
hinees� and are the es-sential agents of movement in living organisms. A motor is regarded as a devi
ethat 
onsumes energy and 
onverts it into motion or me
hani
al power. Adenosinetriphosphate (ATP) is the fuel for the mole
ular motors a
tion. Many protein-based mole
ular motors 
onvert the 
hemi
al energy present in ATP into me-
hani
al energy. The ATPase mole
ular motors are found in the membranes ofmito
hondria, the mi
ros
opi
 bodies in the 
ells of nearly all living organisms, aswell as in 
hloroplasts of plant 
ells, where the enzyme is responsible for 
onvertingfood to usable energy, [56℄ and [57℄.It was shown by Streater that the Smolu
howski equation for a Brownian par-ti
le potentially 
an be supplemented by an equation for the dynami
s of the tem-perature, so that the �rst and the se
ond laws of thermodynami
s are obeyed. He
onsidered also a model studied by David Smith, known as the dumbbell model,



[98℄ R. Wojnarin whi
h the Brownian parti
le is a two-level atom, and had shown that underisothermal 
onditions, the free energy 
an be given a natural de�nition out ofequilibrium, and is a de
reasing fun
tion of time, [58℄, also [59℄. Smith has appliedhis model to des
ribe a myosin mole
ule, [60, 61℄, also [62℄ and [63℄.Ma
romole
ular parti
les playing a role in protein motors are heavy (Brown-ian) in 
omparison with solvent (water) mole
ules, but are light (Lorentzian) in
omparison with mass of substratum (mito
hondrium).Another biologi
al example in whi
h the passive di�usion plays a role is pro-vided by alimentation pro
esses in 
artilage, tissue whi
h supplies smooth surfa
esfor the movement of arti
ulating bones. The 
artilage is built of 
ells, 
alled 
hon-dro
ytes, produ
ing a large amount of extra
ellular matrix 
omposed of 
ollagen�bers, abundant ground substan
e ri
h in proteogly
an, and elastin �bers. Unlikeother 
onne
tive tissues, 
artilage does not 
ontain blood vessels. The 
hondro-
ytes are fed by di�usion, helped by the pumping a
tion generated by 
ompressionof the arti
ular 
artilage or �exion of the elasti
 
artilage. Thus, 
ompared to other
onne
tive tissues, 
artilage grows and repairs more slowly, [64℄.The di�usion pro
ess appears in biology also as the property of homeostasis inorganisms.Homeostasis (from Greek: hómos, �equal�; and istemi, �to stand� lit. �to standequally�; 
oined by Walter Bradford Cannon) is the property of either an opensystem or a 
losed system, espe
ially a living organism, that regulates its internalenvironment so as to maintain a stable, 
onstant 
ondition. Multiple dynami
 equi-librium adjustment and regulation me
hanisms make homeostasis possible. The
on
ept 
ame from that of milieu interieur that was 
reated by Claude Bernard,often 
onsidered as the father of physiology, and published in 1865.With respe
t to any given life system parameter, an organism may be a 
on-former or a regulator. Regulators try to maintain the parameter at a 
onstantlevel over possibly wide ambient environmental variations. On the other hand,
onformers allow the environment to determine the parameter. For instan
e, en-dothermi
 animals maintain a 
onstant body temperature, while exothermi
 ani-mals exhibit wide body temperature variation. Examples of endothermi
 animalsin
lude mammals and birds, examples of exothermi
 animals in
lude reptiles andsome sea animals.Most homeostati
 regulation is 
ontrolled by the release of hormones into thebloodstream. However other regulatory pro
esses rely on simple di�usion to main-tain a balan
e.Homeostati
 regulation extends far beyond the 
ontrol of temperature. Allanimals also regulate their blood glu
ose, as well as the 
on
entration of theirblood. Mammals regulate their blood glu
ose with insulin and glu
agon. Thesehormones are released by the pan
reas, the inadequate produ
tion of the two forany reason, would result in diabetes. The kidneys are used to remove ex
ess waterand ions from the blood. These are then expelled as urine. The kidneys performa vital role in homeostati
 regulation in mammals, removing ex
ess water, salt,and urea from the blood. These are the body's main waste produ
ts, [65℄.



Kineti
 equation for a gas with attra
tive for
es as a fun
tional equation [99℄2. Proje
tive operator methodThe proje
tion operator is introdu
ed, [66℄,
P = eikr1

f0
N

ϕM (v1)

∫

dvN−1drN e−ikr1 ,where
f0

N =

N
∏

i=1

ϕM (vi)
1

Q
e−βUis the equilibrium distribution fun
tion. We observe

PFN (t) = eikr1
f0

N

ϕM (v1)
f(k,v1, t).In parti
ular

PFN(0) = eikr1
f0

N

ϕM (v1)
f(k,v1, 0) = eikr1f0

N = FN (0)and
(1 − P)FN (0) = 0.Also

∫

dvN−1drN e−ikr1PFN (t) = f(k,v1, t).The Liouville equation
∂

∂t
FN (t) = −KNFN (t)with KN given by (4), is now rewritten in the form

∂

∂t
[PFN (t)] = −PKNPFN (t) − PKN(1 − P)FN (t)and

∂

∂t
[(1 − P)FN (t)] = −(1 − P)KNPFN(t) − (1 − P)KN(1 − P)FN (t).Hen
e

∂

∂t
[PFN (t)]

= −PKNPFN (t) + PKN

t
∫

0

e−τ(1−P)KN (1 − P)KNPFN (t− τ) dτ



[100℄ R. Wojnarand �nally
( ∂

∂t
+ ikv1

)

f(k,v1, t)

=

∫

dvN−1drN e−ikr1PKN

t
∫

0

e−τ(1−P)KN eikr1
f0

N

ϕM (v1)
f(k,v1, t− τ) dτit is a general form of KE, 
orre
t also for small times, 
ompared to the time of
ollision.3. Density expansionAn alternative form of the kineti
 equation (2) is

(−iz + ikv1)f(k, v1, z) = G(k, z)f(k,v1, z) + f(k,v1, t = 0),where
f(t = 0) = ϕM (v1) =

( 2π

βm

)− 3
2

e−
1
2 βv2

1with f(k,v1, z) being Lapla
e transform of f(k,v1, t)

f(z) =

∞
∫

0

eiztf(t) dt.The s
attering operator in (2)
G(τ) =

∫

drNdvN−1 e−ikr1KNe−τ(1−P)KN (1 − P)KNeikr1f0
N

1

ϕM (v1)
.After Lapla
e transformation we get the equation

(−iz + ikv1)f(k,v1, z) − ϕM (v1)

=

∫

dvN−1drN e−ikr1PKN
1

−iz + (1 − P)KN

× (1 − P)KNeikr1
f0

N

ϕM (v1)
f(k,v1, z)whi
h right-hand side 
an be written as

G(k, z)f(k,v1, z) =

∫

dvN−1drN e−ikr1KN
1

−iz

1

1 − 1
iz (1 − P)KN

× (1 − P)KNeikr1
f0

N

ϕM (v1)
f(k,v1, z).



Kineti
 equation for a gas with attra
tive for
es as a fun
tional equation [101℄The �rst terms of the expansion are
G(k, z) =

∫

dvN−1drN e−ikr1

[ 1

iz
(KNKN −KNPKN)

+
( 1

iz

)2

(KNKNKN −KNKNPKN −KNPKNKN +KNPKNPKN)

+
( 1

iz

)3

(. . .) + . . .
]

eikr1
f0

N

ϕM (v1)
.In the dilute gas approximation only linear terms with respe
t to ρ = N

V arekept, and the following form of binary s
attering operator is obtained
G12(k, z) =

N − 1

V 2

∫∫∫

dr1dr2dv2 (−iz + ikv1)e
−ikr1

×

∞
∫

0

dt eizt
(

e−tK2 − e−tK0
2
)

(−iz + ikv1)e
ikr1e−βuϕM (v2).For k = 0 and z = 0 the s
attering operator redu
es to the Boltzmann s
atteringoperator. It also takes the Boltzmann form for k = 0, arbitrary z and su�
ientlyhigh velo
ity v1.4. Lorentz gasThe Lorentz gas 
orresponds to the 
asem2 → ∞, v2 → 0 and ϕM (v2) → δ(v2).Only the velo
ity of parti
le 1 remains and is denoted by v1 = v. The Lorentzmodel is widely studied as a simple model of a 
rystal, 
f. for example [67℄ � [78℄.
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&%
'$b a-light parti
le

Figure 1. Spheri
al potential: hard 
ore of radius b (bla
k 
ir
le) and well (whitering) with internal radius b and external radius aThe Lorentz gas was examined in [66℄ for the following 
ase of repulsive � attra
tivepotential, see Figure 1,
u(r) = ∞ if r < b, u(r) = −u0 < 0 if b < r < a, u(r) = 0 if r > a,where r is the radius in polar 
oordinates. Thus, the potential possesses spheri
alrigid repulsive 
ore of radius b surrounded by a well (b < r < a) of depth −u0,
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u0 > 0. S
attering operator for this potential, for the dilute Lorentz gas has thefollowing form

G12f(k, z,v) = i(−z + kv)
N

V

∫

dr e−βuϕM (v)e−ikr

×

∞
∫

t1

dt eizt
(

e−tK2 − e−tK0
2
)

eikri(−z + kv)
f(k, z,v)

ϕM (v)
.The KE for three-dimensional Lorentz gas of N − 1 �xed rigid spheres with thesquare-well attra
tive potential was given also in [66℄. It is an integral (in 
on-�gurational spa
e) and fun
tional (in velo
ity spa
e) equation for the unknowndistribution fun
tion ψ(v) whi
h links the values of ψ(v) at 8 di�erent values ofargument v.5. Lorentz gas of rigid spheres with finite time of 
ollision τ ∗The potential of rigid sphere with re
tangular well 
hanges the time of intera
-tion of the light parti
le with s
atterer, is 
ontrast to the zero time of intera
tionwith the rigid sphere potential alone. To avoid additional 
onsideration of s
atter-ing traje
tory we a

ept the rigid sphere potential (R1 = R2), in whi
h, however,the intera
ting parti
les remain 
onne
ted for a 
ertain time τ∗. This time of
ollision is negative in 
ase of the potential well. In this 
ase

G12f(k, z,v) = vϕM (v)
N

V

a2

4

∫

dΩ
[

Ψ(k, z,v′)eizτ∗

− Ψ(k, z,v) + 1 − eizτ∗]

,where integration is performed over the full solid angle and
Ψ(k, z,v) ≡

f(k, z,v)

ϕM (v)
.We introdu
e the following notation

πa2v
N

V
= ε−1

0 ,
1

4π

∫

dΩ = P̂ .Kineti
 equation takes the form
(−iz + ikv + ε−1

0 )Ψ − h = ε−1
0 eizτ∗

(P̂Ψ) + 1 − eizτ∗

.Here h = δ(v − v′) is the initial 
ondition. Hen
e
Ψ =

ε−1
0 eizτ∗

−iz + ikv + ε−1
0

P̂Ψ +
h+ 1 − eizτ∗

−iz + ikv + ε−1
0

.Therefore the solution reads
Ψ =

ε−1
0 eizτ∗

−iz + ikv + ε−1
0

(

1 −
eizτ∗

kvε0
arctan

kvε0
1 − iε0z

)−1

× P̂
h+ 1 − eizτ∗

−iz + ikv + ε−1
0

+
h+ 1 − eizτ∗

−iz + ikv + ε−1
0

.



Kineti
 equation for a gas with attra
tive for
es as a fun
tional equation [103℄For the hydrodynami
 pole we have
−iz = ε−1

0 + kv cot[(cos zτ∗ − i sin zτ∗)kvε0].If the time of 
ollision τ∗ = 0, KE equation be
omes
(−iz + ikv + ε−1

0 )Ψ − h = vϕM (v)
N

V

a2

4

∫

dΩ.This is the 
lassi
al Boltzmann equation for the Lorentz gas. Its solution has theform dis
ussed by Hauge in [78℄.6. One-dimensional KEThe 3 dimensional dynami
s, even for the Lorentz gas, is still too 
ompli
atedto be e�e
tively solved and for this reason we limit ourselves to 1-dimensionalmodel. It posseses some important features of 3-dimensional 
ase, but me
hani
sof the light parti
le motion is more simple. It may be expe
ted that the obtainedresults will have a more general meaning. Su
h pro
edure is often used, see [79℄ �[82℄.The one-dimensional 
onsiderations permitted Fermi, Pasta, Ulam and MaryTsingou to �nd that the behaviour of a 32-atom 
hain is quite di�erent fromintuitive expe
tation. Instead of thermalisation, a 
ompli
ated quasi-periodi
 be-haviour of the system was observed, [83℄, also [84℄.Morita and Fukui 
onsidered the heat transfer in one-dimensional gas, [85℄,while Ka
 [86℄ � [89℄ and M
Kean [90℄ 
onsidered one-dimensional analogues ofthe linear Boltzmann equation.

-x
6

potential
- b r0

u1
-u0 b- a a

-light parti
leV IV III II I
Figure 2. Con�gurational spa
e of one-dimensional model. Light parti
le movesin potential of a well of depth −u0 < 0 and a repulsive 
ore of hight u1 > 0



[104℄ R. WojnarThe Lorentz gas is examined here in one dimension, for the 
ase of attra
tive� repulsive potential
u(x) =











u1, |x| < b,

−u0 < 0, b < |x| < a,

0, |x| > a.The quantity −u0, with u0 > 0 is the depth of the potential well, while u1 > 0denotes the height of the potential barrier, see Figure 2.6.1. Kineti
 equation in 1 dimensionThe KE has still stru
ture of (5) but ve
tors are now one-dimensional
(−iz + ikv)f(k, v, z) − f(k, v, t = 0) = G(k, z)f(k, v, z).S
attering operator for the dilute Lorentz gas of N parti
les in one-dimensionalsegment L, (−L

2 < x < L
2 ), has the following form

G(k, z)f(k, v, z) = i(−z + kv)
N

L

∫

dx e−βuϕM (v)e−ikx

×

∞
∫

t1

dt eizt
(

e−tK2 − e−tK0
2
)

eikxi(−z + kv)
f(k, z, v)

ϕM (v)

(6)Here K2 is the two parti
le Liouville operator, see (4), for N = 2. In 
al
ulations
L → ∞ but N

L is kept 
onstant. Su
h pro
edure is known as the thermodynami
limit (one in
reases the volume together with the parti
le number so that theaverage parti
le number density remains 
onstant). Thus, integration with respe
tto x extends from minus to plus in�nity. Below we put
Ψ(v) =

f(k, z, v)

ϕM (v)
.The phase spa
e is now two-dimensional only: one-dimension for positions andanother for velo
ities of the light parti
le. The position spa
e is divided into 5regions, from I to V, see Figure 2, while the velo
ity spa
e in ea
h of these regionsis divided, in dependen
e of kineti
 energy of the parti
le (whether it permits forbounded or unbounded motion of the parti
le).6.2. Bounded motionsThe bounded motion of parti
le o

urs in regions of the potential well, II andIV, only, if simultaneously the parti
le kineti
 energy is less than the depth of thewell u0.



Kineti
 equation for a gas with attra
tive for
es as a fun
tional equation [105℄Regions b ≤ x ≤ a and −a ≤ x ≤ −bLet us 
onsider bounded motion of our parti
le in segment b ≤ x ≤ a withvelo
ity v <
√

2
mu0. The position of parti
le along its traje
tory is given byrelation

e−tK2x = x(−t)

= x− vtη(t1 − t) − [vt1 + v′(t− t1)]η(t− t1)η(t2 − t)

− [vt1 + v′(t2 − t1) + v′′(t− t2)]η(t− t2)η(t3 − t)

− [vt1 + v′(t2 − t1) + v′′(t3 − t2) + v′′′(t− t3)]η(t− τ3)η(t4 − t)

− . . .− [vt1 + v′(t2 − t1) + v′′(t3 − t2) + v′′′(t4 − t3) + v′′′′(t5 − t4)

+ . . .+ v(2n)(t2n+1 − t2n) + v(2n+1)(t− t2n+1)]η(t − τ2n+1).Similarly, the velo
ity is given by
e−tK2v = v(−t)

= vη(t1 − t) + v′(t− t1)η(t2 − t) + v′(t− t1)η(t2 − t)

+ v′′η(t− t2)η(t3 − t) + v′′′η(t− t3)η(t4 − t)

+ . . .+ v(2n−1)η(t− t2n−1)η(t2n − t)

+ v(2n)η(t− t2n)η(t2n+1 − t) + v(2n+1)η(t− t2n+1).In the equation above we have
v′ = −v, v′′ = v, . . . , v(2n−1) = −v, v(2n) = vand 2n denotes the number of full periods performed by the parti
le in the time

t. Moreover, tm, m = 1, 2, . . . denotes the moment of boun
ing from the wall ofthe well. The instant of the �rst 
ollision of the parti
le with wall is given by
t1 =

x− b

|v|
(7)and the next instants satisfy relations

t2 − t1 = t3 − t2 = . . . = tm − tm−1 = τ =
a− b

|v|
.Di�eren
es between the subsequent moments are identi
al and equal τ . Thereforethe period of boun
ing is 2τ .For the time being we repla
e the in�nity in the upper limit of time integral in(6) by T , and next extend T → ∞ and n→ ∞.

(G(k, z)f(k, v, z))IIA

= i(−z + kv)
N

L
eβu0ϕM (v)

a
∫

b

dx e−ikx

{ t2
∫

t1

dt ei(z+kv)te−ik2vt1 i(−z − kv)tΨ(−v)
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+

t3
∫

t2

dt ei(z−kv)te−ik[vt1−v(t2−t1)−vt2]i(−z + kv)tΨ(v)

+

t4
∫

t3

dt ei(z+kv)te−ik[vt1+vt3]i(−z − kv)tΨ(−v)

+

t5
∫

t4

dt ei(z−kv)te−ik[vt1−v(t4−t3)−vt4]i(−z + kv)tΨ(v)

+ . . .+

t2n
∫

t2n−1

dt ei(z+kv)te−ik[vt1+vt2n−1]i(−z − kv)tΨ(−v)

+

t2n+1
∫

t2n

dt ei(z−kv)te−ik[vt1−v(t2n−t2n−1)−vt2n]i(−z + kv)tΨ(v)

+

T
∫

t2n+1

dt ei(z+kv)te−ik[vt1+vt2n+1]i(−z − kv)tΨ(−v)

−

T
∫

t1

dt ei(z−kv)ti(−z + kv)tΨ(v)

}

.We take n so large that
T − t2n+1 < τ.We integrate at �rst with respe
t to t, and next with respe
t to x. Variable x isfound only in time of the �rst 
ollision t1 = x−b

v , 
f. (7). After integration andpassing with n to in�nity, there appear series ot type
1 + eiz2τ + eiz4τ + . . .+ eiz2nτ + . . . =

1

1 − eiz2τ
for n→ ∞.Finally we �nd the following KE

(−iz + ikv)Ψ(v) − h(v) = C[Ψ(−v) − Ψ(v)]with
h(v) =

f(k, v, t = 0)

ϕM (v)
and C =

N

L
|v|

1 − 2eizτ cos(kvτ) + eizτ

1 − eizτ
eβu0 .Remark that C is even in v. The solution of KE reads

Ψ(v) =
(−iz − ikv + C)h(v) + Ch(−v)

−z2 − 2izC + k2v2
.Identi
al relation des
ribes the bound motion in segment −a ≤ x ≤ −b, withvelo
ity v < √

2
mu0.
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es as a fun
tional equation [107℄6.3. Unbounded motionsThe phase subspa
es of bounded and unbounded one-dimensional motions ofthe parti
le are separated by the value of its kineti
 energy, in the dilute gasapproximation. The parti
le on
e trapped in bounded motion, persists in it forever,and a parti
le in the phase subspa
e where unbounded motion o

urs 
an neverbe
ome bounded.6.3.1. Region I: (a < x < ∞)The parti
le whi
h is at the time t = 0 in this region is subje
t to 3 a

elerationsif its kineti
 energy is less then the height of the potential barrier u1 (Case IA) or4 a

elerations if it is higher (Case IB).Case IA: if 0 < v <
√

2
mu1 we have

x(−t) = x− vtη(t1 − t) − [vt1 + v′(t− t1)]η(t− t1)η(t2 − t)

− [vt1 + v′(t2 − t1) + v′′(t− t2)]η(t− t2)η(t3 − t)

− [vt1 + v′(t2 − t1) + v′′(t3 − t2) + v′′′(t− t3)]η(t− t3)and
v(−t) = vη(t1 − t) + v′η(t2 − t)η(t− t1) + v′′η(t3 − t)η(t− t2) + v′′′η(t− t3)with

v′ =
v

|v|

√

v2 +
2

m
u0, v′′ = −v′, v′′′ = −v (8)and

t1 =
x− a

|v|
, t2 = t1 +

a− b

|v′|
, t3 = t2 +

a− b

|v′|
= t1 + 2

a− b

|v′|denote the moments of subsequent 
ollisions. As before (Se
tion 6.2), the positionvariable x is hidden in t1.After straightforward 
al
ulations we get the part of right hand side of (6)linked to this subregion
Gf(IA) =

N

L
|v|ϕM (v)

{[

1 − e
i(z−kv′) a−b

|v′
|

]

Ψ(v′)

+
[

1 − e
i(z+kv′) a−b

|v′
|

]

e
i(z−kv′) a−b

|v′
| Ψ(−v′) + e

iz2 a−b

|v′
| Ψ(−v) − Ψ(v)

}Case IB: if v > √

2
mu1 we have

x(−t) = x− vtη(t1 − t) − [vt1 + v′(t− t1)]η(t− t1)η(t2 − t)

− [vt1 + v′(t2 − t1) + v′′(t− t2)]η(t− t2)η(t3 − t)

− [vt1 + v′(t2 − t1) + v′′(t3 − t2) + v′′′(t− t3)]η(t− τ3)η(t4 − t)

− [vt1 + v′(t2 − t1) + v′′(t3 − t2) + v′′′(t4 − t3) + v′′′′(t− t4)]η(t− t4)
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v(−t) = vη(t1 − t) + v′η(t2 − t)η(t− t1) + v′′η(t3 − t)η(t− t2)

+ v′′′η(t4 − t)η(t− t3) + v′′′′η(t− t4)with
v′ =

v

|v|

√

v2 +
2

m
u0, v′′ =

v

|v|

√

v2 −
2

m
u1, v′′′ = v′, v′′′′ = v (9)and

t1 =
x− a

v
, t2 = t1 +

a− b

v′
, t3 = t2 +

2b

v′′
t4 = t3 +

a− b

v′
.In this subregion

Gf(IB) =
N

L
|v|ϕM (v)

{[

1 − e
i(z−kv′) a−b

|v′
|

][

1 + e
i(z−kv′′) 2b

|v′′
| e

i(z−kv′) a−b

|v′
|

]

Ψ(v′)

+
[

1 − e
i(z+kv′′) 2b

|v′′|

]

e
i(z−kv′) a−b

|v′
| Ψ(v′′)

−
[

1 − e
i(z−kv′)2 a−b

|v′
| e

i(z−kv′′) 2b

|v′′
|

]

Ψ(v)
}

.6.3.2. Region II: b < x < aThe bounded motion in this region was des
ribed in Se
tion 6.2.The parti
le whi
h is at the time t = 0 in this region and has kineti
 energyhigher than the depth of the well u0, is in an unbounded motion and has undergone2 a

elerations if its kineti
 energy is lower than the hight of potential barrier u1(Case IIA) or 3 a

elerations if its kineti
 energy is higher than the barrier (CaseIIB).Case IIA: if √

2
mu1 > v >

√

2
mu0 we have

x(−t) = x− vtη(t1 − t) − [vt1 + v′(t− t1)]η(t− t1)η(t2 − t)

− [vt1 + v′(t2 − t1) + v′′(t− t2)]η(t− t2)and
v(−t) = vη(t1 − t) + v′η(t2 − t)η(t− t1) + v′′η(t− t2)with

v′ = −v, v′′ = −
v

|v|

√

v2 −
2

m
u0 and t1 =

x− b

|v|
, t2 = t1 +

a− b

|v|
.Now

Gf(IIA) =
N

L
|v|eβu0ϕM (v)

[

1 − e−i(z+kv) a−b

|v|

]

{[

1 − ei(z+kv) a−b
|v|

]

Ψ(−v) + ei(z+kv) a−b
|v| Ψ(v′′)) − Ψ(v)

}

.



Kineti
 equation for a gas with attra
tive for
es as a fun
tional equation [109℄Case IIB: if v > √

2
mu1 we have

x(−t) = x− vtη(t1 − t) − [vt1 + v′(t− t1)]η(t− t1)η(t2 − t)

− [vt1 + v′(t2 − t1) + v′′(t− t2)]η(t− t2)η(t3 − t)

− [vt1 + v′(t2 − t1) + v′′(t3 − t2) + v′′′(t− t3)]η(t− τ3)and
v(−t) = vη(t1 − t) + v′η(t2 − t)η(t− t1) + v′′η(t− t2)η(t3 − t) + v′′′η(t− t3)with

v′ =
v

|v|

√

v2 −
2

m
(u0 + u1), v′′ = v, v′′′ =

v

|v|

√

v2 −
2

m
u0 (10)and

t1 =
x− b

v
, t2 = t1 +

2b

|v′|
t3 = t2 +

a− b

|v|
.Now

Gf(IIB) =
N

L
|v| eβu0ϕM (v)

[

1 − ei(z−kv) a−b
|v|

]

×
{[

1 − e
i(z−kv′) 2b

|v′
|

]

Ψ(v′) + e
i(z−kv′) 2b

|v′
| ei(z−kv) a−b

|v| Ψ(v′′′)

+
([

1 − ei(z−kv) a−b

|v|

]

e
i(z−kv′) 2b

|v′
| − 1

)

Ψ(v)
}

.6.3.3. Region III: −b < x < bThe parti
le being at t = 0 in this region, has undergone 2 a

elerations. Thetime dependen
e of its position and velo
ity is the following
x(−t) = x− vtη(t1 − t) − [vt1 + v′(t− t1)]η(t− t1)η(t2 − t)

− [vt1 + v′(t2 − t1) + v′′(t− t2)]η(t− t2)and
v(−t) = vη(t1 − t) + v′η(t2 − t)η(t− t1) + v′′η(t− t2)with
v′ =

v

|v|

√

v2 +
2

m
(u0 + u1), v′′ =

v

|v|

√

v2 +
2

m
u1 (11)and

t1 =
x+ b

|v|
, t2 = t1 +

a− b

|v′|
.Now

Gf(III) =
N

L
e−βu1 |v|ϕM (v)

[

1 − ei(z−kv) 2b
|v|

]

×
{

e
i(z−kv′) a−b

|v′
| Ψ(v′′) +

[

1 − ei(z−kv′) a−b
|v′|

]

Ψ(v′) − Ψ(v)
}

.
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le whi
h is at the time t = 0 in this region and has kineti
 energyless than the depth of the well, is in the bounded motion (see se
tion 6.2). In theopposite 
ase, the parti
le has undergone 1 a

eleration.If v > √

2
mu0 we have
x(−t) = x− vtη(t1 − t) − [vt1 + v′(t− t1)]η(t− t1)and

v(−t) = vη(t1 − t) + v′η(t− t1)with
v′ =

v

|v|

√

v2 −
2

m
u0 and t1 =

x+ a

|v|
.Then

Gf(IV ) =
N

L
eβu0 |v|ϕM (v)

[

1 − ei(z−kv) a−b
v

]

[Ψ(v′) − Ψ(v)].6.3.5. Region V: −∞ < x < −aIn this region the potential vanishes and operators exp(−tK2) and exp(−tK2)are identi
al, and 
ontribution of this region to the integral operator G is zero.7. Kineti
 equation in 1 dimensionWe gather all 
ontributions to the s
attering operator found in the previousse
tion to get KE for unbounded motions (v2 > 2
mu0). At �rst we introdu
e
ommon de�nitions of velo
ities appearing in the equation. These are

v1 =
v

|v|

√

v2 −
2

m
(u0 + u1) for v2 ≥

2

m
(u0 + u1) cf. (10)1

v2 =
v

|v|

√

v2 −
2

m
u1 for v2 ≥

2

m
u1 cf. (9)2

v3 =
v

|v|

√

v2 −
2

m
u0 for v2 ≥

2

m
u0 cf. (10)3

v4 =
v

|v|

√

v2 +
2

m
u0 cf. (8)1

v5 =
v

|v|

√

v2 +
2

m
u1 cf. (11)2

v6 =
v

|v|

√

v2 +
2

m
(u0 + u1) cf. (11)1in the form

(−iz + ikv)Ψ(v) − h(v) = GΨ(v)
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tive for
es as a fun
tional equation [111℄with
h(v) =

f(k, v, t = 0)

ϕM (v)and
GΨ(v)

=
N

L
|v|

1

ϕM (v)

[

Gf(III) +Gf(IV )

+ η(v2 <
2

m
u1)

(

Gf(IA) +Gf(IIA)

)

+ η
(

v2 >
2

m
u1

) (

Gf(IB) +Gf(IIB)

)

]or
GΨ(v)

=
N

L
|v|

[

e−βu1
(

1 − ei(z−kv) 2b
|v|

)

{

e
i(z−kv6) a−b

|v6| Ψ(v5)

+
[

1 − e
i(z−kv6) a−b

|v6|

]

Ψ(v6) − Ψ(v)
}

+ eβu0

[

1 − ei(z−kv) a−b
v

]

[Ψ(v3) − Ψ(v)]

+ η
( 2

m
u1 − v2

)

{[

1 − e
i(z−kv4) a−b

|v4|

]

Ψ(v4)

+
[

1 − e
i(z+kv4) a−b

|v4|

]

e
i(z−kv4) a−b

|v4| Ψ(−v4) + e
iz2 a−b

|v4| Ψ(−v) − Ψ(v)
}

+ eβu0

[

1 − e−i(z+kv) a−b

|v|

]

×
{[

1 − ei(z+kv) a−b
|v|

]

Ψ(−v) + ei(z+kv) a−b
|v| Ψ(−v3) − Ψ(v)

}

+ η
(

v2 −
2

m
u1

)

{[

1 − e
i(z−kv4) a−b

|v4|

][

1 + e
i(z−kv2) 2b

|v2| e
i(z−kv4) a−b

|v4|

]

Ψ(v4)

+
[

1 − e
i(z+kv2) 2b

|v2|

]

e
i(z−kv4) a−b

|v4| Ψ(v4)

−
[

1 − e
i(z−kv4)2 a−b

|v4| e
i(z−kv2) 2b

|v2
|
]

Ψ(v)
}

+ eβu0

[

1 − ei(z−kv) a−b

|v|

]{[

1 − e
i(z−kv1) 2b

|v1|

]

Ψ(v1)

+ e
i(z−kv1) 2b

|v1| ei(z−kv) a−b

|v| Ψ(v3)

+
([

1 − ei(z−kv) a−b
|v|

]

e
i(z−kv1) 2b

|v1| − 1
)

Ψ(v)
} ]For k, z → 0, it is for the long waves and low frequen
ies, the s
attering operatorof our KE 
hanges to the Boltzmann operator

GΨ((v) =
N

L
|v| [Ψ(−v) − Ψ(v)] . (12)Our s
attering operator takes also the form of the Boltzmann operator for su�-
iently high velo
ity v, if the time of 
ollision of light partile with heavy parti
leof 
rystal 
an be negle
ted.From mathemati
al point of view, we see that our KE generates an in�nitesequen
e of fun
tional equations. Its solution is a problem for the next publi
ation.
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t solutions 
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z = 0 operator redu
es to the Boltzmann s
attering operator. Thus our approa
henlarges the possibility of des
ription of di�usion for the 
ase when time of parti
le
ollisions is not negligeable. The KE for light parti
le di�usion in one-dimensionalLorentz gas was also derived. The solution of this KE will be dis
ussed later.The 
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Report of Meeting13th International Conferen
e on Fun
tional Equationsand Inequalities,Maªe Ci
he, September 13-19, 2009ContentsAbstra
ts of Talks 118Problems and Remarks 144List of Parti
ipants 150The Thirteenth International Conferen
e on Fun
tional Equations and Inequal-ities was held from September 13 to 19, 2009 at the Hotel Tatry in Maªe Ci
he,Poland.The series of ICFEI meetings has been organized by the Institute of Mathemat-i
s of the Pedagogi
al University of Cra
ow sin
e 1984. This year the OrganizingCommittee 
onsisted of Janusz Brzd�k as Chairman, Paweª Solarz, Janina Wier-
io
h, Wªadysªaw Wilk, and Krzysztof Ciepli«ski, who also a
ted as S
ienti�
Se
retary. The help of Ja
ek Chmieli«ski, Marek Czerni, Zbigniew Le±niak andJolanta Olko is a
knowledged with thanks.The S
ienti�
 Committee 
onsisted of Professors Dobiesªaw Brydak as Hon-orary Chairman, Janusz Brzd�k as Chairman, Ni
ole Brillouët-Belluot, Ja
ekChmieli«ski, Bogdan Cho
zewski, Roman Ger, Hans-Heinri
h Kairies, LászlóLoson
zi, Zsolt Páles and Marek Cezary Zdun.As usual, the 
onferen
e was devoted mainly to various aspe
ts of fun
tionalequations and inequalities. A spe
ial emphasis was given to the stability of fun
-tional equations. A Spe
ial Session in honor of the 100th anniversary of thebirthday of Stanisªaw M. Ulam, devoted to this topi
 and 
haired by ProfessorThemisto
les M. Rassias, was held on Tuesday, September 15.The 76 parti
ipants 
ame from 10 
ountries: Austria, Fran
e, Germany, Gree
e,Hungary, Israel, Italy, Romania, Russia and Poland.The 
onferen
e was opened on Monday, September 14 by Professor JanuszBrzd�k � Chairman of the S
ienti�
 and Organizing Committees, who wel
omedthe parti
ipants in the name of the Organizing Committee and read a letter to



[118℄ Report of Meetingthem from Professor Wªadysªaw Bªasiak, the Dean of the Fa
ulty of Mathemati
s,Physi
s and Te
hni
al S
ien
e of the Pedagogi
al University. Opening address wasgiven by Professor Ja
ek Chmieli«ski, the Dire
tor of the Institute of Mathemati
s.Professor Bogdan Cho
zewski 
onveyed best regards for the parti
ipants from theHonorary Chairman of the ICFEI, Professor Dobiesªaw Brydak. The opening
eremony was followed by the �rst s
ienti�
 session 
haired by Professor RomanGer and the �rst le
ture was given by Professor Gian Luigi Forti. Altogether,during 26 s
ienti�
 sessions 3 le
tures and 67 talks were delivered. They fo
usedon fun
tional equations in a single variable and in several variables, fun
tionalinequalities, stability theory, 
onvexity, multifun
tions, iteration theory, means,dynami
al systems and other topi
s. Several 
ontributions have been made duringspe
ial Problems and Remarks sessions.On Tuesday, September 15, a pi
ni
 was organized. On the next day afternoonparti
ipants visited Zakopane, the �Winter Capital� of Poland. The ex
ursionin
luded a walking tour to Str¡»yska Valley, Sarnia Skaªa and Biaªego Valley inthe Tatra Mountains. In the evening the piano re
ital was performed by MarekCzerni and Hans-Heinri
h Kairies. On Thursday, September 17, a banquet washeld. On the following day a Flamen
o Evening was hosted by Maªgorzata Drzaª(dan
e & vo
al), Grzegorz Guzik (guitar) and Jagoda Romanowska (dan
e).The 
onferen
e was 
losed on Friday, September 18 by Professor Bogdan Cho-
zewski. The 14th ICFEI will be organized in 2011.The following part of the report 
ontains abstra
ts of the talks (in alphabeti
alorder of the authors' names), problems and remarks (in 
hronologi
al order ofpresentation) and a list of parti
ipants (with addresses).Abstra
ts of TalksRoman Badora Stability of some fun
tional equationsLet X be a group and let Λ be a �nite subgroup of the automorphism groupof X (N = cardΛ and the a
tion of λ ∈ Λ on x ∈ X is denoted by λx). We studythe stability of the following fun
tional equations
1

N

∑

λ∈Λ

f(x+ λy) = f(x)g(y) + h(y), x, y ∈ X,

1

N

∑

λ∈Λ

f(x+ λy) = f(y)g(x) + h(x), x, y ∈ X(f, g, h:X → K ∈ {R,C}), whi
h 
over Jensen's fun
tional equation, Cau
hy'sfun
tional equation, the exponential fun
tional equation, the fun
tional equationof the square of the norm and d'Alembert's fun
tional equation.Anna Bahyry
z On systems of equations with unknown multifun
tionsLet (G,+) be a grupoid, T be a nonempty set. Inspired by problem posed byZ. Moszner in [1℄ we investigate for whi
h additional assumptions putting on the
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tional Equations and Inequalities [119℄multifun
tions Z(t):T → 2G whi
h satisfy 
ondition
⋃

t∈T

Z(t) = Gand system of 
onditions
(∃t∈T i(t)j(t) 6= 0) =⇒

(

⋂

t∈T

Z(t)i(t) +
⋂

t∈T

Z(t)j(t) ⊂
⋂

t∈T

Z(t)i(t)j(t)

)

, (1)where Z(t)1 := Z(t), Z(t)0 := G \ Z(t) and i(t), j(t):T → {0, 1} are the arbitraryfun
tions not identi
ally equal to zero, the in
lusion in the above 
onditions (1)may be repla
ed by equality, obtaining the system of equations with unknownmultifun
tions.[1℄ Z. Moszner, Sur la fon
tion de 
hoix et la fon
tion d'indi
e, Ann. A
ad. Pedagog.Cra
. Stud. Math. 4 (2004), 143�169.Szabol
s Baják Invarian
e equations for Gini and Stolarsky means(joint work with Zs. Páles)Given three stri
t meansM,N,K: R2
+ → R+, we say that the triple (M,N,K)satis�es the invarian
e equation if

K
(

M(x, y), N(x, y)
)

= K(x, y), x, y ∈ R+holds. It is well known that K is uniquely determined by M and N , and it is
alled the Gauss 
omposition K = M ⊗N of M and N .Our aim is to solve the invarian
e equation when ea
h of the means M,N,Kis either a Gini or a Solarsky mean with di�erent parameters, thus we have to
onsider four di�erent equations. With the help of the 
omputer algebra systemMaple V Release 9, we give the general solutions of these equations.Karol Baron On Baire measurable solutions of some fun
tional equationsWe establish 
onditions under whi
h Baire measurable solutions f of
Γ(x, y, |f(x) − f(y)|) = Φ(x, y, f(x+ ϕ1(y)), . . . , f(x+ ϕN (y)))de�ned on a metrizable topologi
al group are 
ontinuous at zero.Svetlana S. Belmesova On the unbounded invariant 
urves of some polynomialmaps(joint work with L.S. Efremova)The unbounded traje
tories of the quadrati
 mapping F2(x, y) = (xy, (x−2)2)in the plane R2 has been studied in [1℄.In this work we deal with the one-parameter family of the quadrati
 mappings

Fµ(x, y) = (xy, (x− µ)2), (1)where (x, y) ∈ R2, µ ∈ (0, 1]. It is proved the existen
e of the unbounded invariant
urves for the mappings (1) for every µ ∈ (0, 1].[1℄ S.S. Belmesova, L.S. Efremova, On unbounded traje
tories of a 
ertain quadrati
 map-ping of the plane, J. Math. S
i. (N. Y.) 157 (2009), 433�441.



[120℄ Report of MeetingMihály Bessenyei On a 
lass of single variable fun
tional equationsIn the last few years, fun
tional equations have had a growing importan
ein 
ompetitions for se
ondary s
hool students in Hungary (browse the issues ofMathemati
al and Physi
al Journal for Se
ondary S
hools). A typi
al exer
ise isof the form
α1f ◦ g1 + . . .+ αnf ◦ gn = h,where gk, αk, h, f are given fun
tions (with appropriate domain and range) underthe assumption that g1, . . . , gn generate a group under the operation of 
omposi-tion. The main results of the present talk guarantee that, under some reasonableassumptions, the fun
tional equation above (and also its nonlinear 
orresponden
e)has a unique solution. The proofs are based on Cramer's rule and the inverse-fun
tion theorem.[1℄ Mathemati
al and Physi
al Journal for Se
ondary S
hools (KöMal)(http://www.komal.hu).[2℄ V.S. Brodskii, A.K. Slipenko, Fun
tional equations, Visa Skola, Kiev, 1986 (in Rus-sian).[3℄ K. Lajkó, Fun
tional equations in exer
ises, University Press of Debre
en, 2005 (inHungarian).Zoltán Boros Inequalities for pairs of additive fun
tionsRepresentation theorems are presented for pairs of additive fun
tions, underthe assumption that a related expression is lo
ally bounded. Let us assume that

f and g are real additive fun
tions. If
1

x
f(x) + xg

(1

x

)is bounded on a non-void open interval or
xf(x) +

√

1 − x2g
(

√

1 − x2
)is bounded on every 
ompa
t subinterval of the open interval (0, 1), then thereexists a real derivation d su
h that

f(x) = d(x) + f(1)x and g(x) = d(x) + g(1)xfor every real number x. However, if, for instan
e,
√

1 − x2f(x) − xg
(

√

1 − x2
)is bounded on every 
ompa
t subinterval of the open interval (0, 1), then f and gare linear.Ni
ole Brillouët-Belluot Some further results 
on
erning a 
onditional Goª¡b�S
hinzel equation(joint work with J. Chudziak and J. Brzd�k)Let X be a real linear spa
e and letM : R → R be a 
ontinuous and multipli
a-tive fun
tion. We determine the solutions f :X → R of the fun
tional equation

f(x+M(f(x))y)f(x)f(y)[f(x +M(f(x))y) − f(x)f(y)] = 0
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tional Equations and Inequalities [121℄whi
h are 
ontinuous on rays, i.e., whi
h are su
h that, for every x ∈ X \ {0},
fx: R → R de�ned by fx(t) = f(tx) is 
ontinuous.In the parti
ular 
ases where M ≡ 1 and M(x) ≡ x, we obtain the 
ontinuouson rays solutions of a 
onditional exponential equation and those of a 
onditionalGoª¡b�S
hinzel equation.These results extend those given by the authors at the 47th ISFE in Gargnano.Janusz Brzd�k On nonstability of the linear re
urren
e of order one(joint work with D. Popa and B. Xu)Let K be either the �eld of reals or the �eld of 
omplex numbers, X be aBana
h spa
e over K, (an)n≥0 a sequen
e in K \ {0}, and (bn)n≥0 a sequen
e in
X . We present a result 
on
erning nonstability of the linear re
urren
e

yn+1 = anyn + bn, n ≥ 0.This 
orresponds to the 
ontents, e.g., of re
ent papers [1�5℄.[1℄ J. Brzd�k, D. Popa, B. Xu, Note on nonstability of the linear re
urren
e, Abh. Math.Sem. Univ. Hamburg 76 (2006), 183�189.[2℄ J. Brzd�k, D. Popa, B. Xu, The Hyers�Ulam stability of nonlinear re
urren
es, J.Math. Anal. Appl. 335 (2007), 443�449.[3℄ J. Brzd�k, D. Popa, B. Xu, Hyers�Ulam stability for linear equations of higher orders,A
ta Math. Hungar. 120 (2008), 1�8.[4℄ D. Popa, Hyers�Ulam�Rassias stability of a linear re
urren
e, J. Math. Anal. Appl.309 (2005), 591�597.[5℄ T. Trif, On the stability of a general gamma-type fun
tional equation, Publ. Math.Debre
en 60 (2002), 47�61.Pál Burai Some results on Orli
z-
onvex fun
tions(joint work with A. Házy)Let X be a linear spa
e over the real �eld R, and C ⊂ X be an open, nonempty
one. A fun
tion f : C → R is 
alled s-
onvex (Orli
z-
onvex) if
f (λsx+ (1 − λ)sy) ≤ λf(x) + (1 − λ)f(y)for all x, y ∈ C, λ ∈ (0, 1], where s ∈ [1,∞) is a �xed number. In this talk we makesome examination in this 
lass of fun
tions.Liviu C dariu Remarks on the �xed point method for Ulam�Hyers stabilityIn [1℄ and [2℄ some generalized Ulam�Hyers stability results for Cau
hy fun
-tional equation have been proved. One of the results reads as follows:Let us 
onsider a real linear spa
e E, a 
omplete p-normed spa
e F and a sub-homogenous fun
tional of order α ||(·, ·)||α:E × E → [0,∞), with α 6= p. Inthese 
onditions, the following stability property holds: For ea
h ε > 0 there exists

δ(ε) > 0 su
h that for every mapping f :E → F whi
h satis�es
||f(x) + f(y) − f(x+ y)||p ≤ δ(ε) · ||(x, y)||α, x, y ∈ E,
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h that
||f(x) − a(x)||p ≤ ε · ||(x, x)||α, x ∈ E.We intend to outline the results 
on
erning the generalized Ulam�Hyers stabil-ity for di�erent other kinds of fun
tional equations. Both the Hyers dire
t methodand the �xed point method will be emphasized and we shall 
onsider fun
tionsde�ned on linear spa
es and taking values in p-normed spa
es or random normedspa
es.[1℄ L. C dariu, A general theorem of stability for the Cau
hy's equation, Bull. �tiinµ.Univ. Politeh. Timi³. Ser. Mat. Fiz. 47(61) (2002), 14�28.[2℄ L. C dariu, V. Radu, On the stability of the Cau
hy fun
tional equation: a �xedpoints approa
h, Iteration theory (ECIT'02), 43�52, Grazer Math. Ber. 346, Karl�Franzens�Univ. Graz, Graz, 2004.[3℄ D.H. Hyers, G. Isa
, Th.M. Rassias, Stability of fun
tional equations in severalvariables, Progress in Nonlinear Di�erential Equations and their Appli
ations 34,Birkhäuser Boston, In
., Boston, MA, 1998.[4℄ V. Radu, The �xed point alternative and the stability of fun
tional equations, FixedPoint Theory 4 (2003), 91�96.Ja
ek Chmieli«ski Stability of linear isometries and orthogonality preservingmappingsIn referen
e to a question posed by the author during the 12th ICFEI, a shortsurvey on linear approximate isometries in normed spa
es and respe
tive stabilityproblems will be given.Next, an appli
ation to the problem of stability of orthogonality preservingmappings in normed spa
es will be shown. Results from a joint work with P. Wój-
ik will be presented.Ja
ek Chudziak Stability of a 
omposite fun
tional equationAt the 47th International Symposium on Fun
tional Equations (Gargnano,Italy) J. Brzd�k has posed several questions 
on
erning a quotient stability of thefollowing generalization of the Goª¡b�S
hinzel fun
tional equation

f(x+M(f(x))y) = f(x)f(y).In our talk we present the answers for some of them.Krzysztof Ciepli«ski Stability of the multi-Jensen equationAssume that V is a normed spa
e, W is a Bana
h spa
e and m ≥ 2 is aninteger. A fun
tion f :V m →W is 
alled multi-Jensen (we also say that f satis�esmulti-Jensen equation) if it is a Jensen mapping in ea
h variable, that is
f(x1, . . . , xi−1,

1

2
(xi + yi), xi+1, . . . , xm)

=
1

2
f(x1, . . . , xi−1, xi, xi+1, . . . , xm) +

1

2
f(x1, . . . , xi−1, yi, xi+1, . . . , xm),

i ∈ {1, . . . ,m}, x1, . . . , xi, yi, . . . , xm ∈ V.
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e on Fun
tional Equations and Inequalities [123℄This notion was introdu
ed by W. Prager and J. S
hwaiger in 2005 with the
onne
tion with generalized polynomials (see [1℄).In this talk the stability of multi-Jensen equation is dis
ussed.[1℄ W. Prager, J. S
hwaiger,Multi-a�ne and multi-Jensen fun
tions and their 
onne
tionwith generalized polynomials, Aequationes Math. 69 (2005), 41�57.Stefan Czerwik S.M. Ulam � his life and results in mathemati
s, physi
s andbiologyWe shall present the information about the life of S.M. Ulam and his resultsin di�erent areas of s
ien
e: mathemati
s, physi
s and biology; parti
ularly instability of fun
tional equations and H-bomb.Zoltán Daró
zy On an elementary inequality and 
onjugate means(joint work with Zs. Páles)Let n ≥ 2, k ≥ 1. In this talk we give the ne
essary and su�
ient 
onditionfor the real numbers p1, p2, . . . , pn, q1, q2, . . . , qk to ful�ll the following property:If
min{xi} ≤Ml ≤ max{xi}, l = 1, 2, . . . , kholds for all real numbers x1, x2, . . . , xn and M1,M2, . . . ,Mk, then
min{xi} ≤

n
∑

i=1

pixi +

k
∑

l=1

qlMl ≤ max{xi}.Let I be a nonvoid open interval and let Ml: I
n → I (l = 1, 2, . . . , k) be means.If there exist p1, p2, . . . , pn, q1, q2, . . . , qk with the property above and a stri
tlymonotone, 
ontinuous fun
tion ϕ on I, then

M(x1, x2, . . . , xn)

= ϕ−1

( n
∑

i=1

piϕ(xi) +

k
∑

l=1

qlϕ(Ml(x1, x2, . . . , xn))

)

, x1, x2, . . . , xn ∈ Iis a mean value and we 
all it the 
onjugate mean generated by the means M1,
M2, . . . ,Mk.We deal with several problems on 
onjugate means.Judita Das
 l On 
onjugate means(joint work with Z. Daró
zy)Let I ⊂ R be a nonvoid open interval.A fun
tion M : I2 → I is said to be a 
onjugate mean on I if there exist realnumbers p, q ∈ [0, 1] and a 
ontinuous, stri
tly monotone real valued fun
tion ϕde�ned on I su
h that

M(x, y) = ϕ−1
(

pϕ(x) + qϕ(y) + (1 − p− q)ϕ
(x+ y

2

))

, x, y ∈ I.We deal with the equality problem in the 
lass of 
onjugate means.
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him Domsta A 
omparison of quantum dynami
al semigroups obtainable bymixing or partial tra
ingSome simple examples of quantum systems are 
olle
ted to illustrate require-ments su�
ient for the evolution of a subsystem a

ording to a quantum dynami
alsemigroup. For this, a 
lass of quantum dynami
s of a system S 
oupled to a reser-voir R is analyzed in the Hilbert spa
e HSR = HS ⊗HR, where HR = L2(R) and
HS = l2I , with I standing for a 
omplete at most 
ountable set of pure orthogonalstates of S. The Hamiltonian of SR is built of tensor produ
ts of multipliers a
tingon HS and HR. The 
hosen linear 
oupling implies the exponential de
oheren
eof the redu
ed evolution of S if and only if the o

upation density in R is of theCau
hy type. Then the system indi
ates the exponential de
oheren
e. On theother hand, sin
e the o

upation density in S is dis
rete, the redu
ed evolution of
R is never governed by a semigroup (unless there is no 
oupling).In the 
onsidered 
ase, the redu
ed evolution of the subsystem S as well asof the reservoir R 
an be equivalently obtained by taking the expe
tation (i.e.by averaging) of the unitary dynami
s of the alone standing system S or R withsuitably 
hosen random Hamiltonians. Thus again, the probability distributionof the random perturbation for S must be of the Cau
hy type if the exponentialde
oheren
e should follow.In the models of the third 
lass the phase of the quantum system S varies a
-
ording to a sto
hasti
 pro
ess with independent stationary in
rements. In otherwords, this is an example of a random dynami
al system. Then the exponentialde
oheren
e of the evolution of the averaged state follows, independently of thedistribution of the pro
ess. In su
h 
ases the It�-S
hrödinger equation for the ran-dom unitary dynami
s and the master equation for the averaged density matri
esare obtained in the dependen
e on the probability distribution of the pro
ess. Forpresenting the Cau
hy distribution in a di�erent 
ontext, a relation to the expo-nential de
ay of the auto
orrelation of autonomous systems is dis
ussed brie�y.Andrey S. Fil
henkov On the simplest topologi
ally transitive skew produ
ts inthe plane(joint work with L.S. Efremova)Let F (x, y) = (f(x), gx(y)) : I → I be a skew produ
t of interval maps, I is are
tangle in the plane, I = I1 × I2 (I1, I2 are 
losed intervals). Let T 1(I) be thespa
e of C1(I)-smooth skew produ
ts of interval maps.In this talk we present 
onditions of the density of the set of periodi
 points inthe phase spa
e of the skew produ
t.Theorem.Let F ∈ T 1(I) satisfy the following 
onditions:1) F (x, y) is a topologi
ally transitive skew produ
t of interval maps,2) the partial derivative ∂gx(y)

∂y monotoni
ally de
reases with respe
t to y ∈ I2for any x ∈ I1,3) gx(∂I2) = ∂I2 for any x ∈ I1, where ∂I2 is the boundary of I2.
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e on Fun
tional Equations and Inequalities [125℄Then the set of periodi
 points of the skew produ
t of interval maps is dense in I.In this talk we also 
onstru
t the topologi
ally transitive skew produ
t whi
hsatis�es all 
onditions of the above theorem. We use here the unimodal mapstheory (see [2℄). For the 
omparison in [3℄ it is proved the existen
e of the topolog-i
ally transitive 
ylindri
al 
as
ade (the skew produ
t over the irrational rotationof the 
ir
le) without periodi
 points. In [1℄ it is 
onstru
ted an example of 
on-tinuous but not smooth topologi
ally transitive skew produ
t in the unit squarewhi
h has the dense set of periodi
 points in horizontal �bers y = 0 and y = 1.[1℄ Ll. Alseda, S. Kolyada, J. Llibre, L. Snoha, Entropy and periodi
 points for transitivemaps, Trans. Amer. Math. So
. 351 (1999), 1551�1573.[2℄ L.S. Efremova, A.S. Fil
henkov, About one example of the topologi
ally transitive skewprodu
t of interval maps in the plane, Math problems, M.:MPhTI 2009, 61�68.[3℄ E.A. Sidorov, Topologi
ally transitive 
ylindri
al 
as
ades (Russian), Mat. Zametki14 (1973), 441�452.Gian Luigi Forti Symboli
 dynami
s generated by graphsIn many natural phenomena strings 
onsisting of sequen
es of symbols playa 
entral role. Also the evolution of large 
lasses of dynami
al systems 
an bedes
ribed, under 
ertain 
onditions, as a sequen
e of symbols. In this 
ontext,a 
entral question is how to enumerate and to 
hara
terize the full set of possiblesequen
es generated by a dynami
al system.At �rst, the properties of the symboli
 dynami
s generated by a graph onan alphabet are presented and it is shown that the number of sequen
es of length
n is either exponential or polynomial with respe
t to n.Then by a 
ombination of several graphs we obtain di�erent laws. In parti
-ular we 
an obtain laws observed in 
omplex systems and 
onje
tured in 1992 byEbeling and Ni
olis.We �nish by presenting a probabilisti
 approa
h to the problem.[1℄ V. Basios, G.-L. Forti, G. Ni
olis, Symboli
 dynami
s generated by a 
ombination ofgraphs, Internat. J. Bifur. Chaos Appl. S
i. Engrg. 18 (2008), 2265�2274.Roman Ger On a problem of Cu
ulièreIn the February 2008 issue of The Ameri
an Mathemati
al Monthly (Problemsand Solutions, p.166) the following question was proposed by R. Cu
ulière:Find all nonde
reasing fun
tions f from R to R su
h that

f(x+ f(y)) = f(f(x)) + f(y) for all real x and y(Problem 11345).We shall present:� the general Lebesgue measurable solution,� monotoni
 solutions,� a des
ription of the general solutionof the fun
tional equation in question.



[126℄ Report of MeetingAttila Gilányi Conditional stability of monomial fun
tional equationsDuring the 42nd International Symposium on Fun
tional Equations in Opava,Cze
h Republi
, 2004, J. A
zél announ
ed the program of the investigation of
onditional fun
tional equations (
.f. [1℄). Conne
ted to this program, we presentsome 
onditional stability results for monomial fun
tional equations.More pre
isely, in the 
ase of various sets D ⊆ R×R and H ⊆ R, and assumingthat Y is a Bana
h spa
e, n is a positive integer, α is an arbitrary, ε and δ arenonnegative real numbers, we examine whether the validity of the inequality
∥

∥∆n
yf(x) − n!f(y)

∥

∥ ≤ ε|x|α + δ|y|α, (x, y) ∈ Dimplies the existen
e of nonnegative 
onstants c and d and a monomial fun
tion
g: R → Y of degree n (i.e. a solution of the fun
tional equation ∆n

y g(x)−n!g(y) =
0, x, y ∈ R) for whi
h

‖f(x) − g(x)‖ ≤ (cε+ dδ)|x|α, x ∈ Hholds.[1℄ J. A
zél, 5. Remark, Report of Meeting, Aequationes Math. 69 (2005), 183.Dorota Gªazowska An invarian
e of the geometri
 mean with respe
t to theCau
hy mean-type mappings(joint work with J. Matkowski)We 
onsider the problem of invarian
e of the geometri
 mean with respe
t tothe Cau
hy mean-type mappings (

Df,g, Dh,k
), i.e., the fun
tional equation

G ◦
(

Df,g, Dh,k
)

= G.Assuming that the generators g and k are power fun
tions we show that thefun
tions f and h have to be of high 
lass of regularity. This fa
t allows toredu
e the problem to di�erential equations and �nd some ne
essary 
onditionsfor generators f and h.Eszter Gselmann On the stability of derivationsIn this talk we investigate the stability of a system of fun
tional equationsthat de�nes real derivations. More pre
isely, the problem of Ulam is 
onsidered in
onne
tion with the following system of equations
f(x+ y) = f(x) + f(y), x ∈ Rand
f(xn) = cxkf(xm), x ∈ R \ {0} ,where f : R → R is the unknown fun
tion, c ∈ R and n,m, k ∈ R are arbitrarily�xed. Using a preliminary lemma that is also presented, it is proved that theabove system of fun
tional equations is stable in the sense of Hyers and Ulam,under some 
onditions on the parameters c, n,m and k.
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e on Fun
tional Equations and Inequalities [127℄Grzegorz Guzik On some disjoint iteration semigroups on the torusGeneral 
onstru
tion of measurable (
ontinuous) disjoint iteration semigroupsof triangular mappings on the torus is given.Attila Házy Bernstein�Doets
h type results for h-
onvex fun
tionsThe 
on
ept of h-
onvexity was introdu
ed by S. Varo²ane
 in [1℄. In our talkwe introdu
e a more general 
on
ept of the h-
onvexity, and the 
on
ept of the so
alled (H,h)-
onvexity.A h-
onvex (or (H,h)-
onvex) fun
tion is de�ned as a fun
tion f :D → R(where D is a nonempty, open, 
onvex subset of a real (or 
omplex) linear spa
e)whi
h satis�es
f(λx + (1 − λ)y) ≤ h(λ)f(x) + h(1 − λ)f(y),for all x, y ∈ D and λ ∈ [0, 1] (resp. λ ∈ H), where h is a given real fun
tion.The main goal of our talk is to prove some regularity and Bernstein�Doets
htype result for h-
onvex and (H,h)-
onvex fun
tions. We also 
olle
t some fa
tson su
h fun
tions. Finally, we 
olle
t some interesting, easily-proved properties of

h-
onvex fun
tions.[1℄ S. Varo²ane
, On h-
onvexity, J. Math. Anal. Appl. 326 (2007), 303�311.Eliza Jabªo«ska About solutions of a generalized Goª¡b�S
hinzel equationLet n ∈ N and let X be a metrizable linear spa
e over K ∈ {R,C}. We 
onsidersolutions f :X → K of the fun
tional equation
f(x+ f(x)ny) = f(x)f(y) for x, y ∈ Xsu
h that either f is bounded on a set of se
ond 
ategory with the Baire propertyor f is Baire measurable. Our result generalizes a result of J. Brzd�k.Hans-Heinri
h Kairies A sum type operatorOur sum type operator F :D → F [D] is given by

F [ϕ](x) :=

∞
∑

k=0

2−kϕ(2kx),where D = {ϕ: R → R :
∑∞

k=0 2−kϕ(2kx) 
onverges for every x ∈ R}.We treat the following aspe
ts:1. Histori
al ba
kground.2. Basi
 properties of F and its restri
tions Frg:Drg → F [Drg] to sixteen sub-spa
es Drg of D, whi
h are all ve
tor spa
es and in part Bana
h spa
es.3. Fun
tional equations for F [ϕ] and 
hara
terizations.4. Some Fourier analysis for F [ϕ].



[128℄ Report of Meeting5. Images F [S] and F−1[S].6. Eigenvalues and eigenspa
es for all the sixteen Frg.7. Continuous and residual spe
tra.8. Extensions.Barbara Ko
l�ga-Kulpa On a 
lass of equations stemming from various quadra-ture rules(joint work with T. Szostok)We deal with a fun
tional equation of the form
F (y) − F (x) = (y − x)

n
∑

k=1

akf(λkx+ (1 − λk)y), x, y ∈ R (1)motivated by quadrature rules of approximate integration. In previous results thesolutions of this equation were found only in some parti
ular 
ases. For example,
oe�
ients λk were supposed to be rational or the equation in question was solvedonly for n = 2.We prove that every fun
tion f : R → R satysfying equation (1) with somefun
tion F : R → R, where ∑n
k=1 ak 6= 0, is a polynomial of degree at most 2n− 1.In our results we do not assume any spe
i�
 form of 
oe�
ients o

uring at theright-hand side of (1) and we allow n to be any positive integer. Moreover, weobtain solutions of our equation without any regularity assumptions 
on
erningfun
tions f and F.Zygfryd Kominek On a Jensen�Hosszú equation(joint work with J. Sikorska)It is known that in the 
lass of fun
tions a
ting the interval I = [0, 1] (I = (0, 1))into a real Bana
h spa
e the Jensen fun
tional equation is stable and the Hosszúfun
tional equation has not this property. So, we have a nontrivial pair of theequivalent equations su
h that one of them is stable and the other is not. Fromthis point of view it seems interesting to 
onsider the fun
tional equation of theform

f(x+ y − xy) + f(xy) = 2f
(x+ y

2

)

, x, y ∈ I. (1)The left-hand-side of equation (1) is the same as the left-hand-side of the Hosszúfun
tional equation, and the right-hand-side of our equation 
oin
ides with theleft-hand side of the Jensen equation. We will prove that equation (1) is alsoequivalent to the Jensen (and in the same reason to the Hosszú) equation and,moreover, that equation (1) is stable in the sense of Hyers and Ulam.Dorota Krassowska On iteration semigroups 
ontaining generalized 
onvex and
on
ave fun
tionsLet I ⊂ R be an open interval and let M,N : I2 → I be 
ontinuous fun
tions.A fun
tion f : I → I is said to be (M,N)-
onvex ((M,N)-
on
ave) if
f(M(x, y)) ≤ (≥)N(f(x), f(y)), x, y ∈ I.
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e on Fun
tional Equations and Inequalities [129℄A fun
tion f : I → I simulteneously (M,N)-
onvex and (M,N)-
on
ave is
alled (M,N)-a�ne (see [1℄).We prove that if in a 
ontinuous iteration semigroup {f t, t ≥ 0} every element
f t is (M,N)-
onvex or (M,N)-
on
ave and there exist r > s > 0 su
h that f r and
fs are (M,N)-a�ne, then M = N and every element of a semigroup is (M,M)-a�ne. We also 
onsider the 
ase whereM = N and we show that if in a 
ontinuousiteration semigroup {f t, t ≥ 0} there exist f r < id and fs < id su
h that r

s 6∈ Qand f r is (M,M)-
onvex and fs is (M,M)-
on
ave, then every element of thesemigroup is (M,M)-a�ne.[1℄ J. Matkowski, Iteration groups with generalized 
onvex and 
on
ave elements, Iter-ation theory (ECIT 94) (Opava), 199�216, Grazer Math. Ber. 334, Karl-Franzens-Univ. Graz, Graz, 1997.Zbigniew Le±niak On 
onjuga
y of Brouwer homeomorphismsWe 
onsider Brouwer homeomorphisms of the plane for whi
h the os
illatingset is empty. The main result says that if the sets of indi
es of 
overings of theplane 
onsisting of maximal parallelizable regions for two Brouwer homeomor-phisms are isomorphi
 and if for ea
h of these regions there exists a one-to-one
orresponden
e between the set of singular lines 
ontained in the boundary of theregion and the set of singular lines 
ontained in the interior of the region, thenthese Brouwer homeomorphisms are 
onjugated. This theorem holds for Brouwerhomeomorphisms that are embeddable in a �ow as well as for Brouwer homeo-morphisms for whi
h there exists a foliation of the plane 
onsisting of invarianttopologi
al lines.Andrzej Ma
h Stability of some fun
tional equations and open problems(joint work with Z. Moszner)Some results on stability of 
ertain equations and systems of equations aregiven. A number of open problems of stability, raised by Z. Moszner, is presented.The answer for one of them is given.[1℄ D.H. Hyers, On the stability of the linear fun
tional equation, Pro
. Nat. A
ad. S
i.U.S.A 27 (1941), 222�224.[2℄ A. Ma
h, On some fun
tional equations involving Babbage equation, Results Math.51 (2007), 97�106.[3℄ A. Ma
h, Z. Moszner, On stability of the translation equation in some 
lasses offun
tions. Aequationes Math. 72 (2006), 191�197.[4℄ A. Ma
h, Z. Moszner, On some fun
tional equations involving involutions, Österrei
h.Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 216 (2007), 3�13 (2008).[5℄ Z. Moszner, On the stability of fun
tional equations, Aequationes Math. 77 (2009),33�88.Ewelina Mainka On uniformly 
ontinuous Nemytskii operators generated by set-valued fun
tionsLet I = [0, 1], let Y be a real normed linear spa
e, C a 
onvex 
one in Y and
Z a Bana
h spa
e. Denote by clb(Z) the set of all nonempty 
losed and boundedsubsets of Z.



[130℄ Report of MeetingIf a superposition operator N generated by a set-valued fun
tion F : I × C →
clb(Z) maps the set Hα(I, C) of all fun
tions ϕ: I → C satisfying the Hölder 
on-dition into the set Hβ(I, clb(Z)) of all set-valued fun
tions φ: I → clb(Z) satisfyingthe Hölder 
ondition and is uniformly 
ontinuous, then

F (x, y) = A(x, y)
∗
+ B(x), x ∈ I, y ∈ Cfor some set-valued fun
tions A,B su
h that A(·, y), B ∈ Hβ(I, clb(Z)), y ∈ C and

A(x, ·) ∈ L(C, clb(Z)), x ∈ I.Using Jensen fun
tional equation is essential in the proof. A 
onverse result isalso 
onsidered.Judit Makó On ϕ-
onvexity(joint work with Zs. Páles)In this talk a new 
on
ept of approximate 
onvexity is de�nied, termed ϕ-
onvexity. The fun
tion ϕ is 
hosen in a parti
ular way. Assume that I isa nonempty open real interval of R and denote I∗ := (I − I) ∩ R+, where R+stands for the set of nonnegative real numbers. Let ϕ: I∗ → R+ be a given fun
-tion. A real valued fun
tion f : I → R is 
alled ϕ-
onvex if
f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)+ tϕ

(

(1− t)|x− y|
)

+ (1− t)ϕ
(

t|x− y|
) (1)for all t ∈ [0, 1] and for all x, y ∈ I. If (1) holds for t = 1

2 , then we say that f is
ϕ-mid
onvex.In this talk we give some equivalent 
onditions for ϕ-
onvexity. Furthermore,we sear
h relations between the lo
al upper-bounded ϕ-mid
onvex fun
tions and
ϕ-
onvex fun
tions.Gyula Maksa Nonnegative information fun
tions revisited(joint work with E. Gselmann)Motivated by the known result that there are nonnegative information fun
-tions di�erent from the Shannon information fun
tion, in this talk, we present someproperties of the set on whi
h every nonnegative information fun
tion 
oin
ideswith the Shannon's one.Fruzsina Mészáros Density fun
tion solutions of a fun
tional equation(joint work with K. Lajkó)The fun
tional equation

fU (u) fV (v) = fX

( 1 − v

1 − uv

)

fY (1 − uv)
v

1 − uvis investigated for almost all (u, v) ∈ (0, 1)2. Suppose only that the unknownfun
tions fX , fY , fU , fV : (0, 1) → R are density fun
tions of some random variables(i.e. nonnegative and Lebegue integrable with integral 1). Does it follow that theyare positive almost everywhere on (0, 1)?Using a method of A. Járai in 
onne
tion with the 
hara
terization of theDiri
hlet distribution, we give an a�rmative answer to this question.The obtained result is related to an independen
e property for beta dist-ributions.



13th International Conferen
e on Fun
tional Equations and Inequalities [131℄Bartosz Mi
herda On the properties of four elements in fun
tion spa
esLet Xρ be a modular spa
e whi
h is a latti
e with respe
t to the ordering ≥given by some pointed 
onvex 
one K ⊂ Xρ. For x, y ∈ Xρ denote x∧y = inf(x, y)and x ∨ y = sup(x, y).Then we say that ρ satis�es the lower property of four elements (LPFE) if forany x, y, w, z ∈ Xρ su
h that x ≥ y, we have
ρ(x− w) + ρ(y − z) ≥ ρ(x− w ∨ z) + ρ(y − w ∧ z),and it satis�es the upper property of four elements (UPFE) if for any x, y, w, z ∈

Xρ su
h that x ≥ y, we have
ρ(x− w) + ρ(y − z) ≤ ρ(x− w ∧ z) + ρ(y − w ∨ z).These inequalities are useful for the study of proje
tion and antiproje
tionoperators in modular spa
es (see [1℄ and [2℄).In our talk we present a 
lass of fun
tion modulars whi
h satisfy both (LPFE)and (UPFE). We also give some other examples and 
ounterexamples.[1℄ G. Isa
, G. Lewi
ki, On the property of four elements in modular spa
es, A
ta Math.Hungar. 83 (1999), 293�301.[2℄ B. Mi
herda, The properties of four elements in Orli
z-Musielak spa
es, Math. In-equal. Appl. 4 (2001), 599�608.Vladimir Mityushev Appli
ation of fun
tional equations to determination of thee�e
tive 
ondu
tivity of 
omposites with ellipti
al in
lusionsAnalysis 
on
erning the transport properties of inhomogeneous materials is offundamental theoreti
al interest. Analyti
al formulae for the ma
ros
opi
 proper-ties with physi
al and geometri
al parameters in symboli
 form is useful to predi
tthe behavior of 
omposites. The method of fun
tional equations is one of the 
on-stru
tive methods to derive su
h analyti
al exa
t and approximate formulae. Thepresent talk is devoted to appli
ation of the method to two�dimensional 
ompos-ites with ellipti
al in
lusions. The sizes, the lo
ations and the orientations of theellipses 
an be arbitrary. The analyti
al formulae 
ontains all above geometri
alparameters in symboli
 form.Lajos Molnár Chara
terizing some spe
i�
 elements in spa
es of operators andfun
tions and its useWe 
hara
terize 
ertain spe
i�
 elements in spa
es of fun
tions or Hilbert spa
eoperators and use those 
hara
terizations to determine the stru
tures of di�erentkinds of automorphisms and isometries of the underlying spa
es.Janusz Morawie
 Re�nement equations and Markov operators(joint work with R. Kapi
a)Let (Ω,A, P ) be a 
omplete probability spa
e, let L: Ω → R

n be a randomve
tor and let K: Ω → Rn×n be a random matrix. We dis
uss the 
lose 
onne
tionbetween the problem of the existen
e of non-trivial L1-solutions f : Rn → R of the



[132℄ Report of Meetingre�nement equation
f(x) =

∫

Ω

| detK(ω)|f(K(ω)x− L(ω)) dP (ω)and the problem of the existen
e of invariant probability Borel measures of a veryspe
ial Markov operator de�ned (on the spa
e of all �nite Borel measures on Rn)by
Mµ(A) =

∫

Ω

∫

Rp

χA(K(ω)−1(x+ L(ω)))dµ(x) dP (ω).Ja
ek Mrowie
 On stability of some fun
tional equationRe
ently, Soon�Mo Jung has proved the Hyers�Ulam stability of the Fibona

ifun
tional equation
f(x) = f(x− 1) + f(x− 2)in the 
lass of fun
tions f : R → X , where X is a real Bana
h spa
e. The samemethod with little modi�
ations may be applied to prove stability of the moregeneral fun
tional equation
f(x) = af(x− 1) + bf(x− 2),where a, b ∈ R, in the same 
lass of fun
tions. However, for some values of a and

b this equation is not stable.Anna Mure«ko A generalization of Bernstein�Doets
h theoremLet V be an open 
onvex subset of a nontrivial real normed spa
e X . We givea partial generalization of Bernstein�Doets
h theorem. Namely, if there exist abase B of X and a point x ∈ V su
h that a mid
onvex fun
tion f :X → R is lo
allybounded above on b-ray at x for ea
h b ∈ B, then f is 
onvex. Moreover, underthe above assumption, f is also 
ontinuous in 
ase X = RN , but not in general.Adam Najde
ki On stability of some fun
tional equationLet S be a nonempty set, k, n ∈ N and gj:S × S → S for j ∈ {1, . . . , k}. Weare going to dis
uss the stability of the fun
tional equation
k

∑

j=1

f(gj(s, t)) = f(s)f(t), s, t ∈ Sin the 
lass of fun
tions f from S to the normed algebraMn(C) of 
omplex n× nmatri
es.Kazimierz Nikodem Remarks on strongly 
onvex fun
tionsLet D be a 
onvex subset of a normed spa
e and c > 0. A fun
tion f :D → Ris 
alled strongly 
onvex with modulus c if
f(tx+ (1 − t)y) ≤ tf(x) + (1 − t)f(y) − ct(1 − t)‖x− y‖2for all x, y ∈ D and t ∈ [0, 1]. We say that f is midpoint strongly 
onvex with
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e on Fun
tional Equations and Inequalities [133℄modulus c if
f
(x+ y

2

)

≤
f(x) + f(y)

2
−
c

4
‖x− y‖2, x, y ∈ D.Some properties of midpoint strongly 
onvex fun
tions (
orresponding to the
lassi
al results of Jensen 
onvex fun
tions) are presented. A relationship betweenstrong 
onvexity and generalized 
onvexity in the sense of Be
kenba
h is also given.Andrey A. Nuyatov Representation of spa
e of entire fun
tions of Fis
her'spairsIn [2℄ resolvability of the equation

ψ1(z)MF1 [f ] + . . .+ ψm(z)MFm
[f ] = g(z) (1)is proved, −→ψ = (ψ1(z), . . . , ψm(z)) ∈ Hm

Cn , MFj
[f ] ≡ (Fj , f(z+w)) � the operatorof 
onvolution in the spa
e H(Cn), whi
h 
hara
teristi
 fun
tion is equal to ϕj(z),

j = 1, . . . ,m. Resolvability of this equation is 
onne
ted by 
on
ept of Fisher'spairs (see [1℄):A pair of polynomials (P (z), Q(D)), D = (D1, . . . , Dn), Dj = ∂/∂zj forms aFis
her pair if
H(Cn) = (P (z)) ⊕ KerQ(D).In this 
onne
tion, equation (1) 
an be written down in the following way
Σ0

k=mPk(z)MP∗
k
[f ] = g(z), (2)where degPk = degP ∗

k = k, k = 0, . . . ,m. Equation (2) will be
ome
Σ0

k=m

(

Σ0
|α|=ka

k
αz

α
)(

Σ0
|α|=ka

k
αD

αf
)

= g(z). (3)We will show under what 
onditions the di�erential equation with variable fa
tors
Σ0

|β|=m

[(

Σ0
|α|=mbαβz

α
)

Dβf
]

= g(z) (4)is led to equation (3), i.e., the fa
tors of equation (3) are expressed through thefa
tors of equation (4). Let B = ||bαβ|| be matrix of fa
tors of equation (4).Theorem.If the transposed matrix to B 
an be represented in the form of BT = Σ0
k=mBk,where Bk = ||bkαβ || ( k = m,m − 1, . . . , 0) - Hermitean 
onjugate matrixes of arank 1, thus the only elements of the last of 1

(n−1)!

∑k
i=0

∏n−1
j=1 (i+ j), n ≥ 2 rowsand 1

(n−1)!

∑k
i=0

∏n−1
j=1 (i+ j), n ≥ 2 
olumns are nonzero, then equation (4) is ledto equation (3).The program whi
h 
he
ks 
onditions of redu
tion of the given equation toequation (3) and if it is possible is written and expresses the fa
tors of equation(3) through the fa
tors of equation (4) and writes down equation (3).[1℄ H.S. Shapiro, An algebrai
 theorem of E. Fis
her, and the holomorphi
 Goursat prob-lem, Bull. London Math. So
. 21 (1989), 513�537.



[134℄ Report of Meeting[2℄ V.V. Napalkov, On the theory of linear di�erential equations with variable 
oe�
ients(Russian), Dokl. Akad. Nauk 397 (2004), 748�750.Andrzej Olbry± On some inequality 
onne
ted with Wright 
onvexityWe 
onsider the fun
tional inequality
f(λx+ (1− λ)y) ≤ G(x, y, λ)f(x) + [1−G(x, y, λ)]f(y), x, y ∈ (a, b), λ ∈ (0, 1),where f : (a, b) → R and G: (a, b) × (a, b) × (0, 1) → R is a fun
tion symetri
 withrespe
t to x and y.Jolanta Olko On a family of multifun
tionsLet {f t, t ∈ R}, {gt, t ∈ R} be groups of in
reasing selfmappings of an interval
I su
h that f t ≤ gt, t ∈ R. We study properties of the family {Ht, t ∈ R} ofmultifun
tions de�ned as follows

Ht(x) = [f t(x), gt(x)], x ∈ I, t ∈ R.Zsolt Páles An appli
ation of Blumberg's theorem in the 
omparison of weightedquasi-arithmeti
 meansWe present 
omparison theorems for the weighted quasi-arithmeti
 means andfor weighted Bajraktarevi¢ means without supposing in advan
e that the weightsare the same. The results have been obtained jointly with Gyula Maksa underdi�erentiability assumptions. Using Blumberg's theorem (stating, for every realfun
tion, the existen
e of a 
ountable dense set su
h that the restri
tion of thefun
tion to this set is 
ontinuous), these regularity assumptions are 
ompletelyremoved.Boris Paneah Several remarks on approximate solvability of the linear fun
tionalequationsWe 
onsider the general linear fun
tional operator
PF (x) :=

N
∑

j=1

cj(x)F ◦ aj(x), x ∈ D ⊂ R
p.Here F ∈ C(I, B) (the spa
e of all B-valued 
ontinuous fun
tions on I) with I =

(−1, 1), B a Bana
h spa
e, 
oe�
ients cj and arguments aj of P are 
ontinuousfun
tions D → R and D → I, respe
tively, D is a domain with a 
ompa
t 
losure.Re
ently a deep 
onne
tion between this operator and di�erent problems fromanalysis, geometry and even gas dynami
 has been dis
overed. In a series of workssome existing and uniqueness problems have been studied as well as the overde-terminedness for some types of the operators P has been established. Be
auseof the linearity of P studying homogeneous equation PF ≈ 0 and, in parti
ular,sear
hing an approximate solution to this equation provokes the spe
ial interest(from both theoreti
al and pra
ti
al points of view). It worth noting that eventhe notion of the approximate solution by itself needs to be de�ned a

urately.



13th International Conferen
e on Fun
tional Equations and Inequalities [135℄At the �rst part of the talk I formulate and dis
uss the new notions identifyingproblem and approximate solution related to linear fun
tional operator P . Inparti
ular, it will be 
lari�ed the interrelation of the identifying and well-knownUlam problems. It will be explained also that the latter problem bears a dire
trelation to the approximate solvability rather then to some mythi
 stability.At the se
ond part of the talk the set of linear fun
tional operators for whi
h Isu

eeded in proving the solvability of the identifying problem and the approximatesolvability of the equation PF ≈ 0 will be des
ribed and dis
ussed.In 
on
lusion a list of the most interesting unsolved problems will be demon-strated.Boris Paneah On approximate solvability of the Cau
hy equation of arbitrarydegreeThe talk is devoted to the well-known but not well studied fun
tional operator
CnF := F (0) +

n
∑

k=1

(−1)k
∑

1≤j1<...<jk≤n

F (xj1 + . . .+ xjk
),where x = (x1, . . . , xn) is a point of a bounded domain in Rn and F is a fun
tion:

I → B with B a Bana
h spa
e and I = {t : 0 ≤ t ≤ 1}. We show at �rst wherefrom this operator arises in di�erent �elds of mathemati
s and physi
s, and thenwe formulate the problem of approximate solvability of the equation CnF ≈ 0. Inthe se
ond part of the talk we solve this problem.Magdalena Pisz
zek On multivalued iteration semigroupsLet K be a 
losed 
onvex 
one with a nonempty interior in a Bana
h spa
eand let G:K → cc(K) be a 
ontinuous additive multifun
tion. The equality
Ft ◦G = G ◦ Ft, t ≥ 0is a ne
essary and su�
ient 
ondition under whi
h the family {Ft, t ≥ 0} ofmultifun
tions

Ft(x) =

∞
∑

i=0

ti

i!
Gi(x), x ∈ K, t ≥ 0is an iteration semigroup.Dorian Popa A property of a fun
tional in
lusion 
onne
ted with Hyers-UlamstabilityWe prove that a set-valued map F :X → P0(Y ) satisfying the fun
tional in
lu-sion F (x)♦F (y) ⊆ F (x ∗ y) admits, in appropriate 
onditions, a unique sele
tion

f :X → Y satisfying the fun
tional equation f(x) ⋄ f(y) = f(x ∗ y), where (X, ∗),
(Y, ⋄) are square-symmetri
 grupoids and ♦ is the extension of ⋄ to the 
olle
tion
P0(Y ) of all nonempty parts of Y .[1℄ J. A
zél, Le
tures on fun
tional equations and their appli
ations, Mathemati
s inS
ien
e and Engineering 19, A
ademi
 Press, New York�London, 1966.



[136℄ Report of Meeting[2℄ J. Brzd�k, A. Pietrzyk, A note on stability of the general linear equation, AequationesMath. 75 (2008), 267�270.[3℄ Z. Gajda, R. Ger, Subadditive multifun
tions and Hyers�Ulam stability, General in-equalities 5 (Oberwolfa
h, 1986), 281�291, Internat. S
hriftenreihe Numer. Math. 80Birkhäuser, Basel, 1987.[4℄ D.H. Hyers, G. Isa
, Th.M. Rassias, Stability of fun
tional equations in severalvariables, Progress in Nonlinear Di�erential Equations and their Appli
ations 34,Birkhäuser Boston, In
., Boston, MA, 1998.[5℄ Zs. Páles, Hyers�Ulam stability of the Cau
hy fun
tional equation on square-symmetri
 grupoids, Publ. Math. Debre
en 58 (2001), 651�666.[6℄ D. Popa, A stability result for a general linear in
lusion, Nonlinear Fun
t. Anal. Appl.9 (2004), 405�414.[7℄ D. Popa, Fun
tional in
lusions on square-symmetri
 grupoids and Hyers�Ulam sta-bility, Math. Inequal. Appl. 7 (2004), 419�428.[8℄ A. Smajdor, Additive sele
tions of superadditive set-valued fun
tions, AequationesMath. 39 (1990), 121�128.[9℄ W. Smajdor, Subadditive set-valued fun
tions, Glas. Mat. Ser. III 21 (41) (1986),343�348.[10℄ W. Smajdor, Superadditive set-valued fun
tions and Bana
h-Steinhaus theorem,Rad. Mat. 3 (1987), 203�214.Vladimir Yu. Protasov Lips
hitz stability of linear operators in Bana
h spa
esThe well-known 
on
ept of Ulam�Hyers�Rassias stability for the additiveCau
hy equation establishes, in parti
ular, the p-stability of linear maps betweenBana
h spa
es for all positive parameters p 6= 1. The only ex
eption is the Lip-s
hitz 
ase, when p = 1 (see [1℄ and referen
es therein). One of possible ways toobtain stability results for this 
ase is to introdu
e the notion of Lips
hitz linearstability. Let X,Y be arbitrary Bana
h spa
es and F :X → Y be a map with theonly assumption that there is K > 0 su
h that ‖F (x)‖ ≤ K‖x‖, x ∈ X . For agiven ε > 0 we 
onsider the following 
ondition on F :
‖{a, b}F − {b, c}F‖ ≤ ε a, c ∈ X, b ∈ [a, c], (1)where {x1, x2}F denotes the divided di�eren
e F (x2)−F (x1)

‖x2−x1‖
. This 
ondition is ful-�lled for ε = 0 pre
isely when F is linear. We say that a map F 
an be linearlyLips
hitz C-approximated if there is a linear operator A:X → Y su
h that

‖{x1, x2}F−A‖ ≤ C, x1, x2 ∈ X.This means that ‖F (x1) − F (x2) − (Ax1 − Ax2)‖ ≤ C‖x1 − x2‖. Observe that if
F (0) = 0, then ‖F (x)−Ax‖ ≤ C‖x‖ for any x. Thus, Lips
hitz linear approxima-tion property implies the linear approximation in the sense of Ulam�Hyers�Rassiasstability for p = 1. Consider now the following property 
alled in the sequel Lips-
hitz linear stability (LLS):For given Bana
h spa
es X and Y there is a fun
tion C(ε), whi
h tends to zeroas ε → 0, su
h that any map F :X → Y possessing property (1) 
an be linearlyLips
hitz C(ε)-approximated.



13th International Conferen
e on Fun
tional Equations and Inequalities [137℄Any Lips
hitz ε-perturbation of a linear operator possesses property (1). Thequestion is whether the 
onverse is true: if (1) holds for a map F , then F 
an belinearly Lips
hitz C(ε)-approximated? In other words, if a map F :X → Y 
anbe linearly Lips
hitz ε-approximated on any straight line l ⊂ X , 
an it be C(ε)-approximated globally on X? This problem was stated for 
ase of fun
tionals(when Y = R) by Prof. Zsolt Páles in 12th ICFEI [2, Problem 2, pp.150�151℄both for the entire spa
e X and for 
onvex domains D ⊂ X . First we answer thequestion of LLS for fun
tionals:Theorem 1If X is an arbitrary Bana
h spa
e and Y = R, then the LLS property holds with
C(ε) = 2ε.The proof is based on the separation prin
iple, and 
annot be extended from the
ase Y = R to an arbitrary Bana
h spa
e Y . This extension, nevertheless, 
an berealized using a totally di�erent idea, whi
h leads to the following result:Theorem 2The LLS property holds with C(ε) = 2ε for any Bana
h spa
es X,Y , whenever Xis separable.It appears that the estimate C(ε) = 2ε is the best possible in both those theorems,and 
annot be improved already for X = R2, Y = R. Then we 
onsider LLS formaps F de�ned on 
onvex open bounded domains D ⊂ X , in whi
h 
ase C(ε)already depends on the geometry of the domain.[1℄ Th.M. Rassias, On the stability of fun
tional equations and a problem of Ulam, A
taAppl. Math. 62 (2000), 23�130.[2℄ Report of Meeting: 12th ICFEI, Ann. A
ad. Pedagog. Cra
. Stud. Math. 7 (2008),125�159.Vladimir Yu. Protasov Euler binary partition fun
tion and re�nement equa-tionsRe�nement equations, i.e., di�eren
e fun
tional equations with the double 
on-tra
tions of the argument have been studied in the literature in great detail dueto their appli
ations in fun
tional analysis, wavelets theory, ergodi
 theory, prob-ability, et
. Any re�nement equation is written in the form

ϕ (x) =
d−1
∑

k=0

ckϕ(2x− k), (1)where {ck} are 
omplex 
oe�
ients su
h that ∑d−1
k=0 ck = 2. This equation al-ways possesses a unique, up to multipli
ation by a 
onstant, 
ompa
tly supportedsolution ϕ in the spa
e of distributions S′.We present a rather surprising appli
ation of re�nement equations to a well-known problem of the 
ombinatorial number theory: the asymptoti
s of the Eulerpartition fun
tion. For an arbitrary integer d ≥ 2 the binary partition fun
tion

b(k) = b(d, k) is de�ned on the set of nonnegative integers k as the total number of



[138℄ Report of Meetingdi�erent binary expansions k =
∑∞

j=0 dj2
j , where the �digits� dj take values fromthe set {0, . . . , d− 1}. The asymptoti
 behavior of b(k) as k → ∞ was studied byL. Euler, K. Mahler, N.G. de Bruijn, D.E. Knuth, B. Rezni
k and others.It appears that the exponent of growth of the fun
tion b(k) 
an be expressedby the solution ϕ of re�nement equation (1) with equal 
oe�
ients ck = 1

d . Usingthis argument we answer two open questions formulated by B. Rezni
k in 1990(see [1℄).[1℄ B. Rezni
k, Some binary partition fun
tions, Analyti
 number theory (Allerton Park,IL, 1989), 451�477, Progr. Math. 85, Birkhäuser Boston, Boston, MA, 1990.[2℄ V.Yu. Protasov, On the problem of the asymptoti
s of the partition fun
tion, Math.Notes 76 (2004), 144�149.Viorel Radu Ulam�Hyers stability of fun
tional equations in lo
ally 
onvex prob-abilisti
 spa
es: a �xed point methodIn [1℄ and [2℄ some generalized Ulam�Hyers stability results for Cau
hy fun
-tional equation have been proved. Our aim is to outline the results 
on
erning thegeneralized Ulam�Hyers stability for di�erent other kinds of fun
tional equations.The �xed point method (
f. [4℄) will be emphasized, for fun
tions de�nedon linear spa
es and taking values in fuzzy normed spa
es and lo
ally 
onvexprobabilisti
 spa
es.[1℄ D. Miheµ, V. Radu, On the stability of the additive Cau
hy fun
tional equation inrandom normed spa
es, J. Math. Anal. Appl. 343 (2008), 567�572.[2℄ L. C dariu, V. Radu, On the stability of the Cau
hy fun
tional equation: a �xedpoints approa
h, Iteration theory (ECIT'02), 43�52, Grazer Math. Ber. 346, Karl�Franzens�Univ. Graz, Graz, 2004.[3℄ D.H. Hyers, G. Isa
, Th.M. Rassias, Stability of fun
tional equations in severalvariables, Progress in Nonlinear Di�erential Equations and their Appli
ations 34,Birkhäuser Boston, In
., Boston, MA, 1998.[4℄ V. Radu, The �xed point alternative and the stability of fun
tional equations, FixedPoint Theory 4 (2003), 91�96.Ewa Rak Domination and distributivity inequalities(joint work with J. Drewniak)Domination is a property of operations whi
h plays an important role in 
onsid-erations 
onne
ted with the distributivity fun
tional inequalities. S
hweizer andSklar [4℄ introdu
ed the notion of domination for asso
iative binary operationswith 
ommon range and 
ommon neutral element. In parti
ular, the property ofdomination was 
onsidered in the families of triangular norms and 
onorms (seee.g. [1, 2, 3℄). In our 
onsiderations we shall show some of dependen
ies betweenthe property of domination and the subdistributivity or the superdistributivity ofoperations on the unit interval.[1℄ J. Drewniak, P. Dryga±, U. Dudziak, Domination between multipla
e operations, Is-sues in Soft Computing. De
isions and Operations Resear
h, EXIT, Warszawa 2005,149�160.
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e on Fun
tional Equations and Inequalities [139℄[2℄ S. Saminger-Platz, The dominan
e relation in some families of 
ontinuousAr
himedean t-norms and 
opulas, Fuzzy Sets and Systems 160 (2009), 2017�2031.[3℄ P. Sarko
i, Domination in the families of Frank and Hama
her t-norms, Kyberneti
a(Prague) 41 (2005), 349�360.[4℄ B. S
hweizer, A. Sklar, Probabilisti
 metri
 spa
es, North-Holland Series in Probabil-ity and Applied Mathemati
s, North-Holland Publishing Co., New York, 1983.Themisto
les M. Rassias Stanisªaw Mar
in UlamIn this spe
ial session, I will talk brie�y on the life and works of S.M. Ulam.Ma
iej Sablik Bisymmetri
al fun
tionalsLet Ωi, i = 1, 2 be 
ompa
t sets. Consider spa
es B(Ωi,R) of bounded fun
-tions de�ned on Ωi, and let F and G be fun
tionals de�ned in B(Ω1,R) and
B(Ω2,R), respe
tively. We 
hara
terize F and G su
h that the equation

G (Ft(x(s, t))) = F (Gs(x(s, t)))holds for every x ∈ B(Ω1 ×Ω2,R), under some additional regularity assumptions.It turns out that F andG are 
onjugated to an integral with respe
t to some Radonmeasure in Bi. The main tool in the proof is a result of Gy. Maksa from [1℄.[1℄ Gy. Maksa, Solution of generalized bisymmetry type equations without surje
tivityassumptions, Aequationes Math. 57 (1999), 50�74.Ekaterina Shulman Stable quasi-mixing of the horo
y
le �ow(joint work with F. Nazarov)We 
onsider the behavior of a one-parameter subgroup of a Lie group underthe in�uen
e of a sequen
e of ki
ks. Our approa
h follows [1℄ where a spe
ial 
aseof the problem was related to an asymptoti
 behavior of �approximate� solutionsof some fun
tional equations on a dis
rete group.Let a Lie group G a
t on a set X , and (ht)t∈R be a one-parameter subgroup of
G; it is a dynami
al system a
ting on X . We perturb this system by a sequen
e ofki
ks {φi} ⊂ G. The ki
ks arrive with some positive period τ . The dynami
s of theki
ked system is des
ribed by a sequen
e of produ
ts Pτ (i) = φih

τφi−1h
τ . . . φ1h

τthat depend on the period τ .A dynami
al property of a subgroup (ht) is 
alled ki
k stable, if for everysequen
e of ki
ks {φi}, the ki
ked sequen
e Pτ (i) inherits this property for a �large�set of periods τ . The property we will 
on
entrate on, is quasi-mixing.A sequen
e {P (i)} a
ting on a measure spa
e (X,µ) by measure-preservingautomorphisms is 
alled quasi-mixing if there exists a subsequen
e {ik} → ∞su
h that for any two L2-fun
tions F1 and F2 on X
∫

X

F1(P (ik)x)F2(x) dµ →

∫

X

F1(x) dµ

∫

X

F2(x) dµ when k → ∞.In our 
ase X = PSL(2,R)/Γ, where Γ ⊂ PSL(2,R) is a latti
e. The group
PSL(2,R) a
ts on X by left multipli
ation. The prin
ipal tool used in [1℄ for the



[140℄ Report of Meetingstudy of stable mixing in this setting, is the Howe�Moore theorem whi
h gives thegeometri
 des
ription of quasi-mixing systems: if the sequen
e P (i) is unboundedthen it is quasi-mixing.It follows from the Howe-Moore theorem that the horo
y
le �ow
ht =

(

1 t
0 1

)is quasi-mixing on X . We prove that it is ki
k stably quasi-mixing. This answersthe question raised by L. Polterovi
h and Z. Rudni
k in [1℄.Let us mention an appli
ation to se
ond order di�eren
e equations. A dis
reteS
hrödinger-type equation is the equation
qk+1 − (2 + tck)qk + qk−1 = 0, k ≥ 1. (1)Corollary.For every sequen
e {cn}, the set of the parameters t ∈ R+ for whi
h all solutionsof the di�eren
e equation (1) are bounded, has �nite measure.[1℄ L. Polterovi
h, Z. Rudni
k, Ki
k stability in groups and dynami
al systems, Nonlin-earity 14 (2001), 1331�1363.Justyna Sikorska A dire
t method for proving the Hyers�Ulam stability of somefun
tional equationsWe study the stability of the equation of the form

f(x) = af(h(x)) + bf(−h(x))with some 
onditions imposed on 
onstants a, b and fun
tion h. The results arelater applied (by use of a dire
t method � the Hyers sequen
es) for proving thestability of several fun
tional equations.Barbara Sobek Quadrati
 equation of Pexider type on a restri
ted domainLet X be a real (or 
omplex) lo
ally 
onvex linear topologi
al spa
e. Assumethat U is a nonempty, open and 
onne
ted subset of X ×X . Let
U1 := {x : (x, y) ∈ U for some y ∈ X},

U2 := {y : (x, y) ∈ U for some x ∈ X}and
U+ := {x+ y : (x, y) ∈ U},

U− := {x− y : (x, y) ∈ U}.We 
onsider the fun
tional equation
f(x+ y) + g(x− y) = h(x) + k(y), (x, y) ∈ U,where f :U+ → Y , g:U− → Y , h:U1 → Y and k:U2 → Y are unknown fun
tionsand (Y,+) is a 
ommutative group. The general solution of the equation is given.We also present an extension result.
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e on Fun
tional Equations and Inequalities [141℄Joanna Sz
zawi«ska Some remarks on a family of multifun
tionsLet f : R → R denote the fun
tion given by
f(t) =

∞
∑

n=0

ant
n, t ∈ R,where an ≥ 0 for n ∈ N. If K is a 
losed 
onvex 
one in a real Bana
h spa
e and

H :K → cc(K) a linear and 
ontinuous set-valued fun
tion with nonempty, 
onvexand 
ompa
t values in K, then for all t ≥ 0 the set-valued fun
tion
F t(x) :=

∞
∑

n=0

ant
nHn(x), x ∈ Kis linear and 
ontinuous and

F t ◦ F s(x) ⊆

∞
∑

n=0

cnH
n(x), x ∈ K,where

cn =
n

∑

k=0

akan−kt
ksn−k, t, s ≥ 0.The ne
essary and su�
ient 
ondition for the equality

F t ◦ F s(x) =

∞
∑

n=0

cnH
n(x), x ∈ K, t, s ≥ 0will be given.Tomasz Szostok On a fun
tional equation stemming from some property of tri-anglesBasing on some geometri
al property dis
overed by G. Monge, in [1℄ authors
onsidered the following fun
tional equation

∣

∣

∣

∣

1

2
(y − x)f

(x+ y

2

)

−
1

2
(f(y) − f(x))

x + y

2

∣

∣

∣

∣

=

y
∫

x

f(t) dt+
1

2
xf(x) −

1

2
yf(y).They proved that the only solutions of this equation are the a�ne fun
tions.Roughly speaking this means that Monge theorem works only for 
ollinear points.In the present talk we modify this equation in su
h way that it will be satis�edby some fun
tions di�erent from f(x) = ax + b. Then we solve the obtainedequation.[1℄ C. Alsina, M. Sablik, J. Sikorska, On a fun
tional equation based upon a result ofGaspard Monge, J. Geom. 85 (2006), 1�6.



[142℄ Report of MeetingJa
ek Tabor Approximate (ε, p)-mid
onvexity for p ∈ [0, 1](joint work with Józef Tabor and M. �oªdak)For p ∈ [0, 1] we put
Tp(x) :=

∞
∑

k=0

1

2k
dp(2kx), x ∈ R,where d(x) = 2dist(x,Z) and by 00 we understand 0.A fun
tion f : I → R, where I is a subinterval of R, is 
alled (ε, p)-mid
onvex if

J f(x, y) :=
f(x) + f(y)

2
−
f(x) + f(y)

2
≤ ε|x− y|p, x, y ∈ I.It is known that if f is a 
ontinuous (ε, p)-mid
onvex fun
tion, then

f(rx + (1 − r)y) − rf(x) − (1 − r)f(y) ≤ εTp(r|x − y|), x, y ∈ I, r ∈ [0, 1].The above estimation is optimal for p = 0 (theorem of C.T. Ng and K. Nikodem)and p = 1 (theorem of Z. Boros). Zs. Palés asked what happens in the 
ase when
p ∈ [0, 1].We show that the above problem 
an be redu
ed to veri�
ation of the followinghypotheses:
min{J dp(x, y)+

1

2
dp(x−y),J dp(x, y)+

1

2
J dp(2x, 2y)+

1

4
dp(2x−2y)} ≤ dp

(x− y

2

)for x, y ∈ [−1, 1]. The above inequality 
an be easily veri�ed for p = 0 and p = 1(giving in parti
ular another proof of the result of Z. Boros). Although numeri
alsimulations support the assertion that the above hypothesis holds for all p ∈ (0, 1),we were not able to prove it.Józef Tabor Jensen semi
on
ave fun
tions with power moduli(joint work with Ja
ek Tabor and A. Mure«ko)We study the relation between Jensen semi
on
avity and semi
on
avity in the
ase when modulus of semi
on
avity is of the form ω(r) = Crp for p ∈ (0, 1]. As itis known 
ontinuous Jensen semi
on
ave fun
tion with modulus ω is semi
on
avewith modulus
ω̃(r) :=

∞
∑

k=0

ω
( r

2k

)

.In 
ase of ω(r) = Crp for p ∈ (0, 1] we improve this result and determine thesmallest ω̃.Gheorghe Toader Invarian
e in some families of means(joint work with S. Toader)As it is known from the 
lassi
al example of the arithmeti
-geometri
 meanof Gauss (see [1℄), the determination of a (M,N)−invariant mean P is a verydi�
ult problem. That is why we study the (equivalent) problem of �nding a
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e on Fun
tional Equations and Inequalities [143℄mean N whi
h is 
omplementary to M with respe
t to P. For the determinationof 
omplementaries, three methods have been used: the dire
t 
al
ulation (see [4℄),the use of the methods of fun
tional equations (see [2℄), and the series expansionof means (see [3℄). In the 
urrent paper we 
onsider the method of series expansionof means to study the invarian
e in the family of extended logarithmi
 means.[1℄ J.M. Borwein, P.B. Borwein, Pi and the AGM. A study in analyti
 number theory and
omputational 
omplexity, Canadian Mathemati
al So
iety Series of Monographs andAdvan
ed Texts, A Wiley-Inters
ien
e Publi
ation, John Wiley & Sons, In
., NewYork, 1987.[2℄ Z. Daró
zy, Zs. Páles, Gauss-
omposition of means and the solution of the Matkowski-Sut� problem, Publ. Math. Debre
en 61 (2002), 157�218.[3℄ D.H. Lehmer, On the 
ompounding of 
ertain means, J. Math. Anal. Appl. 36 (1971),183�200.[4℄ Gh. Toader, S. Toader, Greek means and the arithmeti
-geometri
 mean, RGMIAMonographs, Vi
toria University, 2005 (http://rgmia.vu.edu.au/monographs).Peter Volkmann Continuity of solutions of a 
ertain fun
tional equationThe 
ontinuous solutions f : R → R of the fun
tional equation
min{f(x+ y), f(x− y)} = |f(x) − f(y)|had been given in a talk during the Conferen
e on Inequalities and Appli
ationsat Noszvaj 2007 (http://riesz.math.klte.hu/∼
ia07). Here we show that the 
on-tinuity of a solution of this fun
tional equation follows from the 
ontinuity at onepoint.Marek C. Zdun Iteration groups and semigroups � re
ent resultsThis is a survey talk on sele
ted topi
s 
on
erning iteration groups and semi-groups where some progress has been a
hieved during the last years. Espe
iallywe 
on
ern on the problem of embeddability of given fun
tions in iteration groupsand iterative roots.In the talk we dis
uss the following dire
tions in iteration theory:1. Measurable iteration semigroups.2. Embedding of di�eomorphisms in regular iteration semigroups on Rn.3. Iteration groups of �xed point free homeomorphisms on the plane.4. Embedding of interval homeomorphisms with two �xed points in regulariteration groups.5. Commuting fun
tions and embeddability.6. Iterative roots.7. The stru
ture of iteration groups of homeomorphisms on an interval.8. The stru
ture of iteration groups of homeomorphisms on the 
ir
le.
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tions.10. Set-valued iteration semigroups.Marek �oªdak Bernstein�Doets
h type theorem for approximately 
onvex fun
-tions(joint work with Ja
ek Tabor and Józef Tabor)Let X be a real topologi
al ve
tor spa
e, let D be a subset of X and let
α:X → [0,∞) be an even fun
tion lo
ally bounded at zero.A fun
tion f :D → R is 
alled (α, t)-pre
onvex (where t ∈ (0, 1) is �xed), if

f(tx+ (1 − t)y) ≤ tf(x) + (1 − t)f(y) + α(x− y)for all x, y ∈ D su
h that [x, y] ⊂ D.We give a version of Bernstein�Doets
h theorem and some related results forsu
h fun
tions.Problems and Remarks1. Problem.Consider fun
tional equations of the form
n

∑

i=1

aif

( ni
∑

k=1

bikxk

)

= 0,

n
∑

i=1

ai 6= 0 (1)and
m

∑

i=1

αif

( mi
∑

k=1

βikxk

)

= 0,

m
∑

i=1

αi 6= 0, (2)where all parameters are real and f : R → R.Assume that the two fun
tional equations are equivalent, i.e., they have thesame set of solutions.Can we say something about the 
ommon stability? More pre
isely, if (1)is stable, what 
an we say about the stability of (2). Under whi
h additional
onditions the stability of (1) implies that of (2)? Gian Luigi Forti2. Problem and Remark.Let X be a normed spa
e, D ⊆ X be an open 
onvex set and let f :D → R bea Lips
hitz perturbation of a 
onvex fun
tion g:D → R, i.e., let f be of the form
f = g + ℓ,where g is a 
onvex fun
tion and ℓ:D → R is ε-Lips
hitz, i.e.,

|ℓ(x) − ℓ(y)| ≤ ε‖x− y‖, x, y ∈ D.
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tional Equations and Inequalities [145℄Then, for x, y ∈ D and t ∈ [0, 1], we have
f(tx+ (1 − t)y) − tf(x) − (1 − t)f(y)

=
[

g(tx+ (1 − t)y) − tg(x) − (1 − t)g(y)
]

+
[

ℓ(tx+ (1 − t)y) − tℓ(x) − (1 − t)ℓ(y)
]

≤ t
[

ℓ(tx+ (1 − t)y) − ℓ(x)
]

+ (1 − t)
[

ℓ(tx+ (1 − t)y) − ℓ(y)
]

≤ t
∣

∣ℓ(tx+ (1 − t)y) − ℓ(x)
∣

∣ + (1 − t)
∣

∣ℓ(tx+ (1 − t)y) − ℓ(y)
∣

∣

≤ tε‖(tx+ (1 − t)y) − x‖ + (1 − t)ε‖(tx+ (1 − t)y) − y‖

= 2εt(1 − t)‖x− y‖.Therefore, f satis�es the approximate 
onvexity inequality:
f(tx+ (1 − t)y) ≤ tf(x) + (1 − t)f(y) + 2εt(1 − t)‖x− y‖. (1)On the other hand, in the 
ase X = R, we have the following 
onverse of theabove observation (whi
h is a parti
ular 
ase of a result obtained in [1℄).Proposition.Let I be an open interval and ε ≥ 0. Assume that f : I → R satis�es, for all x, y ∈ Iand t ∈ [0, 1], inequality (1). Then there exists a 
onvex fun
tion g : I → R su
hthat the fun
tion ℓ := f − g is (2ε)-Lips
hitz.The following more general and open problem seems to be of interest.ProblemDoes there exist a 
onstant γ (that may depend on X and D) su
h that, whenevera fun
tion f :D → X satis�es inequality (1) for all x, y ∈ D and t ∈ [0, 1], thenthere exists a 
onvex fun
tion g:D → R su
h that the fun
tion ℓ := f − g is

γε-Lips
hitz on D?A result related to this problem was stated by V. Protasov during the 13thICFEI:If a fun
tion f :X → R satis�es, for all x, y ∈ X and t ∈ [0, 1],
∣

∣f(tx+ (1 − t)y) − tf(x) − (1 − t)f(y)| ≤ 2εt(1 − t)‖x− y‖,then there exists a 
ontinuous linear fun
tional x∗ ∈ X∗ su
h that ℓ := f − x∗ is
(4ε)-Lips
hitz on X.[1℄ Zs. Páles, On approximately 
onvex fun
tions, Pro
. Amer. Math. So
. 131 (2003),243�252. Zsolt Páles3. Problem.Let X be a Hilbert spa
e, D ⊆ X an open 
onvex set, ε > 0 and let f :D → Rbe a 
ontinuous fun
tion su
h that
f(tx+ (1 − t)y) − tf(x) − (1 − t)f(y) ≤ εt(1 − t)‖x− y‖, x, y ∈ D, t ∈ [0, 1].
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h that f is di�erentiable at x0?This problem is motivated by the results of S. Rolewi
z.Ja
ek Tabor and Józef Tabor4. Problem.In 
onne
tion with some problem in theoreti
al physi
s, O.G. Bokov introdu
edin [1℄ the following fun
tional equation
f(x, y)f(x+ y, z) + f(y, z)f(y + z, x) + f(z, x)f(z + x, y) = 0. (1)In [2℄ A.V. Yagzhev determined all analyti
 solutions f : Cn × C

n → C of (1).However, his proof is not 
lear and presents several gaps. So, we may wonderabout the validity of the result. Therefore, the problem is to �nd all analyti
solutions f : C × C → C of (1) with a ni
e mahemati
al proof. Also, we may askabout the solutions of (1) in a more general setting.[1℄ O.G. Bokov, A model of Lie �elds and multiple-time retarded Green's fun
tions of anele
tromagneti
 �eld in diele
tri
 media, Nau
hn. Tr. Novosib. Gos. Pedagog. Inst.86 (1973), 3�9.[2℄ A.V. Yagzhev, A fun
tional equation from theoreti
al physi
s, Fun
t. Anal. Appl. 16(1982), 38�44. Ni
ole Brillouët-Belluot5. Remark.During the last �fteen years a great number of papers 
on
erning stabilityof fun
tional equations have been published. Unfortunately in many of thesepapers motivations for studying a given equation or/and possible appli
ationsof the stability results are missing. In my opinion this will eventually produ
ea dis
redit of the topi
 and, 
onsequently, a dis
redit of the �eld of fun
tionalequations: a thing that we, fun
tional equationists, 
ertainly do not want. These
onsiderations are mainly dire
ted to younger 
olleagues, in order to invite themto investigate genuine, not rather arti�
ial, mathemati
al problems.Gian Luigi Forti6. Remark.Let (X, ‖ · ‖) be a normed spa
e, D ⊂ X be a 
onvex set and c > 0 be a �xed
onstant. A fun
tion f :D → R is 
alled strongly 
onvex with modulus c if
f
(

tx+ (1 − t)y
)

≤ tf(x) + (1 − t)f(y) − ct(1 − t)‖x− y‖2 (1)for all x, y ∈ D and t ∈ [0, 1]. Under the assumption (A) that (X, ‖ · ‖) is an innerprodu
t spa
e, the following equivalen
e (B) holds:
f :D → R is strongly 
onvex with modulus c if and only if g = f − c‖ · ‖2 is
onvex.The following example gives an answer to the question posed by Zsolt Pálesafter my talk at this 
onferen
e and shows that assumption (A) is essential for(B).
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tional Equations and Inequalities [147℄Example.Let X = R2 and ‖x‖ = |x1| + |x2| for x = (x1, x2). Take f = ‖ · ‖2. Then
g = f − ‖ · ‖2 = 0 is 
onvex. However, f is not strongly 
onvex with modulus 1.Indeed, for x = (1, 0) and y = (0, 1) we have

f
(x+ y

2

)

= 1 > 0 =
f(x) + f(y)

2
−

1

4
‖x− y‖2,whi
h 
ontradi
ts (1).One 
an also prove that if (B) holds for every f :X → R, then (X, ‖ · ‖) mustbe an inner produ
t spa
e. Thus 
ondition (B) gives another 
hara
terization ofthe inner produ
t spa
es among normed spa
es. Kazimierz Nikodem7. Remark.The Institute of Mathemati
s of the Pedagogi
al University of Cra
ow a

eptedin 1983 for realization Dobiesªaw Brydak's proposal of 
ontinuing in Poland theseries of �ve international 
onferen
es on fun
tional equations, whi
h had beenorganized by our Hungarian 
olleagues at Miskol
 and Debre
en from 1966 to1979 (see [1℄).The First International Conferen
e on Fun
tional Equations and Inequalitieswas held at Sielpia in Kiel
e region of Poland from May 27 to June 2, 1984. Infa
t, it was a se
ond 
onferen
e on fun
tional equations held in Poland, ever afterthat organized by Professors Stanisªaw Goª¡b and Marek Ku
zma at Zakopanein O
tober 9-13, 1967 (see [2℄). The organizers of the 1st ICFEI were DobiesªawBrydak, Bogdan Cho
zewski and Józef Tabor. The meeting was opened (andthen attended) by Professor Zenon Moszner, Re
tor Magni�
us of the Pedagogi
alUniversity of Cra
ow (see [3℄).The general statisti
al data, 
on
erning 1st, 13th and all ICFEIs (in bra
kets:the numbers of di�erent persons parti
ipating) are presented in Table 1, whereasin Tables 2 and 3 the distribution of parti
ipants into 
ountries and 
ities (ofa�liation) is exhibited. Table 4 shows the number of all ICFEIs the parti
ipant ofthe 13th one attended, with "⋆" meaning her or his presen
e at the 1st ICFEI. (Allthe data have been 
olle
ted by Miss Janina Wier
io
h, a member of organizingsta�s from 1991 (3rd ICFEI) on.)ICFEI All parti
ipants Foreign parti
ipants Countries Talks Sessions1st 59 9 8 41 813th 76 31 10 73 26All 13 857 (269) 206 (111) 32 694 239Table 1. General data



[148℄ Report of MeetingCountry 1st ICFEI 13th ICFEI CitiesAustralia 2 - La Trobe, MelbourneAustria 1 1 Graz ‖ Innsbru
kCze
hoslovakia 1 - BrnoFran
e - 1 NantesGermany - 2 Clausthal-Zellerfeld, LobauGree
e - 1 AthensHungary 2 14 Miskol
 ‖ Debre
en 13, Miskol
 1Israel - 1 HaifaItaly 1 1 Milan ‖ MilanRomania - 5 Cluj-Napo
a 3, Timi³oara 2Russia - 5 Mos
ow 1, Nizhny Novgorod 3,Vologda 1Switzerland 1 - BernWest Germany 1 - Karlsruhe
∑ 9 31Table 2. Parti
ipants from abroadCity 1st ICFEI 13th ICFEIBiaªystok 1 -Bielsko-Biaªa 3 3Cz�sto
howa 1 -Gda«sk 1 1Gliwi
e - 2Katowi
e 11 12Kiel
e 4 1Kraków 22 16Rzeszów 6 8Zielona Góra - 2

∑ 50 45Table 3. Polish parti
ipantsA

ording to Table 4 in the 13th ICFEI took part 13 
olleagues who alsoattended our �rst meeting held 25 years ago. Among them were: Karol Baron,Roman Ger, Ma
iej Sablik (all from Katowi
e) who parti
ipated in all ICFEIs,and from abroad: Gian Luigi Forti (Milan) and Peter Volkmann (Karlsruhe) whotook part in 5, respe
tively 10, 
onferen
es. Moreover, what may be surprising, atthe 13th ICFEI were present less Polish mathemati
ians than in the 1st one. One
an also observe that 9 
olleagues (7 from abroad) 
ame to our 
onferen
e for the�rst time (at least four of them seemed to be younger than the ICFEI).The most numerous group of our guests from abroad usually was that of Hun-garians (altogether 85 presen
es, 14 parti
ipants of the 13th ICFEI). The author
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tional Equations and Inequalities [149℄then proposed to transform the popular saying on Hungarian-Polish fraternity asfollows:Magyar-Lengyel jó barát - igen függvényegyenletek, igen függvényegyenlötlen-ségek (Hungarian and Pole are good nephews - both in fun
tional equations andinequalities). R. Badora 9 J. Mako 1A. Bahyry
z 5 G. Maksa 6Sz. Baják 1 F. Mészáros 3K. Baron 13 ⋆ B. Mi
herda 1L. Bartªomiej
zyk 8 V. Mityushev 3S. Belmesova 1 L. Molnár 3M. Bessenyei 2 J. Morawie
 10Z. Boros 6 J. Mrowie
 5N. Brillouët-Belluot 7 A. Mure«ko 5J. Brzd�k 9 A. Najde
ki 5P. Burai 2 K. Nikodem 10 ⋆L. C dariu 2 A. Nuyatov 1J. Chmieli«ski 11 A. Olbry± 3B. Cho
zewski 12 ⋆ J. Olko 6J. Chudziak 7 B. Paneah 4K. Ciepli«ski 6 Z. Páles 9M. Czerni 11 ⋆ M. Pisz
zek 4S. Czerwik 9 V.D. Popa 2Z. Daró
zy 8 V.Yu. Protasov 2J. Das
al 2 B. Przebiera
z 3J. Domsta 8 V. Radu 2A. Fil
henkov 1 E. Rak 2G.-L. Forti 5 ⋆ Th.M. Rassias 3W. Förg-Rob 10 M. Sablik 13 ⋆R. Ger 13 ⋆ E. Shulman 3A. Gilányi 6 J. Sikorska 8D. Gªazowska 4 A. Smajdor 10 ⋆E. Gselmann 1 B. Sobek 2G. Guzik 6 P. Solarz 6A. Házy 3 J. Sz
zawi«ska 10E. Jabªo«ska 3 T. Szostok 6H.-H. Kairies 11 Ja
ek Tabor 7B. Ko
l�ga-Kulpa 4 Józef Tabor 12 ⋆Z. Kominek 12 ⋆ G. Toader 4D. Krassowska 5 S. Toader 1Z. Le±niak 9 P. Volkmann 10 ⋆A. Ma
h 8 ⋆ M.C. Zdun 10 ⋆E. Mainka 1 M. �oªdak 4Table 4. Numbers of all ICFEIs attended by parti
ipants
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zewski, International meetings organized by Polish s
hools on fun
tional equa-tions, Ann. A
ad. Pedagog. Cra
. Stud. Math. 5 (2006), 13�32.[2℄ Mi�dzynarodowa Konferen
ja z Równa« Funk
yjny
h, International Conferen
e onFun
tional Equations, Zakopane, 9.X.-13.X.1967, Zeszyty Nauk Uniw. Jagiello. Pra
eMat. 14 (1970).[3℄ Pro
eedings of the International Conferen
e on Fun
tional Equations and Inequalities,May 27 - June 2, 1984, Sielpia (Poland), Ro
znik Nauk.-Dydakt. Pra
e Mat. 11(1985), 185�265. Bogdan Cho
zewskiList of Parti
ipantsBADORA Roman, Instytut Matematyki, Uniwersytet �l¡ski, ul. Bankowa 14,40-007 KATOWICE, Poland, e-mail: robadora�ux2.math.us.edu.plBAHYRYCZ Anna, Instytut Matematyki, Uniwersytet Pedagogi
zny, ul. Pod
hor¡»y
h 2,30-084 KRAKÓW, Poland, e-mail: bah�up.krakow.plBAJÁK Szabol
s, Institute of Mathemati
s, University of Debre
en, P.O. Box 12,H-4010 DEBRECEN, Hungary, e-mail: bajaksz�math.klte.huBARON Karol, Instytut Matematyki, Uniwersytet �l¡ski, ul. Bankowa 14,40-007 KATOWICE, Poland, e-mail: baron�us.edu.plBART�OMIEJCZYK Le
h, Instytut Matematyki, Uniwersytet �l¡ski, ul. Bankowa 14,40-007 KATOWICE, Poland, e-mail: le
h�math.us.edu.plBELMESOVA Svetlana, Fa
ulty of Me
hani
s and Mathemati
s, Nizhny Novgorod StateUniversity, Gagarin ave. 23a, building 6, o�
e 501, 603950 NIZHNY NOVGOROD, Russia,e-mail: belmesovass�mail.ruBESSENYEI Mihály, Institute of Mathemati
s, University of Debre
en, P.O. Box 12,H-4010 DEBRECEN, Hungary, e-mail: besse�math.klte.huBOROS Zoltán, Institute of Mathemati
s, University of Debre
en, P.O. Box 12,H-4010 DEBRECEN, Hungary, e-mail: boros�math.klte.huBRILLOUËT-BELLUOT Ni
ole, Département d'Informatique et de Mathématiques,E
ole Centrale de Nantes, 1, rue de la Noë, B.P. 92101, F-44321 NANTES-Cedex 3, Fran
e,e-mail: Ni
ole.Belluot�e
-nantes.frBRZD�K Janusz, Instytut Matematyki, Uniwersytet Pedagogi
zny, ul. Pod
hor¡»y
h 2,30-084 KRAKÓW, Poland, e-mail: jbrzdek�up.krakow.plBURAI Pál, Fa
ulty of Informati
s, University of Debre
en, P.O. Box 12,H-4010 DEBRECEN, Hungary, e-mail: buraip�inf.unideb.huC�DARIU Liviu, Department of Mathemati
s, �Politehni
a" University of Timi³oara,Vi
toriei 2, 300006 TIMI�OARA, Romania, e-mail: liviu.
adariu�mat.upt.ro,l
adariu�yahoo.
omCHMIELI�SKI Ja
ek, Instytut Matematyki, Uniwersytet Pedagogi
zny,ul. Pod
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h 2, 30-084 KRAKÓW, Poland, e-mail: ja
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zo-Hutni
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