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Darren Crowdy
Explicit solution of a class of Riemann—Hilbert
problems

Abstract. Analytical solutions to a special class of Riemann—Hilbert bound-
ary value problems on multiply connected domains are presented. The so-
lutions are expressed, up to a finite number of accessory parameters, as
non-singular indefinite integrals whose integrands are expressed in terms of
the Schottky—Klein prime function associated with the Schottky double of
the planar domain.

1. A class of Riemann-Hilbert problems

The subject of this paper is a special class of Riemann-Hilbert problems (RH
problems) on multiply connected planar domains. The study of general RH prob-
lems is a classical subject and discussions of it can be found in standard mono-
graphs on boundary value problems [9], [18], [13]. A solution of the general
(Riemann)—-Hilbert boundary value problem has been found, using successive it-
eration methods, by Mityushev [14]. Here we restrict attention to a special (but
important) subclass of the same RH problems and find an analytical expression
for the solutions, up to a finite set of accessory parameters, in terms of a transcen-
dental function known as the Schottky—Klein prime function [3] associated with
the multiply connected domain.

We define a circular domain D¢ in a complex parametric (-plane to be a domain
whose boundaries are all circles. Let D¢ be the M +1 connected circular domain in
a (-plane consisting of the unit disc with M smaller discs excised from its interior.
The outer boundary of D¢ is the unit circle which we label Cy. Label the M inner
boundary circles of D¢ as Cy,...,Cy. For k = 0,1,..., M let the centre and
radius of Cj be 0 and gj respectively.

Consider the Riemann—Hilbert problem for the function w(¢):

Re[Mw(()] =di  onCy, k=0,1,..., M, (1)

where {\, € C| |M\x| =1, k=0,1,..., M} is a set of complex constants with unit
modulus and {dy € R| k =0,1,...,M} is a set of real constants. We solve for
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w(C) satistying (1) that is analytic, but not necessarily single-valued, in D, except
for a simple pole, with known residue, at some point ¢ = 3 strictly inside D.

Circular domains are a canonical class of planar domains because every planar
domain is conformally equivalent to some circular domain [10]. Because of this,
and because the class of RH problems (1) is conformally invariant, it means that
the solution scheme which follows is rather general. It applies, up to conformal
mapping from the canonical class of circular domains, to any multiply connected
planar region.

Problem (1) is a generalization of the classical Schwarz problem [9], [18], [13],
a case of which is retrieved on making the choice, for example, that A\, = 1
for all kK = 0,1,..., M in (1). This paper produces an analytical expression for
the solution of (1) when the constants {\; € C| k = 0,1,..., M} are generally
distinct. The solution is expressed as a non-singular, indefinite integral whose
integrand is written in terms of the Schottky—Klein prime function [3] associated
with D¢. This integrand depends on a finite set of accessory parameters that
can, in principle, be determined (for example, numerically) from the given data
{)\kadk 6(C| kZO,l,...,M}.

The special form of RH problem (1) has been considered by other authors.
Vekua [18] shows that, if it exists, the solution of the RH problem (1) is unique [18].
Wegmann & Nasser [19] study the doubly connected case M =1 of (1) in a recent
paper on numerical solutions of RH problems on multiply connected regions using
integral equations based on the generalized Neumann kernel.

The class of RH problems appears in a variety of applications, especially in
the more general (discontinuous) case when the value of the constant )\, assumes
different values on different segments of the circle C (the methods of this paper,
presented for the continuous problem, can be generalized to this case). One of
the more important applications is to free streamline theory in hydrodynamics.
There, in the study of jets and cavities, it is traditional to study a function known
as the Joukowski function [11], often written as

Q(¢) = log (Viodi‘;()) |

where z = z+1iy, Vj is a constant scaling factor and w(z) is an analytic function in
the flow region (known as the complex velocity potential). On any solid boundaries
in contact with the fluid, the imaginary part of (¢) is constant; on any free
streamlines, owing to the constancy of pressure in a cavity region on one side
of the free streamline and Bernoulli’s theorem, it is the real part of Q(¢) that
is constant. Since a single streamline in a real flow can, in part, be in contact
with a solid boundary and then separate into a free streamline bounding a cavity,
Q(¢) turns out to satisfy a (discontinuous) Riemann—Hilbert problem of precisely
the form (1). In the simply connected situation, Schwarz—Christoffel methods
have proved to be very useful in problems of this kind [11]. Interestingly, there
has been recent interest [2] in developing this nonlinear theory to flows involving
multiple body-cavity systems. The theory presented here, for multiply connected
situations, should find application in such studies.
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2. Function theory

The investigation we now present borrows ideas from prior work by the author
[5], [6] in which new analytical formulae for the Schwarz—Christoffel mappings
to bounded and unbounded polygonal domains were constructed. Although this
viewpoint is not the one taken in [5], [6], such Schwarz—Christoffel mappings can be
viewed as satisfying a RH problem on a multiply connected domain of exactly the
form (1). Here, the same constructive method is exploited to find explicit repre-
sentations of the solution of broader classes of RH problems in multiply connected
domains.

In this paper, for ease of exposition, we focus on the continuous case where
the constant A\, assumes the same value at all points on the circle Cj (in the
discontinuous analogue, which is more akin to the usual Schwarz—Christoffel prob-
lem, the value of this constant is allowed to be different on different segments of
Ck). A consequence of this assumption is that we effectively do not allow any
branch point singularities of w(¢) on any of the circles {C;| j = 0,1,...,M}.
The method, however, can be readily generalized to the case where branch points
are present.

We now construct some special functions associated with D¢. First, for k£ =
0,1,..., M, define the M6bius transformation ¢ (¢) by

2

G =0+~ k=0,1,...,M. 2)
¢ —0k
It is straightforward to check that for ¢ on circle Cy,
o(C) = ¢

We define the reflection of a point ¢ in the circle Cy by ¢%(¢). Then, for k =
1,..., M, introduce the Mdbius transformation 6y (¢) defined by

0u(Q) = 6e(C ). k=10 3)
It follows from (3) and (2) that
2
0,(C) = o1 + lfkg_kc, k=1,..., M.

For k =1,...,M, let C}, denote the reflection of Cj in Cy. It can be shown that
01 (¢) maps C, onto Cj.

Let © denote the set of all compositions of the maps {6;(¢)| k=1,..., M} and
their inverses. It is an example of an infinite Schottky group. Further information
on Schottky groups can be found in [3], [4]. We refer to the maps {0x(C)| k =
1,..., M}, together with their inverses, as the generators of ©. A fundamental
region of © is a connected region whose images under all maps in © tessellate the
whole of the plane. Consider the region consisting of D¢ and its reflection in Cy,
i.e., the 2M-connected region bounded by {Cj,C} | k = 1,...,M}. Label this
region as F'. I is a fundamental region of ©.
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Associated with © are M functions known as integrals of the first kind which
we denote {vg(¢)| k=1,..., M}. These are analytic, but not single-valued, in F'.
Indeed, for j,k=1,..., M we have

[wk(Ole; = =vr(Qler = Gk, (4)

where [vr(¢)]c, and [Uk(C)]c; denote respectively the changes in vk (¢) on travers-
ing C; and OJ’» with the interior of F' on the right, and 6, denotes the Kronecker
delta function. Furthermore, for j,k=1,..., M,

v(05(¢)) — vk(C) = Tk (5)
for some {7;x | j,k =1,..., M} which are constants, i.e., independent of ¢. The
functions {vi(¢)| k=1,..., M} are uniquely determined (up to an additive con-

stant) by their periods given by (4) and (5).

2.1. The Schottky—Klein prime function

Let « be some arbitrary point in F'. It is established in [12] that there exists
a unique function X (¢, «) defined by the properties:

(i) X(¢, ) is single-valued and analytic in F.

X (¢, @) has a second-order zero at each of the points 6(«), 6 € ©.

(i)
(iii) limeq ()é“;;g =1.
)

(iv) Fork=1,....M

)

0x (<)
g

The Schottky—Klein prime function (henceforth referred to as S—K prime function),
which we denote w((, «), is defined as

w(C,a) = (X(¢ )"/,

where the branch of the square root is chosen so that w({, a) behaves like ({ — «)
as ¢ — a.

There are two known ways to evaluate the S—K prime function. One possibility
is to use a classical infinite product formula for it as recorded, for example, in
Baker [3]. It is given by

e 1T B0 — ) ale) )
w6 == G =0m@ —ar ©

where the product is over all compositions of the basic maps {6,,6 ; 1| j =
1,..., M} excluding the identity and all inverse maps. This product, even if it
is convergent, can converge so slowly and require such a large number of terms
in the product, that its use in many circumstances is impractical. An alternative
numerical scheme has recently been put forward by Crowdy & Marshall [8]; it is
much more computationally efficient than methods based on the infinite product
(6) over the Schottky group.

X(04(¢),0) = exp (~2i(201(C) — 200() + i) &

X (¢, ).
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3. The circular slit domain

To proceed with the construction, we introduce an intermediate 7-plane. Con-
sider a conformal mapping, denoted 7((; @), taking the multiply connected circu-
lar domain D¢ to a conformally equivalent circular slit domain called D,,. « is
the point in D¢ mapping to n = 0 in D,, ie., n(e;a) = 0. Figure 1 shows
a schematic in a triply connected case. Let the image of Cy under this map-
ping be the unit circle in the n-plane which will be called Ly. The M circles
{C;| 7=1,...,M} will be taken to have circular-slit images, centred on n = 0,
and labelled {L;| j=1,...,M}. Let the circular arc L; be characterized by the
conditions

il =r;,  argln] € o7, 05,
There will be two pre-image points on the circle C; corresponding to the two end-

points of the circular-slit L;. These two pre-image points, labelled *yfj ) and *yéj ),
satisfy the conditions

; - (F) :

N5 a) = rjei”, nc(\?, ) =0,
j o) ;

N5 a) = e () = 0.

These two zeros of 1¢(¢) on C; are simple zeros.

{-plane n-plane
1 1
0.5 0.5
0 0
-0.5 -0.5
-1 -1
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

Figure 1: A typical circular slit mapping from a triply connected circular region
D¢ in a ¢-plane to a triply connected circular slit domain D, in a 7-plane.

It is shown in [5] and [7] that an explicit expression for the conformal slit
mapping from D¢ to D,, can be found in terms of the S-K prime function of D¢.
It is given by

n(¢a) = w(,0)

alw(¢a™h)’

Formula (7) will be crucial in the solution scheme to follow.

(7)



[10] Darren Crowdy

4. Solution scheme

The required function w(¢) is analytic in D¢. One can also consider the com-
posed function W (n), analytic in D,,, defined by

W(n(¢ o)) = w(().
The boundary conditions (1), expressed in terms of this new function W (n), are
Re [ M W(n)] =de  on Ly, k=0,1,..., M.

These can be rewritten in the form

A W(n) + MW (n) = 2dy on Ly, k=0,1,..., M,

1

or, on use of the fact that 7 =rin~! on L,

N W)+ MW (rgn )y =2d,  on Ly, k=0,1,..., M. (8)

Using W’ (n) to denote the derivative of W with respect to its argument, differen-
tiation of (8) with respect to n gives

—_ 2 [—
Ak W’(n)—;—g)\kW/(rinfl) =0 onLg k=0,1,...,M,

which can be rewritten as

nW'(n) _ e

U -2k onLy k=0,1,..., M.
nW'(n) Ak

This is a statement of the fact that the argument of nWW'(n) is constant on L.
Let us now suppose that we seek a solution for which there are precisely two

zeros of the derivative dw/d¢ on each of the boundary components {C;| j =

0,1,...,M}. Let the positions of the two zeros on C; be at points a; and ¢;, i.e.,

dw dw
d_C(aj) =0= d_((cj)'

These zero positions will not be known a priori but will enter our representation
of the solution as accessory parameters.

4.1. Building block functions

A set of “building block” functions will be used to construct the required solu-
tions. Their characterizing feature is that they all have constant argument on the
boundary circles {C;| j = 0,1,...,M}. These functions were introduced in |5]
and their properties established there.

It is shown in [5] that functions of the form

w(<7 Cl)

R1(¢5¢1,G) = DG’
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where (7 and (2 are any two points on the same circle Cy, (for k =0, 1,..., M) has
constant argument on each of the boundary circles {C;| j =0,1,...,M}. Also,
functions of the form

Ro((i (1, o) = Y66 ) (10)

w(<7<2)w(<7<2 )
where (1 and (s are any two ordinary points of the Schottky group (these points
need not be points on the boundary circles) similarly have constant argument on
each of the boundary circles {C;| j =0,1,...,M}.
Let 79 be some point on Cy that is distinct from ag and ¢g. Consider the
function

R1(¢; a0, 70)R1(¢; co,v0) Ra(C; 70, B)Ra (G o, B)

M 1) @) (11)
< [T R(Gs ar, v ) Ra (G5 en,m.7)-
k=1

First, since it is a product of the building block functions just introduced, the
function in (11) has constant argument on the circles {C;| j =0,1,...,M}. As
for its singularities, it is a meromorphic function in D¢ with a second order pole at
¢ =7 (and at Bil), simple poles at the points {7121)771(92) | k=1,..., M}, simple
zeros at ( = « and @ ! and simple zeros at the points {ax,cx | k=0,1,..., M}.
It has no other singularities in D¢. Let the function (11), considered now as
a function of 7, be called U (n).

Now cousider the function nW'(n) which, we have already established, must

have constant argument on the circles {C;| j = 0,1,...,M}. By the chain rule
we have
dw/d¢
nW'(n) =n :
) dn/d¢

This function is analytic everywhere in D, except for simple poles at the zeros
of dn/d¢, i.e., at the points {*y,(cl),”y](f) | k=1,...,M}. It also has second order

poles at ( = § and B_l. It has a simple zero at ( = « since 7((; «) has a sim-
ple zero there and, as can be seen after making use of (7), it also has a simple
zero at @ !. By assumption, it also has 2(M + 1) simples zeros at the points
{ag,cx | k=0,1,...,M}. In short, it has all the same zeros and poles in D; as
the function U (7).

We are thus led to consider the ratio

_ nW'(n)
Vn) = e

in the domain D,. Since we know that U(n) and nW’(n) have the same poles
and zeros inside and on the boundaries of D¢, the function V() can be deduced
to be analytic everywhere in the domain D,), as well as on its boundaries. This
means that V(n) is analytic everywhere in |n| < 1. Moreover, it is known that the
arguments of both U(n) and nW’'(n) are constant on Ly. Thus,

V(n) =eV(n) on Lo,
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for some constant € implying that
Vin ™) =eV(n) on Ly.

This equation furnishes the analytic continuation of V(n) into |n| > 1 and, in
particular, shows that it is analytic there (and bounded at infinity). Since V() is
analytic everywhere in the complex 7-plane, and bounded as 7 — oo, Liouville’s
theorem implies V' (n) = B, where B is some complex constant.

On use of (9) and (10), and after some cancellations, we deduce that

dw () BS(Ga
= w C,(l C?C )7
A (¢, B2, 6 H S

where

B w<<,a-1>w<<<7a>—w<<,a>w<<<,a—l>>
SC,O{ = 1 5 .
(i ( [T, (G ()

Hence, the required solution can be written as the indefinite integral

¢ M
S(C/;Oz) / / /
w(()=A+B — w(¢’sag)w(¢’s ex) dd, (12)
1/ T T L S

where A is some complex constant. Formula (12) is the main result of this paper.

It is demonstrated in the appendix that for any two distinct choices of «;
and ag, S((;a1) = CS((;az), where C is some constant (independent of ().
This means that making different choices of « in the representation (12) simply
corresponds to making a different choice of the constant B.

5. The doubly connected case

As verification we consider two problems in the doubly connected case. Let
D¢ to be the concentric annulus p < |¢| < 1 for some real p. Any doubly con-
nected domain is conformally equivalent to some such annulus. The solutions to
the following two problems can, it turns out, be found in analytical form using
alternative arguments which allows us to check our analysis.

PROBLEM 1
We specialize to the case where \j = A\ = 1 with ¢g = 0. The problem is then the
classical Schwarz problem. One form of the solution is

U
w(C) = 5" Alog ¢+ I(¢), (13)

where A is a constant and the single-valued function I (¢) can be written in terms
of the classical Villat formula [1]:

10=55 § S a-2r0s0, ))[ e[gﬁ

3 +A10g§”
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1 ¢’ , U -
=] (2= 2K (/¢ ) |1 e | - + Ao |
where
K(¢.p) = SEs) (19
and
P¢,p) == JJa-p* 00— p¢H. (15)
k=1

Alternatively, the same solution can be written in the form

w(¢) = % (KB, p) + K(CB,p)) + ClogC + D,

where

C= 10;) (Cl - % (K(pB~ Y, p)+ K(pB,p) = K(B~',p) — K(B,p))>

and
D= —% (KB~ p)+K(@B.p)).

The new solution method given earlier provides a third representation of the
same solution:

w(()
(16)

o S(C/;Oz) / / / / /
—4+B / e G (e

where, in this doubly connected case, it can be shown (see [5] for details) that

S(¢a) x CLQ

To check (16) we use the solution (13) to numerically compute (using Newton’s
method) the two points on Cy at which dw/d¢ = 0. These are substituted into
(16) as the values of ag and c¢p. Similarly, we find the two points on C; at which
dw/d¢ = 0 and take these as the values of a; and c¢;. Next, we set A = w(1),
where the right hand side is computed using the known solution (13). We also
fix B by ensuring that

w(p) = A+ B/ 5(¢)

(C/ 6)2 (C/ B—l W(C/uaO)w(ClaCO)W(C/,al)w(C/7cl)d</,
1 wiss wi&

)2
where the left hand side of this equation is evaluated using the known solution

(13). With all the parameters in (16) now determined, we check the value of the
integral (16) against the values given by (13) for different (arbitrary) choices of ¢ in
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the annulus (the integral (16) is computed using the trapezoidal rule). The values
are found to be in agreement (to within the accuracy of the numerical method)
thereby confirming that (16) is indeed a representation of the required solution.

ProsBLEM 2

We now specialize to the case where \g =1, A\ = ¢ with no restrictions on dg
and d;. This is no longer a classical Schwarz problem so the Villat formula cannot
be used here. An analytical formula for the solution can, however, be found:

= % [K(¢B7,p%) = K(CB,p°) — K(CB™1p 2, p%) + K(CBp~ 2, p7)]

+doy + 1d,

im/2

w(©) -

where the special function defined in (14) again appears. A derivation of (17) is
given in appendix B. In a manner akin to that used in Problem 1, the expression
(17) was used to find the locations of the zeros of dw/d¢ on both Cy and C; (there
are two on each circle). These are then used as the values of ag, co, a1 and ¢ in
an expression of the form (16). The values of A and B are determined in the same
way as in Problem 1 and the values of the integral (16) for arbitrary values of ¢
checked against the values given by (17). They are found to be in agreement.

6. Discussion

This paper describes a constructive method for finding solutions to Riemann—
Hilbert problems of the special form (1) on multiply connected domains. The
solution having two zeros of the derivative on each of the boundary circles is
given in (12) as a non-singular indefinite integral containing a finite set of acces-
sory parameters. In general, these parameters must be determined from a set
of equations obtained by substituting the form (12) into the boundary condi-
tions (1). In other words, given the 2M + 2 real parameters associated with the
set {\g,di| k=0,1,..., M} it is possible to determine the 2M + 2 real parame-
ters associated with the set of zeros {ay,cr | K =0,1,..., M}. How to determine
these accessory parameters numerically in an efficient manner remains a subject
for future research.

In principle, it is possible to extend the constructive method herein to find rep-
resentations to solutions of the discontinuous analogues of the special RH problems
considered here where the constant \j is allowed to assume different piecewise con-
stant values on different segments of circle Cj. In such cases, one must generally
introduce branch point singularities in the derivative w¢(¢) but this just requires
the incorporation of appropriate non-integer powers of the building block functions
when performing the construction described herein. It is very similar to what is
done in constructing multiply connected Schwarz—Christoffel formulae [5], [6].
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A. The function S(¢; o)

In this appendix we establish the fact that S(¢; 1) = CS((; a2), where C' is
some constant (independent of ¢). To this end, consider the ratio
S(¢ o)

S(¢ )’

where o and ag are two distinct values in D¢. First, notice that S((;«1) can be
rewritten in the form

) = (@elGan) weGar ) w(G aw(Car )
SlGen) <W(<=0‘1) w(¢ar ™) > Hﬁlw(c,vél))w(c,'y,iz)),

where {”y,(cl), *y,(f) | k=1,..., M} are the zeros of the slit map 7({; aq). Similarly

(@G wlCm ) wlGane(ar)
S(Ca 2) <(AJ(<,O(2) W(C,O&Q ) > Hk 1(.()(< ~(1)) (C,;?I(f)), (20)
(1) ~(2)| b —

where {7,,% ..., M} are the zeros of the slit map n(¢; ). It is also
easy to check that, for j =1,2,

R(() = (18)

(19)

WC(Caaj) WC(Cva_J_l) nC(Cvaj)

w(Gay)  w(CamTh)  nGaey)

Next, observe that on C; (and for any ),

(¢ a)n(Ca) =13,

where 7; is some real constant. A differentiation with respect to ¢ yields

e~ () (i)

It follows that the ratio of any two such functions, that is,

1¢(G ) /n(C an)
1¢(G az) /(G5 az)
will be real (and, in particular, have constant argument) on all the circles {C; | j =
0,1,...,M}.
Substitution of (19) and (20) into (18) then produces

T(¢) =

R(¢) = T({)Ra(Cs o, 2) HRlc W ARG AP).

=1



[16] Darren Crowdy

The important observation is that this is a product of functions that all have

constant argument on the circles {C;| 7 =0,1,...,M}. These conditions can be
written as

R(C) = w;R(C)  onCj, j=0,1,..., M, (21)
for some set of complex constants {x;| j = 0,1,...,M}. R({) can be shown to

be a constant. One way to do this is to use arguments similar to those used in
§4.1. to show that V() is constant, but it is instructive to present an alternative
argument based on RH methods. The function R(¢) is known to be analytic and
single-valued everywhere in the fundamental region of the group ©. Consider the
real part of equation (21); it can be written in the standard form of a RH problem:

Re[m; R(C)] =0 onCj, j=0,1,..., M, (22)

for some set of complex constants {u;| j = 0,1,...,M}. The (homogeneous)
Riemann-Hilbert problem (22) has been well studied and it is known (see, for
example, p. 257 of Vekua [18]) that it admits no solution for R(¢) unless all the
constants {y;| j = 0,1,..., M} are identical. In this case, the unique solution
is R(¢) = C, where C is a constant. Thus, we have established that S({;a1) =
C'S(C; az) for some constant C' that is independent of .

B. Derivation of (17)
To find solution (17), consider the following boundary value problem for w(¢):

Re[w()]
Im[w(C)]

=0 on [¢| =1,
=0 onl¢|=p
These imply that
w(¢)+@(¢") =0 on|¢|=1,
w(¢) =wW(p*¢1) =0 on|¢]=p.
The relations (23) can be analytically continued off the respective circles and imply
that w(¢) satisfies the functional relation

w(p'¢) = w(C). (24)

Now P((, p) can be shown, directly from its definition (15), to satisfy the functional
relations

(23)

P p)=—CTTP(Cp), P(p*Cp) =—CTP(C,p),

from which it also follows that

K(<717p):1—K(<,p), K(pQCap):K(Cap)_l

Furthermore, near ( =1, K((, p) has a simple pole with unit residue, i.e.,

1
K(¢p) = Cj + analytic.



Explicit solution of a class of Riemann—Hilbert problems [17]

We can therefore use K (¢, p?) to construct a function w(({) satisfying (24) and
having a simple pole at { = 3. The relations (23) imply that w(¢) also has simple
poles at ¢ = 371, p?3, p?3~! (and at all points equivalent to these under ¢ — p*().
The required form of solution can now easily be deduced to be that given in (17).
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On some equations stemming from quadrature rules

Abstract. We deal with functional equations of the type
Fly)—F(z) = (y—x) > fr (1= M)z + M),
k=1

connected to quadrature rules and, in particular, we find the solutions of the
following functional equation

f@) = fy) = (= y)lg() + h(z + 2y) + h(2x +y) + 9(y)].
We also present a solution of the Stamate type equation
yf (@) —zf(y) = (z —y)lg(x) + h(z + 2y) + h(2x +y) + 9(y)].

All results are valid for functions acting on integral domains.

1. Introduction

We deal with some equations connected to quadrature rules. Having a function
f:R — R we may approximate its integral using the following expression

F(y) - Fe) = (y — ) Y_arf((1 = Az + Ay)

k=1

(where F' is a primitive function for f), which is satisfied exactly for polynomials of
certain degree. One of the simplest functional equations connected to quadrature
rules is an equation stemming from Simpson’s rule

F) - F@) = (—a) [0 + 37 (Z52) + 500

Another example is given by the equation

F) - Fa) = =) |35+ 57 (T52) + 57 (52 ) + 0.
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which is satisfied by polynomials of degree not greater than 3. The generalized
version of this equation

9(z) = f(y) = (x — y)[h(z) + k(sz + ty) + k(tx + sy) + h(y)] (1)

was considered during the 44th ISFE held in Louisville, Kentucky, USA by P.K. Sa-
hoo [7]. The solution has been given in the class of functions f, g, h, kK mapping
R into R and such that g and f are twice differentiable, and & is four times differ-
entiable.

On the other hand, M. Sablik [5] during the 7th Katowice-Debrecen Winter
Seminar on Functional Equations and Inequalities presented the general solution
of this equation in the case s,t € Q without any regularity assumptions concerning
the functions considered.

We deal with a special case of (1) (with s = 1, ¢t = 2) for functions acting
on integral domains. However, it is easy to observe that if we take x = y in (1),
then we immediately obtain that f = g. Thus we shall find the solutions of the
following functional equation

f@) = fy) = (@ —y)lg(x) + h(z + 2y) + h(2z +y) + g(y)]. (2)

Using the obtained result we will also present a solution of a similar Stamate type
equation

yf(x) —xf(y) = (x —y)g(z) + h(2z +y) + h(z + 2y) + g(y)]. (3)

In the proof of Lemma 1 below we use the lemma established by M. Sablik
[6] and improved by I. Pawlikowska [3]. First we need some notations. Let G,
H be Abelian groups and SA°(G,H) := H, SAY(G, H) := Hom(G, H) (i.e., the
group of all homomorphisms from G into H), and for i € N, i > 2, let SAY(G, H)
be the group of all i-additive and symmetric mappings from G* into H. Fur-
thermore, let P := {(«, ) € Hom(G,G)? : «(G) C 3(G)}. Finally, for z € G let

2

2t = (z,...,7),i € N.
——

%

LEMMA 1

Fiz N € NU{0} and let Iy, ...,In be finite subsets of P. Suppose that H is
uniquely divisible by N! and let the functions ¢;: G — SA G, H) and Vi (a,8): G —
SA G, H) (o, ) € I, i = 0,...,N) satisfy

) + Z i(x Z Y Witas (@) + BW)Y)

=0 (a,B)€I;

for every xz,y € G. Then oy is a polynomial function of order at most k — 1,

where
N N
k= anrd( UIS>'
i=0 s=i



On some equations stemming from quadrature rules [21]

Now we will state a simplified version of this lemma. We take N = 1 and we
consider functions acting on an integral domain P. Moreover, we consider only
homomorphisms of the type = — yx, where y € P is fixed.

LEMMA 2
Let P be an integral domain and let Iy, I; be finite subsets of P? such that for all
(a,b) € I; the ring P is divisible by b. Let ©;,v; (o,8): P — P satisfy

v1(x)y + wo(z) = Z Yo, (ap)(ax +by) +y Z V1, (a,p) (@ + bYy)
(a,b)€lo (a,b)ely

for all z,y € P. Then 1 is a polynomial function of order at most equal to
card(IpUI ) +cardI; — 1.

In the above lemmas a polynomial function of order n means a solution of the
functional equation A} f(z) = 0, where A7 stands for the n-th iterate of the
difference operator Ay, f(z) = f(x+ h) — f(x). Observe that a continuous polyno-
mial function of order n is a polynomial of degree at most n (see [2, Theorem 4,
p. 398]).

It is also well known that if P is an integral domain uniquely divisible by n!
and f: P — P is a polynomial function of order n, then

f@)=co+ci(z)+ ...+ cn(x), x € P,
where ¢y € P is a constant and
ci(z) = Ci(z,z, ..., x), reP

for some i-additive and symmetric function Cj: P — P.

2. Results

We begin with the following lemma which will be usefull in the proof of the
main result. However, we state it a bit more generally.

LEMMA 3
Let P be an integral domain and let f, fr: P — P, k = 0,...,n, be functions
satisfying the equation

n

Fly) = f@) = (y—2) Y frlarz + bry), (4)
k=0
where ax, by, € P are given numbers such that for every k € {0,...,n} we have

ar, # 0 or by # 0.
Let i € {0,...,n} be fivzed. If P is divisible by a;, b; and also by a;by — axb;,
k=0,...,n; k#1i, then the function

F(@) = (a; + b)) fi((a; + bi)z)

is a polynomial function of degree at most 2n + 1.



[22] Barbara Koclega—Kulpa, Tomasz Szostok and Szymon Wasowicz

Moreover, if there exists k1 € {0,1,...,n} such that a, = 0 or by, = 0,

then function f is a polynomial function of order at most 2n and if there ewist
ki,ke € {0,...,n} such that ap, = by, = 0, then [ is a polynomial function
of order at most 2n — 1,

Proof. Fix ani € {0,...,n}, put in (4) 2 — b;y and z + a;y instead of x and
y, respectively, to obtain

fla +aiy) — fx = biy)
= (a; + b;)y[fo((ao + bo)z + (aibo — aobi)y) + ... (5)
+ filla; + b)x) + ...+ ful(an + b))z + (aib, — anbi)y)].

There are two possibilities:

1. a;, bl 75 0,

2. ai:Oorbi:O.
Let us consider the first case. Then from (5) we obtain

y(a; +bi) fi((a; + bi)z) = f(z + aiy) — f(ﬂﬁ —biy)
(az + b Z fk ar + bk).%' + (azbk arb; ) )
k 0,k#i
which means that
yf(@) = f(x + aiy) — fz —biy)
—(a; + b))y Z fe((ak + b))z + (aibr — agbi)y). (6)
k=0,k#1
Now we are in position to use Lemma 2 with
IO = {(17 _bi)u (17 a/i)}
and
I = {(ag + bg,a;by —axb;) : k=0,...,n; k #£1i}.
We clearly obtain that f is a polynomial function of order at most equal to
card(IpUIL) +cardl; —1 < (n+2)+n—1=2n+1.

Further, if for example a;, = 0 for some k; € {0,...,n}, k; # i, then we have
a summand
fkl (bklx + a;by, y) = fkl (bkl (LL' + aly))
on the right-hand side of (6). Thus we put fi, (z) := fg, (by, ) and (6) takes form

yf(x)
= f(z = biy) — f(z + aiy)

— (ai +bi)y Z Fe(an + )z + (aibe — arbi)y) + fr, (z + aiy) |-
k=0, ki o1
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Similarly as before we take

Io = {(1,=bi), (1,0:)}
and
I = {(ax + bk, a;bp —arb;) : k=0,....,n; k#£i,k1} U{(1,a;)}.
In this case we have In NI = {(1,a;)}, i.e.,

card(IpUIL)+cardl; —1<(n+1)+n—1=2n.

The proof in the case ay, = by, = 0 is similar.
Now we consider the case a; = 0 or b; = 0. Let for example a; = 0, then
from (6) we have

y(bo) filbiz) = f(@) = = fle =biy) —biy Y frllar +bp)x — arbiy),

k=0,k#i
ie.,

ybif(x) = f@) = =fx=biy) —biy Y fel(an +be)z — arbyy).

k=0,k#i

In this case we take

Iy = {(17 _bi)}

and
I = {(ag + b, —agb;) : k=0,...,n; k#1i}.

Thus similarly as before f is a polynomial function of degree not greater than
card(IlpUI)+cardl; —1<(n+1)+n—1=2n.

It is easy to see that if for some ko € {0,...,n}, br, = 0, then fis a polynomial
function of order at most 2n — 1.

Now we are in position to state the most important result of this paper.
Namely, we give a general solution of (2) for functions acting on integral domains
satisfying some assumptions.

THEOREM 1

Let P be an integral domain with unit element 1, uniquely divisible by 5! and such
that for every n € N we have nll # 0. The functions f,g,h: P — P satisfy the
equation (2) if and only if there exist a,b,c,d,d,e € P and an additive function
A: P — P such that

f(z) = 18ax™® + 8ba® + ca® + 2dx + e, r e P,
g(x) = 9ax® 4 3bx® + cx — 3A(z) +d — d, x € P,
h(z) = az® + ba* + A(x) +d, x € P.
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Proof. Assume that f,g,h: P — P satisfy the equation (2). From Lemma 3
we know that ¢ and h are polynomial functions of order at most 5. Therefore
g(x) = co + c1(x) + ca(x) + cs(x) + ca(x) + c5(x), xeP (7)
and
h(z) = do + di(x) + do(x) + ds(x) + da(x) + d5(x), x € P, (8)

where ¢;,d;: P — P are diagonalizations of some i-additive and symmetric func-
tions C;, D;: P* — P, respectively. Taking in (2) y = 0, we obtain the following
formula

f(@) = z[g(z) + h(x) + h(2x) + g(0)] + f(0), zE€P, 9)
which used in (2) gives us
z[g(z) + h(z) + h(2x) + g(0)] — y[g(y) + h(y) + h(2y) + g(0)]
=(z—ylg(@)+hlz+2y) +h2z+y)+9(y)], z,yeP

After some simple calculations we get

z[h(2z) + h(z) — h(z +2y) — h(2z +y) — go(y)]

= ylh(@0) +hiy) ~h(r+29) ~ b2 +y) — o), wyer
where go(x) := g(z) — g(0), x € P.
Further, putting 2z instead of y in (10), we have
h(5z) — h(4x) — h(2x) + h(x) = go(2x) — 2g0(x), x #0,
which is also satisfied for = 0, since go(0) = 0. Thus
h(5x) — h(4z) — h(2z) + h(z) = go(2x) — 2g0(x), x € P. (11)
By (7) we obtain
90(2x) — 2g0(x) = 2c2(x) + 6c3(x) + 1deq(x) + 30cs5(x) (12)

and similarly from (8) we have

h(5z) — h(4z) — h(2z) + h(z) = 6dy(x) + bdds(z) + 354ds(x) + 2070d5(x). (13)
Using (13) and (12) in (11) we may write
6da () + 54ds(z) + 354dy(x) + 2070ds(x) = 2¢5(x) + 6cs(z) + Ldes(x) + 30c5(z).

Comparing the corresponding terms on both sides of this equality we get

ca(x) = 3da(x),

c3(z) = 9dz(x),
Teq(x) = 177dy(2),

cs(x) = 69ds(x)
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Using these equations in (7) we have
g(x) = co + c1(x) + 3da(x) + 9ds(x) + ca(x) 4+ 69d5(x), x € P, (14)
where
Tea(x) = 177dy(2), x € P. (15)
Substitute in (10) —z in place of y. Then
h(20) + h(=25) — [h(x) + h(=2)] = go(2) + go(—2),  w € P
This, in view of (8) and (14), means that
6da(x) + 30dy4 () = 6da(x) + 2¢4(z), x € P,
ie,
ca(z) = 15d4(z), reP
and from (15) we have
da(z) =0, reP (16)
and also ¢4 = 0.
Now we shall show that ds(z) = 0 for all € P. To this end we put in (10) in
places of = and y, respectively —z and 2z. Thus
—2h(4x) + 3h(3x) — 2h(22) — h(—2x) — h(—x) + 3h(0) = —go(2x) — 2g0(—2)
for x € P. Similarly as before, using (8), (14) and (16), we have
—18ds(z) — 54dz(x) — 1350ds5(x) = —18da(x) — 54ds(x) — 2070d5(z), z € P,
which means that
ds(z) =0, xz € P.
Now formulas (14) and (8) take forms
g(x) = co + c1(x) + 3da(z) + 9d3(x), xeP (17)
and
h(z) = do + di(x) + d2(z) + ds(x), x e P (18)
Using these equalities in (10), we get
x[—c1(y) — 3d1(y) + bda(z) — 3da(y) — do(z + 2y) — da(22 + y)
+ 9d3(x) — 9ds(y) — ds(z + 2y) — d3(2z + y)]
= y[—c1(z) — 3di(z) + 5d2(y) — 3da(z) — do(x + 2y) — d2 (22 +y)
+9d3(y) — 9d3(x) — ds(z + 2y) — d3(2z + y)].

Now, since the ring P is divisible by 3 and 2, the functions d; are diagonal-
izations of symmetric and i-additive functions D;: P* — P, i.e., d;(z) = D;(z%),
x € P. Using these forms of d; in the above equation we obtain

2(:E - y)[4D2($a?J) + 9D3(x7x7y) + 9D3(x7y7y)]
= ylc1(x) + 3di(z) + 8da(x) + 18d3(z)] (19)
—z[e1(y) + 3di(y) + 8da(y) + 18ds(y)]
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for all z,y € P. Put in (19) —y instead of y. Then for all z,y € P we have

2(‘T + y)[_4~D2("E7 y) - 9D3(£L‘, z, y) + 9D3(£L‘, Y, y)]
= —ylei(x) + 3dy(x) + 8da(x) + 18d3(x)) (20)
—z[—c1(y) — 3d1(y) + 8da(y) — 18d5(y)].

Adding the equations (19) and (20) we arrive at
92D3(x,y,y) — y[4Da(x,y) + 9Ds(x, x,y)] = —4wda(y), =y € P,
and, consequently,
92D3(x,y,y) — YyDs(x, x,y) = dyDa(x,y) — dada(y), x,y € P. (21)

Interchanging in these equations x with y and using the symmetry of both Dy and
D3 we may write

9yDs(x,z,y) — 9z Ds(x,y,y) = 4eDs(x,y) — dyda(x), x,y € P. (22)
Now, we add (21) and (22) to get
(x + y)Da(z,y) = xda(y) + yda(x), z,y € P.
Put here x + y in place of z, then
(z+2y)Da(x +y,y) = (¥ +y)do(y) + yda(z +y), z,y€P

which yields

wDy(x,y) = yda(x),  wy€eP (23)
and changing the roles of x and y

yDa(z,y) = zda(y), x,y € P. (24)
Now, we multiply (23) by y and (24) by « to obtain

zyDs(z,y) = y?da(z), x,y € P

and
xyDs(z,y) = 2°dy(y),  x,y € P.

Thus
y2d2(x) = x2d2(y)7 T,y € P7

which after substituing y = 1 gives the formula
do(z) = ba?, x € P, (25)
where b := da(1). Thus from (24) we obtain

Dz(fﬂ,y) = bl’y, T,y € P. (26)
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Using the formulas (25) and (26) in (21) we have
yDs(z,2,y) = xDs(x,y,y),  wyeP.
Putting = + y in place of x (27), we get
yDs(z +y, 2 +y,y) = (¢ +y)Ds(x +y, v, ),
which after some calculations gives
yDs(x,z,y) — (x —y)Ds(z,y,y) = xds(y),  z,y€P.

We use here the condition (27). Then

:ED3(:E7y7y)_(:E_y)D:‘}(:E?y?y)::Ed3(y)7 xayepu
ie.,
yDs(z,y,y) = xds(y),  =yeP.

Clearly we also have
ng(x,x,y) :ydg(fﬁ), l’ayGP-
Now, multiply the equation (28) by = and (29) by y?. Then we have

IyD3($7yay) = $2d3(y)7 T,y € P

and
w2y’ Ds(z, 2,y) = y’ds ().
On the other hand, we multiply (27) by y. We obtain

y*Ds(x,2,y) = 2yDs(z,y,y), @,y € P.
Using (32) in (30) we arrive at
x2ds(y) = y*Ds(z, z,y), x,y € P,
which multiplied by = yields
23ds(y) = zy*Ds(z, z,y), xz,y € P.
Comparing the equation (31) and (33) we obtain

yds(z) =2°ds(y), @,y €P
ie.,
ds3(r) = ax®, x € P,
where a := d3(1). Now equalities (28) and (29) take forms

D3(:E7y7y):a$y27 x,yEP

[27]

(33)
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and

Ds(z,z,y) = ax’y, x,y € P. (36)
Using the formulas (25), (26), (34), (35) and (36) in (19) we have

yler(@) +3di(2)] = z[ea(y) +3di(y)], = yeP.
Substituting here y = 1 we obtain
c1(z) + 3d1(z) = z[cr (1) + 3d1 (1)), x € P,

which means that

c1(x) = cx — 3dy(x), r € P,

where ¢ := ¢; (1) 4 3dy(1).
Thus we have shown that the formulas (17) and (18) may be written in the
form

g(x) = 9az® + 3bx® + cx — 3dy(x) + co, reP
and
h(z) = ax® + ba® + di (z) + do, x € P,
where d; is a given additive function. Now it suffices to use the obtained expres-
sions in (9), to get the desired formula for f.

It is an easy calculation to show that these functions f, g, h satisfy the equa-
tion (2).

With the aid of this theorem we may prove also a Stamate-kind result.

COROLLARY 1

Let P be an integral domain with unit element 1, uniquely divisible by 5! and
such that for every n € N we have nll # 0. Functions f,g,h: P — P satisfy the
equation (3) if and only if there exist a,a,b,c,d,d € P and an additive function
A: P — P such that

18az® + 8bx? + cx + 2d, x#0
flo) =4

b
a, z=0

—9ax® — 5ba? — 3A(z) — d — d, x#0
g(x) = o T
d—d—a, xr =

h(z) = az® + ba* + A(x) + d, xz € P.
Conversely, f,g,h: P — P given by the above equalities satisfy (2).

Proof. First we write the equation (3) in the form

(y—2)f(y) —yf(y) + (v — 2)f(z) + 2 f(z)
= (z —y)[g(x) + h(2x +y) + h(z + 2y) + g(y)]
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and, consequently,
wf(x) —yf(y) = (@ —y)lg(z) + f(x) + h(2z +y) + Az + 2y) + 9(y) + f(y)]-
Putting here k(t) := g(t) + f(t) and F(t) := tf() for all t € P we obtain
F(z) — F(y) = (x — y)[k(z) + h(2z + y) + h(z + 2y) + k(y)], z,y € P.

Thus, using Theorem 1, we get

zf(z) = 18ax* + 8ba® + cx? + 2dx + e, x € P, (37)
g(x) + f(x) = 9ax® + 3ba® + cx — 3A(z) +d — d, x € P, (38)
h(z) = az® + ba® + A(z) + d, x € P.

Now, from (37) it easily follows that e = 0 and furthermore

zf(z) = 18az" + 8ba® + cz® + 2du,
ie.,
f(z) = 18ax® + 8bx* + cx + 2d, x # 0,

which gives us
g(z) = —9az® — 5bx? — 3A(z) —d — d, z # 0.

Moreover, from (38) we get g(0) + f(0) = d — d, thus putting @ := f(0) we obtain
that ¢(0) =d — d — a.
On the other hand, it is easy to see that functions given by the above formulae

yield a solution of the equation (3).
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On a multivalued second order differential problem
with Jensen multifunction

Abstract. The aim of this paper is to present a generalization of the results
published in [5] and [8] for continuous Jensen multifunctions. In particular,
we study a second order differential problem for multifunctions with the
Hukuhara derivative.

Throughout this paper all vector spaces are supposed to be real. Let X be
a vector space. We introduce the notations:

A+B:={a+b: ac A, be B} and XA :={Xa: a€ A}

for A,BC X and A € R.

A subset K of X is called a cone if tK C K for all ¢ € (0,+00). A cone is said
to be convex if it is a convex set.

Let X and Y be two vector spaces and let K C X be a convex cone. A set-
valued function F: K — n(Y), where n(Y) denotes the family of all nonempty
subsets of Y, is called additive if

F(z+vy)=F(z)+ F(y) forx,y € K

and F'is Jensen if
F<3:—|—y> F(x)+ F(y)

5 = 5 for z,y € K. (1)

From now on, we assume that X is a normed vector space, ¢(X) denotes the
family of all compact members of n(X) and cc(X) stands for the family of all
convex sets of ¢(X).

LeMMA 1 ([4], Theorem 5.6)

Let K be a convex cone with zero in X and Y be a topological vector space. A set-
valued function F: K — c(Y) satisfies the equation (1) if and only if there exist
an additive multifunction Ap: K — cc(Y') and a set Gg € ce(Y') such that

F(zx)=Ap(z) + Gp forz e K.
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The Hukuhara difference A — B of A, B € cc(X) is a set C' € ce(X) such that
A = B+C. By Radstrom’s Cancellation Lemma, [9] it follows that if this difference
exists, then it is unique.

For a multifunction F':[a,b] — cc(X) such that there exist the Hukuhara dif-
ferences F(t) — F(s) as a < s < t < b, the Hukuhara derivative at ¢t € (a,b) is
defined by the formula

DF(t) = lim F(t+Fk)—F(t) — lim F(t)—F(t—k)
k—0t k k—0t k

)

whenever both these limits exist with respect to the Hausdorff distance h (see [3]).
Moreover,

.. F(s) = F(a) . F(b)—F(s)
DF(a) = lim ———=, DF(b) = lim — s

s—a™t sS—a s—b— — S

Let X be a Banach space and let [a,b] C R. If a multifunction F: [a, b] — cc(X)
is continuous, then there exists the Riemann integral of F' (see [3]). We need the
following properties of the Riemann integral.

LeMMA 2 ([7], Lemma 10)
If F:[a,b] — cc(X) is continuous, then H(t) = f; F(u)du for a < t < b is
continuous.

LeEmMA 3 ([10], Lemma 4)
If F:a,b] — cc(X) is continuous and H(t) = fat F(u)du, then DH(t) = F(t) for
a<t<hb.

Let (K,+) be a semigroup. A one-parameter family {F} : ¢ > 0} of set-valued
functions Fi: K — n(K) is said to be a cosine family if

Fy(x) = {z} for x € K

and

Fips(@) + Fioy(z) =2F(Fs(@) =2 ] Fy)
YEFs(x)

forx € K and 0 < s <.
Let X be a normed space. A cosine family is called regular if

tli%l+ h(Fi(x),{z}) =0.

EXAMPLE 1
Let K = [0,+00) and Fi(x) = [zcoshat,zcoshbt], where 0 < a < b. Then
{F;: t >0} is a regular cosine family of continuous additive multifunctions.

EXAMPLE 2
Let K = [0,400) and Fi(z) = [x,xcosht + cosht — 1]. Then {F; : ¢t > 0} is
a regular cosine family of continuous Jensen multifunctions.
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We say that a cosine family {F}; : t > 0} is differentiable if all multifunctions
t — Fy(z) (z € K) have the Hukuhara derivative on [0, +00).

LeEMMA 4 ([8], Theorem)

Let X be a Banach space and let K be a closed conver cone with a nonempty
interior in X. Suppose that {A; : t > 0} is a regular cosine family of continuous
additive set-valued functions Ay: K — ce(K), © € Ai(x) for all z € K, t > 0 and
A0 Ay = Ag o0 Ay for all s,t > 0. Then this cosine family is twice differentiable
and

DAa@)limo = {0}, D?Ay(x) = A(Alx)

forx € K, t >0, where DA, (x) denotes the Hukuhara derivative of Ai(x) with
respect to t and A(x) is the second Hukuhara derivative of this multifunction at
t=0.

We would like to obtain a similar result to the above one for a cosine family
of continuous Jensen multifunctions. For this purpose we remind some properties
of such a family.

LeMMA 5 ([6], Theorem 3)

Let X be a Banach space and let K be a closed convex cone in X such that
int K # (0. A one-parameter family {F; : t > 0} is a regular cosine family of con-
tinuous Jensen multifunctions Fi: K — cc(K) such that x € Fy(z) for all v € K,
t >0 and FyoFs = FsoF; for all s,t > 0 if and only if there exist a reqular cosine
family {A; : ¢t > 0} of continuous additive multifunctions Ay: K — cc(K) such
that x € Ay(x) for allx € K, t >0, Ay0o A; = Aso Ay for all s,t > 0 and a set
D € ce(K) with zero for which conditions

At+S(D) + Atfs(D) = 2At(AS(D)) fOT‘ 0 S S S t,

Fy(z) = Ay(z) —|—/ </AU(D) du) ds fort>0
0 N0

hold.

Using Lemmas 2, 3, 4 and 5 we obtain the following theorem.

THEOREM 1

Let X be a Banach space and let K be a closed conver cone with a nonempty
interior in X . Suppose that {Fy : t > 0} is a regular cosine family of continuous
Jensen set-valued functions Fy: K — cc(K), © € Fy(x) for all x € K, t > 0 and
FioFs = FsoF; for all s,t > 0. Then this cosine family is twice differentiable and

DF,(z)i=o = {0},  D?F,(z) = A(A(z) + D)
for x € K, t > 0, where DF(x) denotes the Hukuhara derivative of Fy(x) with

respect to t, D € cc(K) with zero, A(z) = D?A¢(x)|t—0, {At : t > 0} is a regular
cosine family of continuous additive multifunctions (as in Lemma §).
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Let K be a closed convex cone with a nonempty interior in X. We consider
a continuous multifunction ®:[0,+o00) x K — cc(K) Jensen with respect to the
second variable. According to Lemma 1 there exist multifunctions Ag: [0, +00) X
K — ce(X) additive with respect to the second variable and Gg: [0, +00) — cc(X)
such that

D(t,z) = Agp(t,x) + Go(t) forx € K, t € [0,400). (2)
Setting x = 0 in (2) we have
D(t,0) = Go(t) € ce(K) for ¢ € [0, 4+00).

Since Ag(t,x) + 2Go(t) = L®(t,nz) C K for all n € N and the set K is closed,
As(t,xz) € ce(K) for x € K, t € [0,+00). Moreover, multifunctions Ag, Go
are continuous. Indeed, t — Go(t) = ®(¢,0) is continuous. As & and Gg are
continuous, the multifunction Ag¢ is also continuous.

Theorem 1 is a motivation for studying existence and uniqueness of a solution
®: [0,400) x K — cc(K), which is Jensen with respect to the second variable, of
the following differential problem

®(0,z) = U(x),
DO(t,z)|—o = {0}, 3)
D2®(t,2) = As(t, H(z)),

where H,¥: K — cc(K) are given continuous Jensen set-valued functions, D® (¢, x)
denotes the Hukuhara derivative of ®(¢, z) with respect to ¢ and Ag is the additive,
with respect to the second variable, part of ®.

DEFINITION 1

A multifunction ®:[0,+00) x K — cc(K) is said to be a solution of the prob-
lem (3) if it is continuous, twice differentiable with respect to ¢ and ® satisfies (3)
everywhere in [0, +00) X K and in K, respectively, where H,V: K — cc(K) are
two given continuous Jensen multifunctions.

With the problem (3), we associate the following equation

O(t,x) = V(x) —|—/ (/A@(U,H(I)) du> ds (4)

0 0

for x € K, t € [0,4+00), where H,U: K — cc(K) are given continuous Jensen
multifunctions and Ag¢ is the additive, with respect to the second variable, part
of ®.

DEFINITION 2

Let H,U: K — cc(K) be two continuous Jensen set-valued functions. A map
®: 0, +00) x K — cc(K) is said to be a solution of (4) if it is continuous and
satisfies (4) everywhere.
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THEOREM 2

Let K be a closed convex cone with a nonempty interior in a Banach space and let
H,U: K — cc(K) be two continuous Jensen multifunctions. Let ®: [0, +00) x K —
cc(K) be a given Jensen with respect to the second variable set-valued function.
This ® is a solution of the problem (3) if and only if it is a solution of (4).

The proof of Theorem 2 is the same as the proof of Theorem 1 in [5].

In the proof of the next theorem we use the following lemmas.

LeMMA 6 ([12], Theorem 3)

Let X and Y be two normed spaces and let K be a convexr cone in X. Suppose
that {F; : i € I} is a family of superadditive lower semicontinuous in K and Q-
homogeneous set-valued functions F;: K — n(Y). If K is of the second category
in K and | J,c; Fi(x) € b(Y) for x € K, then there exists a constant M & (0,400)
such that

sup |[Fi(@)]| < Mlje|  fora € K.
el

Let K be a closed convex cone in X. Applying Lemma 6 we can define the
norm ||F|| of a continuous additive multifunction F: K — n(K) to be the smallest
element of the set

{M>0: ||F(z)| <Mlz|, =z € K}.

LEMMA 7

Let K be a closed convex cone with a nonempty interior in a Banach space and let
H U: K — ce(K) be two continuous Jensen multifunctions. Assume that a con-
tinuous multifunction A:[0,T] x K — cc(K) is additive with respect to the second
variable. Then the multifunction

S

F(t,z) ;== ¥(x) —|—/ (/A(u,H(z)) du) ds, (t,z) € [0,T] x K  (5)
0“0

1s Jensen with respect to the second variable and continuous.

Proof. The proof is based upon ideas found in the proof of Theorem 2 in the
paper [5]. According to the proof of Theorem 1 in [5] we have that the multifunc-
tion w +— A(u, H(z)) is continuous for all z € K. We see that every set F(¢,x)
belongs to cc(K) and F is Jensen with respect to the second variable.

Next we show that F'is continuous. Let z,y € K and 0 < t; <ty <T. The
set

A(0,7),2)= ] Alt,2)
]

tel0,T

is compact (see [1], Ch. IV, p. 110, Theorem 3), so it is bounded. Therefore, by
Lemma 6, there exists a positive constant M4 such that

[A(u, a)l| < Mal|all (6)
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for w € [0,7] and a € K. This implies that
[A(u, H(x))|| < MalH ()]

Sf(/SIIA(u7H(w))IIdU> ds

ty

for u € [0,T]. Thus

7 </SA(U,H(SC)) du) ds

t1

to

< SMAHH(a:)Hdu ds (7)
0

ty

t3 — 17
= BB a1 @),
From Lemma 5 in [11] and (6) there exists a positive constant M, such that
h(A(u, a), A(u, b)) < Mol|A(u, ) |lla = bl[ < MoMalla — ]|
for u € [0,7] and a,b € K. Therefore,
A(u,a) C A(u,b) + MoMalla — b||S

for w € [0,7] and a,b € K.
Let ¢ > 0 and a € H(x). There exists b € H(y) for which
€
MoMy~
This shows that for every a € H(x) there exists b € H(y) such that
A(u,a) C A(u,b) + MoMad(a, H(y))S + &S
C A(u, H(y)) + MoMah(H (z), H(y))S + €S,

lla = bl < d(a, H(y)) +

thus
A, H(x)) C A, H(y)) + MoMah(H(x), H())S + =5
for u € [0,T]. Since € > 0 and z,y € K are arbitrary, we obtain
h(A(u, H(x)), A(u, H(y))) < MoMah(H (), H(y)).

Hence and by properties of the Riemann integral we have
S

h(/(/A(u,H(:v) du)ds/(/AuH du)d)

0 0

S

go/(/h(A(u,H(x)),A(u,H(y)))du) ds

0
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By (5), (7) and (8) we get

h(F(th )F(t% y))

+h {O},/ (/A(u,H(y)) du) ds)
t1 N0
< B (), W) + DM (H@), Hw) + E 0 ).

This shows that F' is a continuous set-valued function, because ¥ and H are
continuous.

THEOREM 3

Let K be a closed convexr cone with a nonempty interior in a Banach space and
let HU: K — cc(K) be two continuous Jensen multifunctions. Then there ewists
exactly one solution, Jensen with respect to the second variable, of the problem (3).

Proof. Fix T > 0. Let E be the set of all continuous set-valued functions
®:[0,T)x K — cc(K) such that « — ®(¢, x) are Jensen. As it was shown, for ® € F
there exist continuous multifunctions Ag: [0, 7] x K — cc(K) additive with respect
to the second variable and Go: [0, T] — cc(K) such that (¢, x) = Ae(t,2) +Go(t)
forx e K,te€[0,T).

Let @,II € E be given by

O(t,x) = Ap(t,x) + Go(t) and II(t,z) = An(t,x) + Gu(t) 9)

for (t,x) € [0, T] x K, where Ag, Ar: [0,T] x K — cc(K) are additive with respect
to the second variable and Go(t), Gri(t) € ce(K). We define a functional p in
E x E as follows

p(®,10) = sup{h(As(t, B), An(t, B)) + h(Gs(t), Gr(t)) :
0<t<T,Becc(K),|B| <1}

We see that sets

A,(0,7),2)= |J Ailt.2), =zeK,

t€[0,T)
U G

t€[0,T]
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where i € {®,II} are compact (see [1], Ch. IV, p. 110, Theorem 3), so they are
bounded. By Lemma 6 there exist positive constants M4, and M4, such that

[As(t, 2)| < Magllzll, 1A, 2)[| < May |||
for t € [0,7] and = € K. We note that
h(Ag(t,B), An(t, B)) + h(Ga(t), Gr(t))
< [[Aa(t, B)|| + [[An(t, B)[| + G2 ([0, TDI + |Gu([0, T]|
< Mag + Mag + [[Ga([0, TN + 1Gu ([0, T) I
for t € [0,7] and B € cc(K) such that ||B|| < 1. Thus
p(®,1I) < 400,

so the functional p is finite. It is easy to verify that p is a metric in E.

As the space (cc(K),h) is a complete metric space (see [2]), (E,p) is also a
complete metric space.

We introduce the map I' which associates with every & € E the set-valued
function I'® defined by

t

(T®)(t,z) == U(x) +/ < Ag(u, H(z)) du) ds
0

0

for (t,z) € [0,T] x K. We see that every set (I'®)(t,z) belongs to cc(K). By
Lemma 7 the multifunction I'® is Jensen with respect to the second variable and
continuous. Therefore, I': F — E.

Now, we prove that I' has exactly one fixed point. According to Lemma 1 we
take the notations ¥(x) = Ay (z) + Gy and H(z) = Ag(x) + G, x € K, where
Ay, Ap: K — cc(K) are additive and Gy,Gy € cc(K). Let ®,11 € E be of the
form (9) and let (¢,z) € [0,T] x K. We observe that

(TP)(t,z) = ¥U(x) —|—/ (/A@(U,H(I)) du> ds

0 0

= Ag(z) + Gy —I—/ </Aq>(u,AH(:1:)) du> ds

0 VN0
t S
—|—/ (/A@(U,GH)du> ds,
0 \ND

thus the additive part Are(t,2) of T'® is equal to

t

A\I,(:E)—i—/ (/S/Lp(u,AH(:E)) du) ds

0
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and similarly

Arn(t,z) = Ag(2) +/ (/An(u,AH(x)) du) ds.
0

0

Hence and by properties of the Hausdorff metric we have

h(Are(t, x), Arn(t,z)) + h(Grs(t), Grn(t))

(/ </A¢, (u, Ay (z du> ds,{ (jAn(u,AH(x))du> ds)
o (/ </Aq> u GH>du> s /(O/An u GH)du> ds)

0
2

< 2,/}(‘1’ [ Am ()] + 2,/)(‘I%H)IIGHII

Q,p(fb 1) max{[| A ()|, |G r]}-

Suppose that

h(Aanp(t, ,T), Arnn(t, LL’)) + h(Gan)(t), Gf‘nn(t))

2n
B (@10 maxc{| A ()], |G [} (10)

< 2(2n)!p(

for some n € N. Then

h(AFnJrl.:p( ,.I) Apn+1H(t .I)) —|— I’L(GFnJrl.:p(t) GFnJrln(t))

=h /t< Arne(u, Ap(z ))du) /(/Arnn (u, Ap( ))du) ds)

0 0

+h (/ </Al"nq> u GH)du> ds /t(/AFnH(u,GH)du> ds)

0 0

t
s/(/f‘m¢nmuwﬁuumeHm>m
0

t2n+2

[\)

mp(@,ﬂ) max{[|Ap ()|, |Gr [}

This shows that (10) holds for all n € N. Therefore,

(T2 max{|| Anl, |Gull})"
(2n)!

p(T"®, T"II) < 2 p(2,11), n € N.
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We observe that for every T' > 0 there exists n € N such that

o (T2 max{|| Ap |, [|Gr1})"

20! <1.

By Banach Fixed Point Theorem we get that I'™ has exactly one fixed point,
whence it follows that I' has exactly one fixed point. This means that there exists
exactly one solution of the problem (3) for (¢,z) € [0,T] x K.

Now we give an application. Let K be a closed convex cone with a nonempty
interior in a Banach space. Suppose that {F; : ¢t > 0} and {G, : t > 0} are regular
cosine families of continuous Jensen multifunctions Fy: K — ce(K), Gi: K — cc(K)
such that © € Fy(z), x € G¢(z), FoFs = Fs0 F;, Gio Gy = Gs oGy for x € K,
s,t >0 and

H(.I) = D2Ft($)|t:0 = D2Gt($)|t:0.
Then multifunctions (¢, ) — Fy(z) and (t,z) — G;(z) are Jensen with respect to
x and satisfy (3) with ¥(z) = {z}. According to Theorem 3 we have F;(z) = G(x)

for (t,z) € [0,+00) x K. This means that if two regular cosine family as above
have the same second order infinitesimal generator, then there are equal.
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Regulated functions and integrability

Abstract. Properties of functions defined on a bounded closed interval, weaker
than continuity, have been considered by many mathematicians. Functions
having both sides limits at each point are called regulated and were con-
sidered by J. Dieudonné [2], D. Fraikova [3] and others (see for example
S. Banach [1], S. Saks [8]). The main class of functions we deal with con-
sists of piece-wise constant ones. These functions play a fundamental role
in the integration theory which had been developed by Igor Kluvanek (see
S. Tkacik [9]). We present an outline of this theory.

1. Regulated functions

Everybody familiar with basic calculus remembers properties of continuous
functions defined on a bounded closed interval. Some of those properties can
be extended to suitably discontinuous functions, namely to functions having the
right and the left limits at each point; such functions are called regulated. We shall
deal with a special class of regulated functions consisting of piece-wise constant
functions.

From now on, I will denote a closed bounded interval [a,b] of real numbers.
All considered functions will be bounded and defined in the interval 1.

A limit of a function is meant to be proper, i.e., different from +oo or —co.

DEFINITION 1

A function f:1 — R is called regulated on [ if f has the left-sided limit at every
point of the interval I except the point a and f has the right-sided limit at every
point of the interval I except the point b.

The idea of regulated functions can be spread out to functions defined in a sub-
set of the interval I, namely to a set F, such that each point from the interval I
is left-sided and right-sided accumulation point of the set E. Nevertheless we are
not concerned to such approach.

AMS (2000) Subject Classification: 26A15, 26A39.
This article is supported by grant KEGA 3/7068/09.

Volumes I-VII appeared as Annales Academiae Paedagogicae Cracoviensis Studia Mathematica.
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In this definition we do not require that the right-sided limit and the left-sided
limit of the function at a point are equal. The picture below shows an example of
a regulated function on 1.

S

|
j
0 a b X

Figure 1
Important class of regulated functions consists of piece-wise constant ones.

DEFINITION 2
A function f:I — R is said to be a step function on I whenever there exist:
a positive integer n, a sequence of points (c1,...,¢,) such that

a=cp<c<...<cj1<¢<...<cp=0b
and the function f is constant on each interval (¢;—1,¢;j), j =1,2,...,n.

An example of a step function is shown in Figure 2.
It follows from the definition that if f is regulated on an interval I, then it is
also regulated in each subinterval J (J C I).

0 a
Figure 2

Although the next theorem is known (see [2]| for example) we shall present
an elementary proof of it.

This theorem states that a regulated function can be aproximated with arbi-
trary accuracy by a step function.



Regulated functions and integrability [45]

THEOREM 1
Let f: 1 — R be a regulated function and let € be a positive number. Then there
exists a step function g such that

[f(x) —g(x)] <e

in each point x of the interval I.

If the function f is continuous on the interval I, then we can choose the function
g to be right-continuous at each point of the interval [a,b) or to be left-continuous
at each point of the interval (a,b].

Proof. Let Z be the set of all numbers z from the interval I = [a, b] for which
there exists a step function g, such that

[f(z) —g=()] <& (1)

for every x € [a,z]. If the function f is continuous, then the step function g, is
assumed to be right-continuous at every point of the interval [a, z). Our aim is to
show that b € Z. If it is so we take g, for g.

We shall do that by showing that the supremum of the set Z belongs to Z
and that it is equal to b. The set Z has a supremum because it is not empty (the
number a surely belongs to it) and bounded from above (no element of the set Z
is greater than b). Then, let s = sup Z.

1. We prove that s € Z.

If s = a, then s € Z. So now assume that a < s. Then the function f has a left
limit k£ at s and for a positive number ¢ there exists a number ¢ < s such that

[f(z) =k <e (2)

for every = € (¢, s). Since ¢ < s, there exists a number z € Z such that ¢ < z.

Let g. be a step function such that (1) holds for every = € [a, 2] and, if the
function f is continuous in [a,b], let g, be left-continuous at every point of the
interval [a, z). Define the function g by letting gs(s) = f(s), provided s belongs to
the domain of f, further gs(z) = k for every x € [z, s) and, finally, gs(z) = g.(z) for
every x € [a, z]. Then g5 is a step function such that (1) holds for every z € [a, $]
and if the function f happens to be continuous in [a, b], then g is right-continuous
at every point of the interval [a, s). Hence, s € Z.

2. We prove that s = b.

Assume to the contrary that s < b.

Since s < b, the function f has a right-sided limit k£ at s and there exists
a number d > s such that (2) holds for every x € (s,d). As s € Z, there exists
a step function g such that (1) holds for every z € [a, s] and g, is left-continuous
at every point of the interval [a, s) in case when f is continuous in [a,b]. Let z
be a number such that s < z < d. Let g.(x) = gs(x) for every = € [a,s); let
g2(s) = f(s); and let g.(x) = k for every = € (s,z). Then g, is a step function
such that (1) holds for every = € [a, z] and ¢, is right-continuous at every point of
the interval [a, z) if the function f is continuous in [a,b]. Hence z € Z, which is
a contradiction since s < z and s = sup Z.
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Similar arguments can be used for the case, when we want the function g to be
left-continuous, simply apply the previous argument to the function f(—z), when
x € [-b, —al.

2. Examples

ExampLE 1

During the first 19 weeks of the financial year, the wage of an employee was 186
Euro weekly. Than he was promoted and had 203,50 Euro weekly. A month before
the end of the financial year, due to general salaries and wages increase, his wage
was increased to 211,30 Euro weekly. This last month represents 4,4 working weeks
(four full weeks and two working days, each representing 0,2 of a working week).
Indicate how the weekly wage depends on time.

If we want to introduce a function indicating how the weekly wage of the
employee depended on time we represent the year by the interval [0,52], taking a
week for a unit of time. The function f representing the dependence of the wage
on time can then be defined in the following manner:

186 for t € [0,19],
f(t) =4 203,50  forte (19,472),
211,30  for ¢t € [472,52].

If xa(t) is a characteristic function of the set A, then we have
J(t) =186 - X(0,10)(£) + 203,50 - X (19,472 (t) + 211,30 - X472 59)(1)

for every t € [0, 52].

Now we can ask what was the average (mean) wage of that employee during
the year or what was his total income from wages in that year? Clearly, his total
income was

186 - 19 + 203,50 - (47,6 — 19) + 211,30 - (52 — 47,6) = 10283, 82
Euro. His average wage was

10283, 82

= 197,76
52 ’

Euro per week (rounded to whole cents). In this example it is easy to see that the
function f is a step function and it does not matter, if we use open or bounded
intervals for calculating of the total income.

Here we defined ¢; = 186; ¢ = 203,50; ¢35 = 211,30; J; = [0,19], Jo =
[19,472], J5 = [472,52]. If the number b — a = A(J) is the length of the interval
J = [a, b], then the total income has the form

3
ClA(Jl) + CQ/\(JQ) + Cg)\(Jg) = ZCJ/\(JJ)

This number is also the area of the set S = {(t,y): t €[0,52],0 <y < f(t)}.
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Therefore, it is possible to express the step function by the formula
n
f@) =" cix, (@)
j=1

for every z in an interval I, where n is a positive integer, ¢; are arbitrary numbers
and J; some bounded intervals (U?:1 Jj =1) for every j =1,2,3,...,n. In each
case, the number

> M)
j=1

is called the integral of the function f.

EXAMPLE 2
Now, we try to calculate the area of the set

S={(z,y): z€I,0<y< f(a)},

where f is some continuous and non-negative function in the (compact) interval I.

If the function f is not a step function in the interval I, then the set S is not
equal to the union of finite number of rectangles. Nevertheless, with the exception
of some points on the boundary, which may be disregarded when calculating the
area, this set can be covered by an infinite sequence of non-overlapping rectangles
as illustrated in Figure 3. The sum of the areas of these rectangles is equal to the
area of S.

/f

S
0 a b X
Figure 3
That is, there exist intervals J; C I and numbers ¢;, j =1,2,3, ..., such that

fl@) = ¢jxu, (@) (3)
j=1

for every x € I and the area of set S is equal to the number

oo

> eA;). (4)

j=1

The class of functions to which the procedure can be applied is much larger than
in the case when ¢; > 0 for every j = 1,2,3,.... In particular, we now may
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consider functions with both positive and negative values. Consequently, we can
also calculate the integral (4) of a function f when it has an interpretation different
from that of the area of a planar figure. Of course, if so desired, the integral of
a function in an interval I can always be interpreted “geometrically” as a difference
of the areas of the sets

ST ={(z,y): 2€,0<y < f(x)} and S ={(x,9): €I, f(x) <y<0}

3. Definition of the integral

To obtain a workable definition of integral for a sufficiently large class of func-
tions, it suffices to require the existence of the sum (4) and to note that this sum
is then independent of the particular choice of the numbers c; and intervals Jj,
j=1,2,3,..., used in the representation (3) of the function f.

DEFINITION 3
A function f is said to be integrable in the interval I whenever there exist numbers
c; and bounded intervals J; C I, j =1,2,3,..., such that

PEIRCARES (5)
j=1
and the equality
f(z) = Z cjxJ; (@)
j=1

holds for every x € I such that
> leilx, (x) < oo (6)
j=1

Now we shall introduce the notions of a virtually primitive function. We shall
use the term a condition P is fulfilled nearly everywhere. It means that the set of
points for which the condition P is not fulfilled is at most countable.

DEFINITION 4

A function F is said to be virtually primitive to a function f in an interval I, if
the function F is continuous in the interval I and F’(x) = f(z) nearly everywhere
in 1.

In this definition we do not require I to be a compact interval, it can be as
well an unbounded interval.

We shall prove that if a function f is integrable in the interval I, then the sum
(4) is the same for every choice of the numbers ¢; and intervals J;, j = 1,2,3,...,
satisfying the condition (5), such that (3) holds for every € I for which the
inequality (6) does hold.

The next three theorems, which are technical ones, are useful in the proof that
the definition of the Kluvanek integral is correct.
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THEOREM 2
Let n be a positive integer, c; non-negative numbers, J; bounded subintervals of
I, 7 = 1,2,3,...,n, di non-negative numbers and K, bounded intervals, k =

1,2,3,..., such that

n

D e (@) < dix, (@ (7)
j=1 k=1
for every x € (—o00,00). Then

ch de Ky). ®)

Proof. Tt follows from the assumptions that ¢ is a number not greater than
the left end-point and b is a number not less than the right end-point of each

of the intervals J;, j = 1,2,3,...,n. Let I} be a function virtually primitive in
(—00,00) to the function c¢;x s, such that Fj(a) =0, j =1,2,3,...,n, and G} the
function virtually primitive to djxk, such that Gy(a) =0, k =1,2,3,.... Since

;A (J;) = F;(b), 7 =1,2,3,...,n, if we prove that

S EG) <Y G,
k=1

j=1

then (8) will follow.
Suppose to the contrary that

D Grb) <D F(b). (9)
k=1 j=1

First note that 0 < Gi(x) < Gg(b) for every = € [a,b] and every k =1,2,3,....
Hence, by (9), the sequence of functions {G}},, is uniformly convergent in the
interval [a, b]. Let

F(x):ZFJ(:E) and G(z ZGk
j=1
for every x € [a,b]. The functions Fj(z), j = 1,2,3,...,n, and Gg(x), k =
1,2,3,..., are continuous in the interval [a, b]. Therefore, the functions F(x) and
G(z) are also continuous in the interval [a,b] and, of course, F(a) = G(a) = 0.
Let
F(b) - Gb)
2(b—a)
By (9),k>0and ¢ > 0. If t € (0,k), let

hi(x) = F(z) — G(z) —t(x —a) — q

F(b) — G(b)
—

k= and ¢ =

for every x € [a,b]. Then, for every t € (0,k), h; is a function continuous in the
interval [a,b] such that h,(a) < 0 and hy(b) > 0. Let £(t) be its maximal root in
the interval (a,b). That is h,(§(¢)) = 0 and hy(y) > 0 for every y € (£(¢),D).
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The function £(t),t € (0, k), is (strictly) increasing, because if 0 < t < s < k,

then
hs(§(t)) = hs(§()) — he(E(2)) = (t — 5)((t) —a) <O

and, hence, the largest root, &(s), of the function hy is greater than £(¢). So, this
function is injective. Since its domain, (0,%), is not a countable set, the set of
its values {£(t) : ¢ € (0,k)} is not countable either. But the set of end-points of
all intervals J;, j = 1,2,3,...,n, and K,k = 1,2,3,..., is countable. So, there
is a number ¢ € (0,%) such that £(¢) is not an end-point of any of intervals .J;,
j=1,2,3,...,n, and Ky, k =1,2,3,.... Let t be such a number and = = £(¢),
the corresponding point of the interval (a,b). Then hi(x) = 0 and h(y) > 0 for
every y € (z,b). That is,

F(z) - G(z) =t(x—a)—q and F(y)-Gy) >tly—a)—q
for every y € (x,b). Consequently,

Fly) - F(z) Gy —G(z)
y—x y—z

>t (10)

for every y € (z,0].

On the other hand, since z is not an end-point of any of the intervals .J; and
K}, each function F; and Gy is differentiable at x and Fj(r) = c;jx,(z) for
j=1,2,3,...,nand G| (z) = dpxk,(x) for k=1,2,3,.... So, by (7),

Fl(z) =Y Fj(z) <Y Gi().
k=1

j=1

Since t > 0, there exists a positive integer m such that
o0 m
F'(z) < ZG;(:E) < ZG;(:E) +t.
k=1 k=1

Therefore,

i (F(y) = Fla) _§~ Guly) - Gm)) .

y—axt y—x ] y—x
From the properties of limits we have, that there exists a point y in the interval
[x,b] such that
F(y)—F N Gr(y) — G
y—z 1 y—z

Now, Gi(y) — Gr(x) > 0 for every k = m+1,m+2,..., because the functions Gy
are non-decreasing. Hence,

So, (11) contradicts (10).
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THEOREM 3
Let ¢; and d; be non-negative numbers and let J; and K; be subintervals of I,
i=1,2,3,..., such that

iCj)\(Jj) < 00, idj)\(K
Jj=1 j=1
and
> eixa, () ZdeK (12)
j=1

for every x for which

chx,]j () <oo and ZdeKj (x) < oo.

j=1
Then

an Zd (K (13)

Proof. Let € be an arbitrary positive number. Let n be a positive integer such
that

o0

€
Z Cj)\(Jj) < 5
j=n+1
Then
Zcm Z X, (@) + Y e, (@)
Jj=1 Jj=n+1
for every = € (—o0, 00) with no exception.
By Theorem 2,
Zc] <Zd MG+ Y GAT) <D dANK;) + 5
j=n+1 j=1
Hence,
ZCJ ZCJ Z ¢iA(J;)
Jj=n+1
< Zd MK + - Z )
j=n+1

< Zde(K
j=1
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Because the inequality between the first and the last term holds for every

positive £, we have
o0

S A < 3 d )

Jj=1

The reverse inequality can be proved by a symmetric argument. Hence (13) holds.

Recall that nonnegative z+ and nonpositive ™~ parts of a number z are defined
by
er_{x if x>0, and I_{—:v if z <0,
0 ifz<O 0 if x > 0.

Then: ¥ > 0,2~ >0,z =27 —2~ and |z| = 27 + 2~ for any real number z.

THEOREM 4
Let cj and d; be real numbers and let J; and K;, j =1,2,..., be subintervals of I
such that

D leIA) <00, Y 1dINE;) < oo (14)
=1 =
If
> X, (@) ZdeK
j=1

for every x € I for which

ZIC;IX} <oo and Zw Xk, () < 0,

Jj=1
then

Z ) Z djNK
Proof. The conditions (14) imply:
ch ) < o0, Zc A(J Zd*)\ ) < o0, Zd A(J
From condition

ZCJXJJ Zd XKJ

we have

Zc X, (x Zc X, (@ Zd+XKJ Zd XK, (@
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That is
Zc;_XJJ + Zd XK, (@ Z d+XKJ @)+ Z ¢ x7; (%)
j=1 =1

for every « such that both sides represent a real number (not oo). By Theorem 3

> ef A +ZdA Zd+)\ Kj)+> ¢y AJ))
Jj=1 Jj=1

ch Zc AJ. Zd*)\ Zd MK
and

D G =) dNK
j=1 j=1

Now we are able to proceed with the definition of integral:
DEFINITION 5

Let f be a function integrable in the interval I. Let c¢; be numbers and let J; C I
be intervals, j = 1,2,3, ..., satisfying the condition

D leIAJ5) < oo
j=1
such that the equality
2) =Y ¢ixs (@)
j=1

holds for every x € I satisfying the condition

> lejlxa, (z) < oo
j=1
Then the number
Z ¢ A(J;5)

is called the integral of f in the interval I; it will be denoted by fl x) dz.
Clearly, for every constant function f(x) = 8 in the interval [a,b] we have

b

[ t@)ds =50~ a.

a
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4. Integration of regulated functions
The next theorem shows how to integrate regulated functions.

THEOREM 5
Let [ be a regulated function in the interval [a,b] (a <b). Then f is integrable in
this interval and

b
/jqu=F@—me

where F is any virtually primitive function to f in the interval [a,].

Proof. Let {f,(z)},—, be a uniformly convergent sequence of step functions
in the interval [a, b] such that

f@)=>" falx)
n=1

for every x € [a,b]. This sequence exists from the theory of regulated and piece-
wise constant functions (see [5]). The functions f,,(z) are bounded. Let

B = sup{[fu(2)] : = €1}

for every n=1,2,3,....
It follows from the uniform convergence of the sequence {f, ()}, that

i B, < 00. (15)
n=1

For every n = 1,2,3,... we have
b b
[10@lds < [ 5= 5.0~ a).

From (15) we have >~ f; |fn(z)]dz < co. The function f is integrable in the
interval [a, b] and

bf(x)d:z:_i bfn(x)d:z:. (16)
[ron=x]

Let F,, be a function virtually primitive to the function f, in the interval [a, D]
such that F,(a) =0 for n =1,2,3,.... The sum

exists for every x € [a,b] and function F defined in this way is virtually primitive
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to f in [a,b]. Thus
b

/n@m=a@—a@

a

holds for every n = 1,2,3,.... Hence by (16)

b o0
/fMWMZXXa@—Em»:Hm—Hm
a n=1

Since the difference of any two functions virtually primitive to f in [a, b] is constant,
the last equality holds for any function F' virtually primitive to f in [a, b].

5. Conclusions

Our aim was to provide an introduction to the theory of integral developed by
Professor Igor Kluvanek during his stay at Flinders University in Adelaide (Aus-
tralia). In his approach regulated functions play an important role (see I. Klu-
vanek [4]).

The definition of integral given in this article applies an idea of Archimedes.
The most effective method for the calculation of integrals is the one which is based
on differential calculus (see V.V. Mityushev, S.V. Rogosin [6] and W.F. Pfeffer [7]).

As everybody knows Dirichlet function (characteristic function of the set of
rational numbers) is not integrable in Riemann sense. It is possible to show, that
this function is integrable in the sense of I. Kluvanek and the value of this integral
is zero. In fact, let QN [a,b] = {¢; : j € N}. Let further Jo; = {¢;} and let Jo;_4
be any subintervals of [0,1]. Hence the Dirichlet function D:[0,1] — R can be
represented in the form

D(x) =Y ¢ xu (@),
j=1

where c3; = 1 and cpj—; = 0. Hence its integral equals 0.
Applying properties of this kind of integral it is possible to prove that integral
of a regulated function f is an additive function of interval.
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A note on some iterative roots

Abstract. In this paper some orientation-preserving iterative roots of an
orientation-preserving homeomorphism F:S' — S' which possess periodic
points of order n are considered. Namely, iterative roots with periodic points
of order n. All orders of such roots are determined and their general con-
struction is given.

Let X be a nonempty set. A function g: X — X is called an iterative root of
a given function f: X — X if ¢"(x) = f(z) for x € X. The number m > 2 is
called the order of the iterative root and g™ denotes m-th iterate of g. Moreover,
we say that = € X is a periodic point of f of order n € N, n > 1 if

ff(z)=2 and fF)#azforke{l,...,n—1}.

If f(z) = x, then z is said to be a fized point of f. The set of all periodic (fixed)
points of f will be denoted by Per f (Fix f).

In [9] M.C. Zdun proved that every orientation-preserving homeomorphism
F:8' — 8! possessing periodic points of order n is a composition of two
orientation-preserving homeomorphisms T, G: S' — S!. Function G has no pe-
riodic points except fixed points and T is such that 7" = idg:. Using this result
he determined all continuous iterative roots with periodic points for homeomor-
phisms having fixed points.

In the present paper we apply Zdun’s theorem to the problem of finding some
continuous iterative roots for an orientation-preserving homeomorphism F: S! —
S! with periodic points of order n. Namely, we shall give conditions under which
continuous iterative roots with periodic points of order n exist and give the con-
struction of these roots.

Now, we recall some useful notations and definitions related to the mappings
of the circle. Let u,w € S' and u # w, then there exist t;,t5 € R such that
t1 <ts <t1+1and u=e? and w = 2™2 Pyt

W:: {e%it: te(tita)}, [uw ::(ijU{u,w}, [u,—wj::(Tu;))U{u}.

AMS (2000) Subject Classification: 39B12, 26A18.
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These sets are called arcs.
For every homeomorphism F: S — S there exists a unique (up to translation
by an integer) homeomorphism f:R — R such that

F (627Tim) _ e?ﬂ'if(:c)
and
fla+1)= f() +k
for all z € R, where k € {—1,1}. We call F orientation-preserving if k = 1, which
is equivalent to the fact that f is increasing.
Moreover, for every continuous function G: I — J, where I = {?™¢ : t € [a, b]}

and J = {e?™* : ¢ € [c,d]} there exists a unique continuous function g: [a, b] —
[¢, d] such that

G (e2m7) = ¢2ria(e), v € [a,b].

In this case we also call g the lift of G and we say that G preserves orientation if
g is strictly increasing.
For any orientation-preserving homeomorphism F: S' — S, the limit

alF) = nl;n;o fT(JS) (mod 1), reR
always exists and does not depend on the choice of x and f. This number is
called the rotation number of F (see [3|). It is known that «a(F') is a rational
and positive number if and only if F' has a periodic point (see for example [3]).
If F: S* — S' is an orientation-preserving homeomorphism such that «(F) = £,
where ¢, n are positive integers with ¢ < n and ged(g,n) = 1, then Per F' contains
only periodic points of order n (see [7], [5]). Moreover, there exists a unique number
p €{1,...,n—1}, called the characteristic number of F, satisfying pg = 1 (mod n).

From now on put np :=n and char F' := p. The following result comes from [8].

LEMMA 1
If F: S' — S' is an orientation-preserving homeomorphism with Per F # 0, then
for every z € Per F,

chharF(Z) F(k+1) charF(Z)

Arg < Arg , k=0,....,np—2.
z

For fixed z € Per I we define the partition of S' onto the following arcs

Iy = In(z) == [chharF(z),F<k+1>charF(z)), Ee{0,...,np—1}. (1)
Let us note that

F[Ik] _ [chharFqu(Z)’F(kJrl)charFJrl(Z))

[Fk char F+q char F (Z) F(k—i—l) char F+q char F(Z))
3

:I(k+q)(modnp)u kE{O,...,nF—l},

where ¢ = npa(F).
We shall use the following property (see [9]).
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REMARK 1
Let n € N and p,q € {0,...,n — 1} satisfy pg = 1 (modn) and ged(g,n) = 1. The
mapping {0,...,n —1} 3 d — i4 := —dp (modn) € {0,...,n — 1} is a bijection.

Moreover, d + iqqg = 0 (mod n).

The next theorem also comes from [9] and it is a modification of the factoriza-
tion theorem (see [9], Theorems 5 and 9).

THEOREM 1

Let F:S' — S' be an orientation-preserving homeomorphism, z € Per F' and
let {la}taeqo,...np—1} be the family defined in (1). Then there ewists a unique
orientation-preserving homeomorphism T:S* — S having periodic points of order
ng and such that PerT = St and

{Td o (Fmr)itlo TI;j, ifig<k—1,

To (F"7) o Tﬁdd, ifig>k—1

F“}’;:-]np _ Ta(F)an o

ford, ke {0,1,...,np — 1}, j €N.

Let us stress that T is unique up to a periodic point of F. Moreover, F"F [I;] =
Ia, T1g] = I(g41) (moan) for d € {0,...,np — 1} and T"* = idg:. Such a function
T will be called a Babbage function of I (see [9]).

In view of the above theorem (see also [9], Corollary 6) for every orientation-
preserving homeomorphism F: S!' — S with () # Per F and for every zy € Per F
we have

T9(F"r(2)), z€ Iy(z0),
F(z) =
{Tq(z), S St \I()(Zo),

where ¢ = a(F)np and T is a Babbage function of F.
We start with the following

(2)

REMARK 2
Let n,m > 2 be integers and let ¢,¢’ € {1,...,n — 1} be such that ged(¢,n) =1
and mq’ = g (mod n), then ged(m,n) = 1.

Proof. 'To obtain a contradiction suppose that m = ka and n = kb for some
integers k > 1 and a,b > 1. This and the fact that mq¢’ = ¢ (modn) give kaq’ =
q + jkb for some j € Z. Therefore k(aq’ — jb) = ¢, which contradicts the fact that
ged(g,n) = 1.

REMARK 3

Let n,m > 2 be relatively prime integers and let ¢ € {1,...,n — 1} be such that
ged(g,n) = 1. There is a unique ¢’ € {1,...,n — 1} such that ged(¢’,n) = 1 and
mq’ = ¢ (modn).

Proof. The fact that ged(m,n) = 1 implies that the equation mx + ny = ¢
has integer solutions x,y. In particular, there is exactly one pair (¢, j), where
¢ €{0,...,n—1} and j € Z such that mq¢ + jn = q. Thus mq¢’ = ¢(modn).
Moreover, ¢’ # 0 as ged(g,n) = 1. In the same manner as in the proof of Remark 2
we can see that ged(¢’,n) = 1.
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From Remark 2 we can conclude that

COROLLARY 1
Let F: S — S be an orientation-preserving homeomorphism with § # Per F' and
let m > 2 be an integer. If equation

G™(z) = F(z), ze S (3)
has continuous and orientation-preserving solution such that ng = np, then
ged(m,np) = 1.

It appears that ged(m,np) = 1 is also a sufficient condition for the existence of
continuous and orientation-preserving solutions of (3) with ng = np. The proof
of this property and the description of the solution of (3) in the case Per F' = S1
can be found in [6]. Therefore, from now on assume that Per F' # S'. Before we
present some results let as recall that if (3) holds, then Per F' = Per G.

LEMMA 2
Let F,G:S' — S' be orientation-preserving homeomorphisms possessing periodic
points of order np = ng = n and satisfying equation (3) for an m > 2. Let

moreover zg € Per ' = PerG and Jj, := [GkCharG(zo),G(kH)CharG(zo)), k €
{0,...,n—1}. Then

(i) Jx = Ix(20) for k € {0,...,n — 1}, where the arcs I(z0) are defined by (1);
(i) (G"e)™ =F"r;

(iii) of T and V are Babbage functions of F and G, respectively, [x] stands for
an integer part of x € R and i/, := —d char G (modn) for d € {0,...,n—1},

then
‘/Il} :Ta(F)nonoGnﬁdoj‘tl d (4)
where
m[2] -1 d-o
Bq = [%]— , de{l,...,n—1}, i&gm—[%}n—l, (5)
-[2], de{l,....,n—1}, i, >m—[2]n—-1.

Proof Fix z9 € Per F and assume that (3) holds, nr = ng = n. Put
q == a(F)n, ¢ = a(G)n and b := [Z]. From the fact that ged(m,n) = 1
(see Corollary 1), we get

m=k+bn for some k € {1,...,n—1}. (6)

To prove (i) it suffices to show that G Par & (zq) = FharF(20) Equation (3) yields
ma(G) = a(F) (mod 1) (see [2]). Thus mq’ = g (modn), hence

mgq’ char F char G = g char F char G (mod n)
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and finally, in view of the definition of char F,
m char F' = char G (modn). (7)
From (7), (3) and since zg is a periodic point of G of order n we obtain
GeharG () = gmehar Py — pehar P,y

Note that (ii) is an immediate consequence of equation (3) and equality np =

ng.
Now we prove (iii). From Theorem 1, (6) and (i) we get

) Vido (GM)YloV 4, ifi, <k-—1,
r}d:GfI+bn:quo d ( )b ,(yd . .,d_
d Vo (GM) oV ifi,>k—-1

ford € {0,1,...,n—1}. Furthermore, observe that condition mq’ = ¢ (modn) and
(6) give k¢’ = ¢ (modn), which, in view of the fact that V is a Babbage function
of G of order n, implies V9% = V4. Therefore,

m
[1a

Vido (Gt oVTd it <k-—1,
_qu{ (&) |a ¢ (8)

Vo (GM)’ oV 4, ifif, >k—1

ford e {0,1,...,n—1}.
On the other hand, we may write (5), as follows

m—b—1, d=0,
Ba=1{ —b—1, de{l,....n—1}, i, <k—1,

—b, de{l,....,n—1}, i, >k—1.
Let d =0, then iy =0 <k —1 and b = m — [y — 1. Combining these with (8) we
obtain

1y = V7o (G, = Vo (Gl )" .
Let d € {1,...,n — 1}. Replacing b by =04 — 1 if i}, < k —1 (resp. by —fq if
i, >k —1) in (8) yields

m _ioVeo G o e
Ild Ild

Finally,
. Vq Vd o G*ﬂﬁd‘f*mn o ‘/"I—dd7 d — 07 9
=V ° VdoG—"ﬁdovl;d, de{l,...,n—1}. )
d
Equating (9) with (2) yields for d € {1,...,n — 1},
TG =VieVieG "oV 7 (10)

While, for d = 0, we get

T1o By — V1o Gy,
o [To
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which, in view of (ii), gives

T4 = Vi G . (11)
From (10) and (11) we have
T‘quZV’JOVdoG_"BdoV‘;dd, de{0,...,n—1}. (12)
Hence
Ty = VI VP 0 G o (00 e

As VP = VP modn) for p € N we obtain

CZ—“qu (mod n) = Vq [e) VP o G_”lﬁp (modn) o ‘/‘I_pp(modn)7 P c N (13)
Now let s recall that T(Ia] = I(d+q) (moam) for d € {0,...,n —1}. This, (11) and
(13) imply

T‘qu _ (Tq)il _ (Vq o V=14 o =nBa-1) (mod n) o V—(l_l)Q)
0 0

o (V‘I o VU=2)aG—nBeu—2) (modn) o Vf(l—z)q)
0o (VIoVIoG oV 1) o (V1oG ™)
ﬁq(l—l) (mod ’rl)+/8q(172) (mod 7l)+"'+;8q+,30)

)

1 —n(
=Vo G\Io
which gives

qu —7la g G"(ﬁq(zfl) (mod n)tBq(1—2) (modn)-‘r...-‘rﬁq-i-ﬁo)

[Zo [To (14)

forl € {1,...,n}. Now fixd € {1,...,n—1}. Since ged(q,n) = 1 there is a unique
l€{1,...,n} such that l¢g = d (modn). Hence by (13) we have
T — T4 — VoV o G Blamodn) o 1/l

[1a [T14 (mod n) 114 (mod n)

By substituting (14) twice to the above equation we obtain

Tq

‘] — Vq o (qu o Gn(ﬁq(lfl) (mod n)“rﬁq(le) (mod n)++ﬁq+50)) o anﬁlq (mod n)
d

° (G_n(ﬁq(lfl) (mod n) TBq(1—2) (mod n)+...+ﬁq+ﬁo) ° T—lq )

[T14 (mod n)

— V90T o G "Bia(modn) o T4

|Ilq (mod n) '

This and the fact that T is a Babbage homeomorphism of F' of order n, i.e.,
T'? = Tla(medn) — 7d_vield
Vi =T%0T%0 G"Pa o T ¢
[ 1a [a”

which in view of (11) completes the proof of (4).
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LEMMA 3
Let u,w € S, uw # w and I = [u,w|. For every integer m > 2 and every
orientation-preserving homeomorphism F:I — I with Fix F # 0 there ewist in-

finitely many orientation-preserving homeomorphisms G: I — I satisfying (3) and
such that Fix G # ().

Proof. Let a,b € R be such that a < b < a+ 1 and u = €*™® and w = >,
Then

r (627riac) _ e27rif(w)7 = [CL, b]
for a unique increasing homeomorphism f: [a, b] — [a, b]. Clearly, f possesses fixed

points. By Theorem 11.2.2 (see [4] ch.11), there exist infinitely many strictly
increasing continuous solutions of

9" (@) = f(z),  =€lab],
with Fix g # (. For every such function g:[a,b] — [a,b] define G: I — I by
G (e¥™7) = e?mi9(@) x € [a,b].
Then FixG # () and
G™ (2717 = 2™ (@) = 27if(@) = pr(e2miv), z € [a,b].

In the proof of the next theorem we will use the following result (see for example

[7])-

LEMMA 4

Suppose that F: S — S is an orientation-preserving homeomorphism, z € Per F,
{2, F(2),...,F"" Y2)} = {20, 21, -, 2np—1}, where 29 = 2,

Argz—d<Arg@<2w, de{0,...,np—2}
20 20

and F(20) = zq. Then a(F) = ;L.

THEOREM 2

Let F: S* — S be an orientation-preserving homeomorphism and let m > 2 be an
integer such that gcd(m,np) = 1. There exists an orientation-preserving homeo-
morphism G: S' — St satisfying (3) and such that ng = nr.

For every such an m and every zy € PerF, providing that I, = I4(z0) for
de€{0,...,np — 1} are defined by (1), the solution of (3) is of the form:

(e ) (H(2)), 2 €,

(\I/charF)q (2)7 2 e St \107
where ¢ € {1,...,np — 1} fulfils mq’ = q(modnp), ¢ :=npa(F), H: Iy — Iy is

an orientation-preserving homeomorphism such that Fix H # 0, H™ = F’" and
[To

G(z) == (15)

U(z):=TT0T%0 H* o T7%(2), z€ly, de{0,...,np — 1}, (16)
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where T:S' — St is a Babbage function of F and (34 for d € {0,...,nr — 1} are
defined by (5) with n = np and i, uniquely determined by (d +i,q') (modng) =0
forde {0,...,np —1}.

Proof. Fix zg € Per F and a mapping H:Iy — Iy such that Fix H # 0 and
H™ = F"}f (by Lemma 3 there are infinitely many such mappings). Observe that

U[Iy) =T T%0 HO[Ig] = T[14) = I(d+q) (modn): de{0,...,np—1}. (17)

Moreover, as a composition of orientation-preserving homeomorphisms, ¥, is an
orientation-preserving homeomorphism. Hence ¥: S' — S! and G are orientation-
preserving homeomorphisms.

Now we show that ng = np. Put z4 := FIhF(z0) for d € {1,...,np — 1}.
Thus by (1), (17) and since ¥ preserves the orientation we get

\If(zd) = Z(d+q) (mod np)s de {0,...,TLF—1}.

This, Lemma 1 and Lemma 4 yield a(¥) = ;I = «a(F) and, in consequence,
ny = np and char U = char F. Next note that H(z9) = zo and H(z1) = z1.
Therefore, by (15) and the definition of char F,

G(Zd) = \I/q, CharF(Zd) = Z(d+qq’ char F) (modnp) — #(d+q’) (modng)> (18)

ford € {0,...,np — 1}. As ged(¢’,nr) = 1 (see Remark 3) we get np = ng.
Our next goal is to prove that ¥"# =idg:i. From (17) and (16), in view of the
fact that TP = TP(mednr) for p € N, we obtain

\I/|nIF _ (Tq o Td-‘r("F—l)q o0 HP(+(np—1)a) (modnp) o T—d-‘r(”F—l)Q)
a

0...0 (Tq o T4 o HBd+a) modnp) o TﬁdJrq) o (Tq oT%o HP o T‘;d)
d

— T9 o THMF=1)a o FFBatnp—1)a) (modnp)t+Ba o T‘;d
d

for d € {0,...,np — 1}. Moreover, since ged(g,nr) = 1 we get
{d,(d+ q) (modnp),...,(d+ (np —1)q) (modng)} ={0,1,...,np — 1}.
We thus get

ViE =TT Do ghnpteth o d de{0,...,np—1}.  (19)

Putting b := [%] we have (6) with n = np. By Remark 3 and Remark 1 it
follows that the mapping {0,...,np —1} 3 d+— i), € {0,...,np —1} is a bijection.
Therefore, i/, < m —bng —1 = k — 1 holds true for exactly k arguments and one

of them is 0, as i, = 0 < k — 1. Hence in view of (5),
Bop—1+...+0o=mr—k)(=b)+(k—-1)(-b—-1)+m—-b—1=0.

This and (19) give U™ =idg:.
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What is left is to show that (3) holds. Put W<harf — V. By Theorem 1
homeomorphism V is a Babbage function of G. Since gchar F = 1 (modng) and
UnF =idg:1 we have ¥ = Wecharf — 14 Hence by (16),

Ve :quTdoHﬁdoz’l;dd, de{0,...,np —1}. (20)
Applying the similar reasoning as in the proof of (iii) of Lemma 2 we obtain
TG =VieVie H PioV 4 de{0,...,np—1}. (21)
Indeed, as TP = TP (modnr) for p € N from (20) we get
q — 74 P Bp (mod n -p
V\Ip(moan) =T%oT" o Hrlmednr) OT\Ip(moan)’ pe N. (22)
Thus
Vlllt(zJ _ T[q 5 ngfq(zfl) (mod n ) TBq(1—2) (moan)+~~~+Bq+BO),
which gives
T‘qu —yla g H_(Bq(lfl) (mod n ) TBq-2) (moan)+~~~+ﬁq+ﬁo) (23)
0 [To

for i € {1,...,np}. Now fix d € {1,...,np — 1}. Since ged(gq,nr) = 1 there is
a unique [ € {1,...,np} such that g = d (mod nr). Hence by (22) we have
Ve = V4 — T 6T o FBramednp) o T

|Id - ‘Ilq (mod np) ‘Ilq (modnp)-
By substituting (23) twice to the above equation we obtain

Vq

0= TY o (qu o H—(Bq(zfm (mod n ) TBq(1—2) (moan)-‘r...-i-ﬁq-i—ﬁo)) o Hﬁlq(mod np)
a

o (H(ﬁq(Lfl) (mod n ) TBq(1—2) (moan)+~~~+ﬁq+ﬁo) ° V—lq )

Ilq (mod np)

= T90 Vi o GBramodnp) o /74

Tig (modnp)”

This and the fact that V' is a Babbage homeomorphism of G of order np, i.e.,
Via = yla(modnr) — pd_vield (21).

Now observe that from (2) and (21), since H™ = Fﬁf and kq¢' = g (modnp),
we get

, Vd OH—ﬁd"l‘m o ‘/;d7 d — 0,
‘F‘Id:qu o d — —d‘d
Vio H ﬁdovud, de{l,...,np—1},

which in view of (15), (6) and Theorem 1 gives F' = G™.

We finish with the following observations

REMARK 4
If the assumptions of Theorem 2 are fulfilled, then

(i) from (18), Lemma 4, Lemma 1 it follows that a(G) = %,
(ii) by Lemma 3 there are infinitely many solutions of (3) with ng = np,

(iii) Lemma 2 and Theorem 2 imply that every orientation-preserving continuous
solution of (3) with ng = np is given by (15) and (16).
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Zach Teitler
Bounding symbolic powers via asymptotic multiplier
ideals

Abstract. We revisit a bound on symbolic powers found by Ein-Lazarsfeld—-
Smith and subsequently improved by Takagi-Yoshida. We show that the
original argument of [6] actually gives the same improvement. On the other
hand, we show by examples that any further improvement based on the
same technique appears unlikely. This is primarily an exposition; only some
examples and remarks might be new.

1. Uniform bounds for symbolic powers

For a radical ideal I, the symbolic power I?) is the collection of elements
that vanish to order at least p at each point of Zeros(I). If I is actually prime,
then I is the I-associated primary component of I?; if I is only radical, writing
I = CiN...NnC, as an intersection of prime ideals, I*) = Cl(p) N...N Cs(p).
The inclusion I? C I®) always holds, but the reverse inclusion holds only in some
special cases, such as when [ is a complete intersection.

Swanson [15] showed that for rings R satisfying a certain hypothesis, for each
ideal I, there is an integer e = e(I) such that the symbolic power Ier) c v
for all » > 0. Ein-Lazarsfeld-Smith [6] showed that in a regular local ring R
in equal characteristic 0 and for I a radical ideal, one can take e(I) = bight([),
the big height of I, which is the maximum of the codimensions of the irreducible
components of the closed subset of zeros of I. In particular, bight(I) is at most
the dimension of the ambient space, so e = dim R is a single value that works for
all ideals. More generally, for any k > 0, I(¢7++7) C (I(+D)7 for all » > 1. Very
shortly thereafter, Hochster—Huneke [9] generalized this result by characteristic p
methods.

It is natural to regard these results in the form ™) C I" for m > f(r) = er,
e = bight(I). Replacing f(r) = er with a smaller function would give a stronger
bound on symbolic powers (containment in I” would begin sooner). So it is natural
to ask, how far can one reduce the bounding function f(r) = er?

AMS (2000) Subject Classification: 14B05.

Volumes I-VII appeared as Annales Academiae Paedagogicae Cracoviensis Studia Mathematica.
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Bocci-Harbourne [3] introduced the resurgence of I, p(I)= sup{Z: 1™ ¢ I"}.
Thus if m > p(I)r, I™ C I". The Ein-Lazarsfeld-Smith and Hochster-Huneke
results show p(I) < bight(I) < dim R. It can be smaller. For example, if I is
smooth or a reduced complete intersection, p(I) = 1. More interestingly, Bocci—
Harbourne [3] show that if I is an ideal of n reduced points in general position
in P2, p(I) = p, < 2. On the other hand, Bocci-Harbourne show for each n,
1 < e < n, and € > 0 there are ideals I on P™ with bight(I) = e such that
p(I) > e — e. This suggests that one cannot expect improvement in the slope of
the linear bound m > er, at least not in very general terms. So one naturally
turns toward the possibility of subtracting a constant term.

Huneke raised the question of whether, for I an ideal of reduced points in P2,
I3 C 12, Bocci-Harbourne’s result p < % gives an affirmative answer to Huneke’s
question, and much more, for points in general position. Some other cases have
been treated, e.g., points on a conic, but the general case, i.e., points in arbitrary
position, remains open.

A conjecture of Harbourne (Conjecture 8.4.3 in [1]) states that for a homoge-
neous ideal I on P*, 1™ C I" for all m > nr — (n — 1), and even stronger, that
the containment holds for all m > er — (e — 1), where e = bight(I). Huneke’s
question would follow at once as the case n = e =r = 2.

Some results in this direction have been obtained by various authors. Huneke
has observed that Harbourne’s conjecture holds in characteristic p for values
r = p* k > 1, see Example 1V.5.3 of [8] or Example 8.4.4 of [1]. Takagi-
Yoshida [17] and Hochster—Huneke independently showed by characteristic p meth-
ods that [(er+kr=1 C (T+) for all k > 0 and r > 1 when I is F-pure (see
below). More generally, Takagi—Yoshida show a characteristic p version of the
following:

THEOREM 1.1 ([17])

Let R be a regular local ring of equal characteristic 0, I C R a reduced ideal,
e = bight(I) the greatest height of an associated prime of I, and ¢ an integer,
0<l< lct(I(')), where lct(I(')) is the log canonical threshold of the graded system
of symbolic powers of I, see below. Then I'™ C I" whenever m > er — {. More
generally, for any k >0, 1™ C (I whenever m > er + kr — £.

This statement is a slight modification of Remark 3.4 of [17].

The Ein-Lazarsfeld-Smith uniform bounds on symbolic powers described above
are the case £ = 0. The F-pure case implies lct(I(*)) > 1, so we may take £ = 1.
(More precisely, F-pure means lct(1) > 1, and we will see lct(1(*)) > 1ct(I).)

The idea of the proof is to produce an ideal J with 7™ C J and J C (I(k“))r.
Ein-Lazarsfeld-Smith introduced asymptotic multiplier ideals in [6] and, among
other results, proved the uniform bounds described above by taking J to be
an asymptotic multiplier ideal. For Takagi—Yoshida the ideal J is a generalized test
ideal, a characteristic p analogue of the asymptotic multiplier ideals introduced by
Hara—Yoshida [11].

In this note, J will be an asymptotic multiplier ideal. We will review multiplier
ideals in §2 and discuss some examples in §3: the asymptotic multiplier ideals
of monomial ideals and hyperplane arrangements. We will revisit the argument
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given by Ein-Lazarsfeld-Smith in the case £ = 0 to show that it actually gives
Theorem 1.1 in §4.

In §5 we consider two ways in which the argument of §4 falls short of the
improved bounds we hope for. First, the condition 0 < £ < lct(I(*)), while gen-
eralizing the result of [6], is nevertheless quite restrictive. Second, the argument
of [6] actually produces two ideals, I(™) C J; C Jo C (I*#+D)". We will consider
as an example the ideal I = (zy, zz,yz) of the union of the three coordinate axes
in C?. We will show that in this example the first and last inclusions are actually
equalities, while the middle inclusion J; C Js is very far. So if any improvement
remains to be found, one must consider the middle inclusion.

2. Multiplier ideals

Henceforth we fix X = C" and consider ideals in the ring R = Clz1, ..., z,].

Note that for a prime homogeneous ideal I, a homogeneous form F' vanishes to
order p along the projective variety defined by I in P"~! if and ony if it vanishes to
order p on the affine variety defined by I in C”. In this way the Bocci-Harbourne
results and Huneke question for points in P? translate to questions about symbolic
powers of (homogeneous) ideals in the affine setting.

2.1. Ordinary multiplier ideals

To an ideal I C Clxy,...,x,], regarded as a sheaf of ideals on X = C",
and a real parameter ¢ > 0 one may associate the multiplier ideal J(I') C
Clx1,...,2n]. The multiplier ideals are defined in terms of a resolution of sin-
gularities of I. For details, see [4], [12].

Note, in the notation J(I?) the ¢ indicates dependance on the parameter ¢,
rather than a power of I. In particular, J(I*) is defined for all real ¢ > 0, whereas
I' on its own only makes sense for integer ¢ > 0. See, however, Property 2.2.

Rather than present the somewhat involved definition here, we give a short
list of properties of multiplier ideals which are all that we will use. (The reader
may take these as axioms, although the properties listed here do not characterize
multiplier ideals.)

PROPERTY 2.1

For any nonzero ideal I, J(I°) = (1), the unit ideal. As the parameter ¢ increases,
the multiplier ideals get smaller: if ¢; < to, then J(I'*) D J(I*2).

On the other hand, if I; C I, then J(I) C J(I}).

Thus multiplier ideals, as functions of two arguments, are “order-preserving” in
the ideal and “order-reversing” in the real parameter.

PROPERTY 2.2
For any real number ¢ > 0 and integer k > 0, J(I*) = J((I*)!).

PROPERTY 2.3
For any t > 0 and integer p > 0, I[P 7 (I") C J(IP*"). See Proposition 9.2.32 (iv)
of [12].
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PROPERTY 2.4

When Zeros(I) is smooth and irreducible with codimension codim(Zeros(I)) = e =
bight(I), J(I*) = I'Y)=¢*+'. In particular, 7 (I*) C I for t > e. More generally, if
I is reduced and Zeros(I) = V4 U ... U Vj, then restricting to a neighborhood of
a general point on each V;, we see J(I') vanishes on V; for t > codim V;, hence
J(It) C I for t > maxcodim V; = bight(I).

The above list is a small selection of the many interesting properties of multi-
plier ideals. See [4], [12] for more, including excellent expositions of the definition
(from which all the above properties follow immediately). Among these many
other properties we single out one which we will use here, due to Demailly—Ein—
Lazarsfeld [5].

SUBADDITIVITY THEOREM
J(ItTt2) C J(I')J(I%2). In particular for any integer r > 0, J(I"™) C J(I*)".

2.2. Asymptotic multiplier ideals

A graded system of ideals ae = {a,,}°2, is a collection of ideals satisfying a,a, C
dptq, and (to avoid trivialities) at most finitely many of the a,, may be zero. Note
that a,, a,4+1 are not required to satisfy any particular relation, but (a,)* C ay,.
By convention, ag = Clz1,...,z,], so that @ - a, is a Clzy,...,z,]|-algebra.
A trivial graded system is one of the form a, = af. Our main interest will be in
the graded system of symbolic powers of a (reduced) ideal I, I(*) = {1(™}, <.

To a graded system a, and real parameter ¢ > 0 one can associate an asymptotic
multiplier ideal J(ab), or J(t-I(®)), defined by

)-

This definition was given in [6]. We must justify the existence and well-definedness
of this maximum; we repeat the argument of |6]. Note that since (a,)? C agy, by
the properties of multiplier ideals we have

'U'e\c‘,

J(al) = max J(a

p>1

T(ah) = T((a2)77) € T (afs).

The Noetherian property assures that among the ideals J (ap ) one is a (relative)
maximum. If J(ap) is a maximum, then by the above, j(ap) = j(a%). Hence

if J(ap) and j(aq) both are maxima, then they coincide with each other. Thus
there is a unique maximum of this collection of ideals.
t
In particular, J(al) = J(aj) for p > 0 and sufficiently divisible, i.e., for
all sufficiently large multiples of some pg. We say that such a p computes the
asymptotic multiplier ideal.

ExaMPLE 2.5
In the trivial case a,, = af’, the asymptotic multiplier ideals reduce to the ordinary
multiplier ideals: 7 (al) = J(a}). This has the following consequence: If I is a
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reduced ideal defining a smooth and irreducible variety of codimension e, then
j(t . I(o)) _ j(It) _ I[tJJrlfe'

As before, if I is only reduced, then by restricting to a neighborhood of a smooth
point on each irreducible component of Zeros(I), we see that J(t-I1(*)) C I for
t > e = bight(I). And, more generally, J((e + k) - I®)) C I**1 for any k > 0
and any reduced ideal I.

REMARK 2.6

Conversely, a, C J(a2). In fact, for every n, t, a,-J(al) C J(at™) (Theo-
rem 11.1.19 (iii) of [12]). This is exactly the extra piece we will add to the argument
of [6] to deduce Theorem 1.1.

As before, J(ad) = (1) and if t; < ta, then J(al') 2 J(ai?). The asymptotic
multiplier ideals satisfy subadditivity: J(af'*%2) C J(al')J (al2), so J(alt) C
J(ab)" [12, 11.2.3]. This follows immediately from the subadditivity theorem
for ordinary multiplier ideals. (Let p large and divisible enough compute all the
asymptotic multiplier ideals appearing in the equation, then apply the ordinary
subadditivity theorem for a,.)

2.3. Log canonical thresholds

For an ideal I # (0),(1), we define let(I) = sup{t| J(I*) = (1)}. This is
a positive rational number. It turns out that J(I'**())) = (1). (See [7] or [12].)

Let I be a radical ideal and let ¢’ be the minimum of the codimensions of the
irreducible components of Zeros(I). Then lct(I) satisfies

0<let(I) <€

(Restricting to a neighborhood of a general point on a codimension ¢’ component
of Zeros(I), J(I¢) vanishes on the component by Property 2.4.)

For a graded system of ideals ae, we define lct(as) = sup{t| J(al) = (1)}.
This may be infinite or irrational. However for the graded system of symbolic
powers of a radical ideal I, we have lct(I(*)) < ¢’ as above.

As shown in [13, Remark 3.3],

Ict(ae) = sup plct(a,) = lim plct(ay,).

Taking p = 1, this shows lct(I(®)) > lct(I) for a radical ideal I.

3. Examples

In this section we give the asymptotic multiplier ideals of graded systems of
monomial ideals, especially for the symbolic powers of a radical (i.e., squarefree)
monomial ideal, and the asymptotic multiplier ideals of graded systems of divisor
and hyperplane arrangements.
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3.1. Monomial ideals

The following theorem gives the ordinary multiplier ideals of a monomial ideal.

THEOREM 3.1 ([10])
Let I be a monomial ideal with Newton polyhedron N = Newt(I). Then J(I') is
the monomial ideal containing x* if and only if v+ (1,...,1) € Int(¢ - N).

where

)-

Here Int() denotes topological interior. In particular, lct(I) =
t-(1,...,1) is in the boundary of Newt(I).

Let I, = {I,} be a graded system of monomial ideals. Let N, = Newt(I,
Then I;f C Ipk, 50 k- Np € Npi, which means %Np C pikNpk. Let N(l,) = U %N
Since this is an ascending union of convex sets, it is convex.

=

THEOREM 3.2 ([13])
J(IY) is the monomial ideal containing z° if and only if v+ (1,...,1) €
Int(t- N(l,))-

Proof. If p computes J (1) and 2¥ € J(I¢) = J(I}), then v+ (1,...,1) €
Int(pN) C Int(t - N(l,)). Conversely if v +( ,1) € Int(t - N(I. )) then

1)
U—i—(l,...,l)elnt( ») for some p, whence z¥ € J(I7) € J(I%).

For a graded system of monomial ideals, lct(I,) = %, where ¢ - (1,...,1) is in
the boundary of N(/,).
More can be said in a special situation:

ProrosiTION 3.3
If a graded system is given by I, = CY N ...N C? for fized monomial ideals
Cy,...,C,, then in the above notation, N( ) ﬂNewt(C)

Proof. For a monomial ideal a, let monom(a) denote the set of exponent vec-
tors of monomials in a, so that Newt(a) is the convex hull conv(monom(a)). For
p > 1 we have monom(I,) = [ monom(C?), so

Newt(I,) C mNewt (ChHy=p- mNewt(Ci).

This shows N(I,) C [ Newt(C;).

For the reverse inclusion, note (| Newt(C;) is a rational polyhedron. For p
sufficiently divisible, p - ﬂNewt(Ci) is a lattice polyhedron; in particular all its
extremal points (vertices) have integer coordinates, and p-(| Newt(C;) is the convex
hull of the integer (lattice) points it contains. So let v be an integer point in

p-(Newt(C;) = Newt(C?). Then z¥ € C? for each i, so 2 € ﬂCp = I,. This
shows p - (Newt(C;) C conv(monom(I,)). Therefore N Newt(C ) C Newt(I ) C
N(I,).

One can check that in the situation of the above proposition, lct(l,) =
min let(C;).
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PROPOSITION 3.4

Let I = I, be a reduced monomial ideal and I, = I®) . Suppose I is not the mazimal
ideal. Let N be the convex region defined by the linear inequalities that correspond
to unbounded facets of Newt(I). Then N = N(I®); in particular J(t-1(*)) is the
monomial ideal containing x* if and only if v+ (1,...,1) € Int(¢ - N).

Proof. Let I = Cy N ...NC,, the C; minimal primes of I. Then » =
CYN...NCP. As long as I is non-maximal, equivalently each C; is non-maximal,
the Newt(C;), together with the facets of the positive orthant, correspond pre-
cisely to the unbounded facets of Newt(I). The result follows by the previous
propositions.

In particular, each lct(C;) = ht C;, so let(1(®)) = minht C; = ¢/, where ¢’ is
the minimum codimension of any irreducible component of the variety V (I).

3.2. Hyperplane arrangements

Let D be a divisor with real (or rational or integer) coefficients. The multiplier
ideals J(t - D) are defined similarly to the multiplier ideals of ideals. All the
properties described above hold for multiplier ideals of divisors. In fact, when D is
a divisor with integer coefficients with defining ideal I, J(¢t- D) = J(I*). See [12]
for details.

The multiplier ideals of hyperplane arrangements were computed in [14], with
the following result.

THEOREM 3.5

Let D = biH1 + ...+ b.H, be a weighted central arrangement, where the H; are
hyperplanes in C" containing the origin and the b; are nonnegative real numbers,
the weights. Let L(D) be the intersection lattice of the arrangement D, the set
of proper subspaces of C™ which are intersections of the H;,. For W € L(D),
let (W) = codim(W) and s(W) = > {b;| W C H;} = ordw (D). Then the
multiplier ideals of D are given by

j(t . D) — ﬂ I‘I/_‘t/S(W)JJrl—T(W),
WeL(D)

where Iy is the ideal of W.

In fact, the intersection over W € L(D) can be reduced to an intersection
over W € G for certain subsets G C L(D) called building sets; see [16]. The log
canonical threshold is given by lct(D) = miny ¢, (p) ;EVV‘;;, this may be reduced to
a minimum over W € G.

With this in hand it is easy to describe a similar result for graded systems of
hyperplane arrangements.

We will say a graded system of divisors is a sequence Do = {D,},>1 such
that D, + D, > D,,. Equivalently, for each component E, the ordg (D)) satisfy
ordg(D,) + ordg(Dy) > ordg(Dptq). If the D, have integer weights, then the
condition of the D, forming a graded system of divisors is equivalent to requiring
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the ideals I, = I(D,) to form a graded system of ideals. Define the asymptotic
multiplier ideal J (¢t - Do) = max, J (%Dp), as for graded systems of ideals.
The following lemma will be helpful:

LEMMA 3.6 ([13], LEMMA 1.4)
Let {a,} be a sequence of non-negative real numbers such that a, + aq > ap+q for
all p,q. Then %ap converges to a finite limit; in fact %ap — inf %ap.

For a graded system D, of divisors, let

1
Dy = ZaEE, where ag = pli_}I{:O EordE(Dp).

PROPOSITION 3.7
Let Do be a graded system of divisors. Then J(t- De) = J(t - Doo).

This follows from considering a common resolution of singularities of all the
D, and D,. The following is an immediate consequence.

ProrosiTion 3.8

Let Do be a graded system of divisors, where each D, is a central hyperplane
arrangement. Let the hyperplanes be Hy,...,H,. Let D, = by ,H1 + ...+ b, pH,,
and let b, oo = 1imbin’. Let L(Dg) be the intersection lattice of the (reduced)
arrangement Dy = Hy U ... U H,, and for W € L(Dyg) let soc(W) = > {bi o :
W C H;}, r(W) = codim(W). Then

Tt D.) _ m II%-SOO(W)JJrl—T(W) = J(t- Do),
WeL(Dy)
where D is defined as above.
Again the intersection can be reduced to W € G for a building set G C L(Dy).

r(W)
500( ) ’

The log canonical threshold is given by lct(Ds) = lct(Doo) = minyy

4. Proof of Theorem

At this point the theorem is easy to prove. The real work was to develop the
definition of multiplier ideals and show they have the properties described in §2.

We have J(I¢) C I. Together with the subadditivity theorem this gives the
following chain of inclusions:

j(Ie’r‘) g j(Ie)T g IT.

Unfortunately (") is not necessarily contained in J(I°"). We must enlarge these
multiplier ideals enough to contain (") but not too much to destroy the contain-
ment in I". First rewrite the above as

J((I")F) C J((IP)s) C I".
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These are the same ideals by Property 2.2. Now let p be sufficiently large and
divisible and enlarge I” to I?). The multiplier ideals become asymptotic multiplier
ideals, and we will see in a moment that the inclusions above still hold:

Jler- I8y C Je- 1 cI.

By Remark 2.6 we have I(er) C J(eT-I(')). So this shows I(¢") C 7. This explains
why we use asymptotic multiplier ideals rather than ordinary multiplier ideals in
this proof. We arrive at the following proof of Theorem 1.1.

Proof. We have the following chain of inclusions:
I(er—i—kr—é) _ I(er-i—kr—f)j([ . I(.))

CI(ler+kr)- I C T((e+k)-I®)r (%)
C (I(kJrl))r

which is justified as follows. For £ < lct(I(®)), 7(¢-I(®)) = (1). The first inclusion
is Remark 2.6. The second inclusion holds by the subadditivity theorem. The last
inclusion is Example 2.5.

Theorem 2.2 of [6] is shown by exactly the above argument with ¢ = 0.

5. Non-improvement

Using “classical” methods, Bocci-Harbourne have given some improvements
in special cases to the Ein-Lazarsfeld-Smith theorem that I(¢") C I" for every
reduced ideal I with bight(I) = e. For example [3] shows the resurgence of an
ideal I of general points in P? is at most %, so I C I" for m > % However,
the argument given above for the proof of Theorem 1.1, either via asymptotic
multiplier ideals or via characteristic p methods, is the only way I am aware of to
show for every reduced ideal I of height e that I(°") C I" (i.e., the resurgence is
at most e) or even that the resurgence is finite for every reduced ideal.

One may ask, how far can the same multiplier ideal methods be pushed to
improve the bounds in the Ein-Lazarsfeld-Smith theorem?

5.1. Restriction of log canonical threshold

The value ¢ in Theorem 1.1 is severely restricted. Let ¢’ be the minimum of the
codimensions of the irreducible components of Zeros(I). We saw 0 < lct([) < ¢/,
but it often happens that let(I) is much smaller than e’. For I a homogeneous
ideal in Cl[z1,...,z,], we have

n
- - < <t
multg(l) — let(1) < multo(])

([12, 9.3.2-3]), where multy(]) is the multiplicity of I at the origin, equivalently,
the least degree of a nonzero form in I. So if lct(I) > 1, then I must contain a
form of degree strictly less than n.
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For ideals of reduced sets of points in P? one can show the converse, so let(I) > 1
if and only if the points lie on a conic (which may be reducible). So Theorem 1.1
implies Harbourne’s conjecture and answers Huneke’s question only for points on
a conic, which (for smooth conics at least) had already been treated by Bocci-
Harbourne [2].

We only need ¢ < lct(I(*)), which is a priori less restrictive than ¢ < lct(I),
but still restricts us to £ < ¢’ — 1. Indeed, there are radical ideals I with let(/) <
lct(1(®)). However I do not know of an ideal I such that there is an integer £,
let(I) < £ < let(I®)).

For a radical homogeneous ideal I,

let(I®)) < r
™) < lim & multo(1(®))

p—00

3

where the limit exists because multo(I®)) + multo(7?) > multe(7P+9). If
lct(I¢®)) > 1, then for some p there must be a homogeneous form F vanishing
to order p along the variety defined by I, of degree strictly less than pn. This
is weaker than the requirement that if let(I) > 1, then I must contain a form of
degree less than n, which is the same statement with the added condition p = 1;
but it does not seem very much weaker.

5.2. The second inclusion

Let I = (xy,2zz,yz) C Clx,y, z] be the ideal of the union of the three coordinate
axes. Using Howald’s theorem and its asymptotic version one can compute all the
ideals appearing in (%). Since they are all integrally closed monomial ideals, we
give them by giving their Newton polyhedra. Here e = 2; we take k = 0. First,

111
Ne ={(a,b,0)| a+b,a+c,b+021}9(§,§7§)_

We have let(I) = 2 and let(1(®)) = 2, so we take ¢ = 1. Now,

Newt[I?" D] = {(a,b,¢)| a+ba+c,b+c>2r—1,a4+b+c>3r—1},

Newt[T (2r - I®)] = {(a,b,¢)| a+b,a+c,b+c>2r =1, a+b+c>3r—1},
Newt[(J(2- 1)) = {(a,b,¢)| a+b,a+c,b+c>r a+b+c>2r},
Newt[I"] = {(a,b,¢)| a+ba+c,b+c>r,a+b+c>2r}.

This example shows that the place where improvements are needed is the sec-
ond inclusion in (%), which relies on the subadditivity theorem.
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A combinatorial proof of non-speciality of systems
with at most 9 imposed base points

Abstract. It is known that the Segre-Gimigliano-Harbourne-Hirschowitz
Conjecture holds for linear systems of curves with at most 9 imposed base
fat points. We give a nice proof based on a combinatorial method of showing
non-speciality of such systems. We will also prove, by the same method, that
systems L(km; ka2) and L(km + 1; ka2) are non-special.

1. Introduction

Let p1,...,p, € P2 = P?(K) be distinct points, where K is a field of character-
istic 0. The points p1,...,p, will be called imposed base points. Let mq,...,m,
be nonnegative integers. By L(d;mipi,...,m,p.) we denote the linear system
of plane curves of degree d with multiplicity at least m; at p;, j = 1,...,7.
The dimension of £(d; m1p1,..., mp,) is upper semicontinuous in the position of
imposed base points and reaches minimum for points in general position. This
minimum will be denoted by

dim £(d; mq, ..., m,).

We will also write £(d;mq,...,m,) for a system with imposed base points in
general position, and L(d;m;*,...,m ") for repeated multiplicities. Define the
virtual dimension of L(d;my,...,m;)
dld+3) = [m;+1
dim £(d; cmy) = —L — J
vaim ( yma, , ) 2 Z < 92 )
Jj=1
and the expected dimension of L(d;my, ..., m;)

edim L(d;my, ..., m,) = max{vdim L(d;m1,...,m;), —1}.
By linear algebra one has

dim £(d;my, ..., m,) > edim L(d;mq, ..., m,)

AMS (2000) Subject Classification: 14H50, 13P10.

Volumes I-VII appeared as Annales Academiae Paedagogicae Cracoviensis Studia Mathematica.
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and L£(d;mq,...,m,) is said to be special if strict inequality holds for points in
general position, non-special otherwise.
For systems L = L(d;m1,...,m,), L' = L(d';m],...,m.) we have the inter-

section number denoted by L - L/,

L-L'=dd - mm).
j=1

DEFINITION 1
The system L = L(d;my,...,m,) satisfying

e dimL =edim L =0,

o self-intersection L? = L - L = —1,

e the only curve in L is irreducible,
will be called a —1-system.

A curve C C P? is said to be in the base locus of L(d;my,...,m,) if C is the
component of each curve in £(d;m1,...,m,). Observe that, by Bézout Theorem,
if L is nonempty and L- L' = —t < 0 for —1-system L’, then the curve C € L' is in
the base locus of L at least ¢ times, i.e., the equation of each curve in L is divisible
by ft, where f is the equation of C. Such C is said to be a multiple —1-curve in
the base locus, and it forces the system to be special:

I (by Lemma 2) (by Lemma 2)

dim dim(L — tL") > vdim(L — tL’) > vdim L,

thus, by nonemptiness of L, we have also

dim L > edim L.

LEMMA 2
Let L = L(d;mq,...,m;), let L' = L(d';m],...,m]) be a —1-system, let L—tL' =
L(d—d;my—ml,...;m,—mL). IfL-L' = -t <0, then
dim(L —tL") = dim L,
22—t

vdim(L — tL') = vdim L +

The proof of the Lemma is postponed to the next section. The system with
multiple —1-curve in the base locus will be called —1-special. We have seen that
every —1-special system is special. The following conjecture due to Harbourne
[13], Gimigliano [10] and Hirschowitz [15] states the following.

CONJECTURE 3
A system L(d;mq, ..., m,) with imposed base points in general position is special
if and only if it is —1-special.

In [5] it is shown that the above Conjecture is equivalent to the conjecture
posed by Segre [18].
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CONJECTURE 4
If a system L = L(d;mq,...,m,) with imposed base points in general position is
special, then every curve in L is non-reduced.

We will refer to either one of the above conjectures as to Segre-Harbourne-
Gimigliano—Hirschowitz (SHGH for short) Conjecture. From now on we will as-
sume that imposed base points are always in general position.

The SHGH Conjecture can be reformulated using standard systems. A system
L(d;mq,...,m,) is called standard if mqy > mq > ... > m, and

d > m1 4+ mo + ms.

THEOREM 5
In order to show that the SHGH Conjecture holds for at most r points it suffices
to show that each standard system for at most r points is non-special.

For completeness, we will give a proof of this well-known Theorem in the next
section.

The fact that the SHGH Conjecture holds for » < 9 points has been shown by
various methods in [16], [10] and [12], but the first results appeared already in [2].
A nice idea is to use the following well-known fact.

PROPOSITION 6
Let d, my1, ma, ms be nonnegative integers. If d > mq1 + ms + m3, my > mo >

ms and the system E(d;ml,m§3,m§5) is non-special, then any standard system
L(d;m1,ma, M3, My, ..., Mg) is non-special.

For completeness, we will give a proof of this proposition in the next section.
In the paper we will prove that SHGH holds for » < 9 points using only
elementary facts based on linear algebra. In fact we must prove the following.

THEOREM 7

Let d, my, mo, ms be nonnegative integers. If d > mi +mo+ms and my > mg >

ma, then the system L(d;my, m3>, mX®) is non-special.

One of the main ingredients is the cutting diagram algorithm from [7]. Briefly,
it is proved that in order to show non-speciality of a given system it suffices to find
an appropriate finite set of points in N? enjoying some combinatorial properties.
To be precise, we must first define, for any finite D C N2, the system

E(D;mlv"'vmr)

of polynomials with support in D and with multiplicity at least m; at p;, j =
1,...,r. Formally, we identify N? with monomials in K[X,Y]

N? 3 (z,y) — X°YY € K[X,Y]
and put

L(d;my,...,m,)={f € K[X,Y]: supp(f) € D, mult, (f) >m;, j=1,...,k}.
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The set £L(D;my,...,m,) is a K-linear subspace of K[X,Y]. We say that conditions
in L(D;myq,...,m;.) are independent if

. " /m;+1
dlmKE(D;ml,...,mT)z#D—Zl< ]2 )
i=

The system L£(D;my,...,m,) is called empty if
dimg £(D;myq,...,m,) =0.

Observe that, by dehomogenizing and generality assumption, if conditions in
L(D;mq,...,m,) are independent for D = {(z,y) : x4+ y < d}, then
L(d;myq,...,m,) is non-special, similarly £(D;my,...,m,) is empty if and only if
L(d;mq,...,m,) is empty.

The cutting diagram algorithm is based on the following two theorems.

THEOREM 8 ([7], THEOREM 14)

Let D, D" C N? be finite, let my,...,m,,m},...,m’ be nonnegative integers. If
e DND =g,
e conditions in L(D;my,...,m,) are independent (resp. L(D;mq,...,m,) is
empty),
o conditions in L(D';m}, ..., m.) are independent (resp. L(D’;m},...,m.) is
empty),

there exists an affine function N?: f 3 (a,b) — qra+q2b+q3 € Q, q1,¢2,q3 €
Q such that f has strictly negative values on D and nonnegative values on
D',
then conditions in

L=LDuUD;my,...,mm.mi,....,m.)
are independent (resp. L is empty).

THEOREM 9 ([7], PROPOSITION 13)
Let D C N? be finite, let m; be a nonnegative integer. Then conditions in L(D;m1)
are independent if and only if D, considered as a set of points in Q?, does not lie
on a curve of degree my — 1. If #D = (mj;l) and conditions in L(D;mq) are
independent, then L(D;my) is empty.

The proofs are technical but use only simple linear algebra.

THEOREM 10 , ,
Let k, m be nonnegative integers. Then systems L(km;m**") and L(km+1;m>*")
are non-special.
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It is known that the above theorem holds. More generally, homogeneous sys-
tems with the square number of imposed base points are always non-special, see
[8]. Such systems, i.e., homogeneous with the number of imposed base points
satisfying some property have been widely studied. For example, systems of the
form £(d; m**") have been considered in [9]; this consideration has been extended
to systems of the form £(d; mX4h9k) in [1]; systems with the number of imposed
base points being nearly a square have been considered in [4]; systems of the form
L(d; mlxg,mg, .o.ymy) for my > mge > ... > m, (so called quasiuniform) in [14],
and systems of the form £(d;m*") for r > 4m? in [17].

The proof of Theorem 10 using toric degenerations can be found in [3]. We will
give a simple combinatorial proof in a sequence of lemmas. Both proofs exploit
the natural dissection of a two-dimensional simplex into k2 simplexes:

but the idea behind is slightly different. In the degeneration approach one controls
the behaviour of the system “along” the intersection of two meeting regions (given
always by weak inequalities). In our approach it is better to completely separate
regions by defining them with strict inequalities.

LemMmA 11
Conditions in the system L(D;m>'®) are independent for

D={(v,y) eN*: 2 +y<dm+1};
conditions in the system L(D;m>*?%) are independent for
D={(z,y) eN*: z+y<5m+1};
thus systems L(4m + 1;m>'%) and L(5m + 1;m*?5) are non-special.

LEMMA 12
Systems L(4m; m>10), L(5m;m>23), L(6m;m>3¢) and L(6m~+1;m*35) are empty.

LEMMA 13 , )
Systems L(km;m>*") and L(km + 1;m>**") are empty for k > 7.

Proofs of lemmas are postponed to the next section.
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2. Proofs

Proof of Lemma 2. To prove that dim(L — tL’) = dim L observe that multi-
plication by the equation of C' € L’ in tth power induces an isomorphism between
L —tL’' and L. By a straightforward calculation one shows that

t2L12 N t(_3d/ 4 2221 m;)
2 2 '

vdim(L — tL') = vdim L — tL - L' +
Moreover,

L? —ovdim L' = =3d + »_ml,
j=1
which completes the proof.

Proof of Theorem 5. Let L = L(d;mq,...,m,). Counsider the following pro-
cedure:

Step 1. Sort multiplicities in non-increasing order.

Step 2. If kK = d—mq1—mo < 0, then take d «— d+k, m1 «— mqi+k, mao «—— mo+k
and go back to Step 1.

Step 3. If K =d —my; —mo —ms3 < 0, then take d «— d + k, m; «— m; + k for
j=1,2,3 and go back to Step 1.

We finish with a system L’. We will show that in each step the dimension
does not change. Indeed, if &k = d — m; — my is negative, then each curve in
L(d;m1,ma,ms,...) is reducible and contains the line passing through pi, po at
least —k times. In other words, we have the isomorphism

e: L(d —k;mq — k,me — kyms,...) — L(d;my, ma, ms, . ..)

given by multiplication by the equation of the line in kth power. In Step 3 the
result follows from applying the Cremona transformation based on py, p2, ps to
our system (see eg. [11, Section 3]). This transformation induces the isomorphism

o: L(d —k;my — k,ma — k,ms — kymy, . ..) — L(d;my, ma, ms, my, . ..)

(the proof of this fact using only linear algebra can be found in [6, proof of The-
orem 3]; we use the fact that the system passed Step 2, so d — my; — mg > 0).
By an easy computation one can show that the virtual dimension does not change
in Step 3, while in Step 2 it increases by ]“22—+k Thus for £k < —2 we obtain L
to be either empty or special. In the second case, we know that after some Cre-
mona transformations there exists a multiple line in the base locus. Again, by
easy computations we can show that Cremona transformation preserves the inter-
section number, hence the multiple line from the base locus will be mapped, by
the reversed process, into a multiple —1-curve in the base locus of L. Therefore L
is either —1-special or enjoys the same properties (dimension, virtual dimension,
emptiness, speciality...) as L', which is standard.
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Proof of Proposition 6. Assume, by hypothesis, that Ly = L(d;mq,...,mg)

is special. We will show that L1 = L(d; ml,m§3,m§5) is special. Let ¢ be the

difference between the number of conditions in L; and the number of conditions

in LQ,
9
m1+1 m2+1 m3—|—1 mJ—I—l
= () () () -2 (™
Since each condition can lower the dimension by at most one, we have
dim Ly > dim Ly — ¢ > edim Ly — ¢ > vdim Ly — ¢ = vdim L.
Since for d > my + mso + mg, the virtual dimension

(m1 + mo —|— mg)(ml + mo —|— ms —|— 3)

vdim L1 > >
. mq (m1 —|— 1) —|— 3m2(m2 + 1) + 5m3(m3 —|— 1)
2
= (m1 — mg) + mg(ml — mg) + mg(ml —+ mo — 2m3)
>0,

we have vdim L1 = edim L; and consequently
dim Ly > edim L.
Before proving Theorem 7 we must prepare some helpful systems with inde-

pendent conditions.

DEFINITION 14
Let m be a positive integer. Define an m-rectangle to be the set

1 1 1 1
2. _ - _ = _ =
{(x,y)eN.a 2<:v<a+m+2,b 2<y<b—|—m 2}

or the set

1 1 1 1
{(x,y)eNQ: a—3 <x<a+m—§, b—§<y<b+m+§}
for some nonnegative integers a, b. Define an m-triangle to be the set
1 1 1
{(x,y) eN?: T>a-g, y>a= g, x+y<2a+m—§}
for some nonnegative integer a. The examples are shown on Figure 1.

Figure 1. Example of 4-rectangles and 4-triangle

LEMMA 15
Let T be an m-triangle, let R be an m-rectangle. Then conditions in the systems
L(T;m) and L(R;m*?) are independent and these systems are empty.
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Proof. Observe that there exists parallel lines ¢1, .. ., {,, such that #(T'N¢;) =
j. The proof for £(T;m) is completed by Theorem 9 and Bézout Theorem.

To deal with £(R;m*?) observe that R can be divided into two pieces Ry, Ra,
such that Ry is an m-triangle, while Ry is a rotated m-triangle. By Theorem 8
the proof is completed.

Proof of Theorem 7. Let D = {(x,y) € N> : z+y < d}. We want to show that
conditions in £(D;my, my> m}°) are independent. Take the following cutting of

D into three pieces:

1
Di={(wy)€D: y>mz+ms+s},

1 1
Dgz{(x,y)ED: y<m2—|—m3—|—§ and (m3+2)y+x>m§+3m3—§},

Dy = {(x,y) €D: (m3+2)y+x<mi+3mz— %}
By Theorem 8 it is enough to show that conditions in systems L£(Di;mq),
L(Do; mQX?’), L(Dg;m§5) are independent. Observe that, by easy computations,
an m-triangle with vertices (0, ma +ms+1), (m1 —1,ma+mg+1) and (0, m1 +
mgo + mg3) is contained in D;. Similarly, observe that an mo-rectangle with ver-
tices (0,ms + 1), (ma,ms + 1), (ma, ms + ma), (0,m3 + mo) and an mo-triangle
with vertices (mo + 1,ms3), (2mz,m3), (ma + 1,m3 + ma — 1) are contained
in Dy. Moreover, these two shapes can be separated from each other by an
affine line. For D3, we take three shapes — an mgs-rectangle with vertices (0, 0),
(ms — 1,0), (ms — 1,ms), (0,ms3), another mgs-rectangle with vertices (ms,0),
(2ms3,0), (2ms,m3 — 1), (mgz,m3 — 1) and finally an mg-triangle with vertices
(2m3 +1,0), (3ms,0), (2ms+1,m3 —1). By Theorem 8 and Lemma 15 the proof
is completed.

Figure 2. Example of divisions for m; =6, ma =5, m3z =4
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Proof of Lemma 11. The proofs can be easily read off from Figures 3 and 4.
The pictures are drawn for m = 3, but can be easily rescaled. Less obvious cuttings
are presented, the details are left to the reader. By € we denote a sufficiently small
positive rational number.

the same cutting

as for £(3m;m*?)

Figure 3. Divisions for £(4m + 1;m>*16)
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Figure 4. Divisions for £(5m + 1;m*2%)

Proof of Lemma 12. Emptiness of £(6m;m>3%) would follow from emptiness
of L(6m +1;m>3%). Again, the proofs can be easily read off from Figures 5, 6 and
7. Observe that if R C N? is contained in some m-rectangle, then £(R;m*?) is

empty.
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Figure 5. Divisions for £(4m;m>16)

the same cutting

as for £(4m;m*1%)

Figure 6. Divisions for £(5m;m>*?2%)

the same cutting

as for £(4m;m>16)

Figure 7. Divisions for £(6m + 1;m>*36)

Proof of Lemma 13. Emptiness of £(km; kaQ) would follow from emptiness
of L(km + 1; ka2). The first cutting, into upper and bottom part, is given by
the line y = m — % Since k — 1 > 6, we use induction to the upper part, cutting
it exactly as £((k — 1)m + 1;m**=D%)_ The bottom part

B={(z,y) eN?: z+y<km+1, y<m}
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gives the system L£(B;m*(¢~1)). We will cover B from right to left with one
m-triangle and (k — 1) m-rectangles of hight m. This allows to cover (k — 1)(m +
1) + m = km + k — 1 lattice points (x,0) € B, while #{(z,0) € B} = km + 2.

Thus we can entirely cover B and the proof is completed.

REMARK 16

There is no theoretical obstruction to make similar proofs for systems of the form
L(km+ko; ka2) for fixed kg. In fact, for k satisfying k& > ko+2 the induction step
(emptiness of £(km + ko;m**") implies emptiness of £((k + 1)m + ko3 m**+D%))
will work. One can even hope that for k’s satisfying k < K + 1,

K = max{k: vdim L(km + ko;ka2) > 0 for some m},

it is always possible to prove non-speciality by the presented method.
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R. Wojnar
Kinetic equation for a gas with attractive forces as
a functional equation

Abstract. Diffusion problems studied in the time scale comparable with time
of particles collision lead to kinetic equations which for step-wise potentials
are functional equations in the velocity space. After a survey of derivation of
kinetic equations by projective operator method, an attention is paid to the
Lorentz gas with step potential. The gas is composed of N particles: N —1 of
which are immovable; between those N — 1 immovable particles — scatterers,
particle number 1 is moving, and we describe its movement by means of
one-particle distribution function satisfying a kinetic equation. Solutions of
the kinetic equation for some simple potentials are given. We derive also
a kinetic equation for one-dimensional Lorentz gas, which is a functional
equation.

1. Introduction

General kinetic equations with convolution time integral (hence nonlocal in
time and non-markovian) were first derived and discussed by the Brussels group,
headed by Ilya Prigogine, [1]. Different correlation functions used to describe
non-equilibrium processes satisfy such equations, [2] — [7].

A comparison of the theory of the Brussels group, with the Bogolyubov theory,
then being developed by the Uhlenbeck group was given in a paper by Stecki and
Taylor, [8]. These results were next extended and ordered by the Brussels group,
[9].

Robert Zwanzig, [4, 10] described a new method of derivation of kinetic equa-
tions. The main tool of this derivation is the use of projection operators in the
Hilbert space of Gibbsian ensemble densities. It was noted by Nelkin and Ghatak
that the Van Hove self-correlation function G4(r,t) for a dilute fluid is determined
by a linearized Boltzmann equation identical to that occuring in the theory of
neutron diffusion, [11].

The kinetic equation (KE) describing diffusion in time scale comparable with
time of the particles collision, is also a time convolution kinetic equation, which for
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a step-wise interaction potential takes form of a functional equation in the velocity
space.

We work in the framework of kinetic theory of a Boltzmann gas, with use
of statistical mechanics methods. The gas is composed of N particles, and the
problem discussed concerns the diffusion of a marked particle (number 1) amid
(N — 1) other classical dilute gas particles.

Applying to the Liouville equation the proper projection operator, a kinetic
equation for one-particle distribution function f(k, v1,t) is derived. Here k denotes
the Fourier vector variable (wave vector) after transformation of spacial coordinate
r1, which denotes the position of particle number 1. The vector v is the velocity
of this particle, while ¢ is a time. Function f(k,vy,t) is Fourier transform of
one-particle distribution function fs(r,v1,t), which represents the probability of
finding a particle at time ¢ at r with velocity vy, if the same particle was at time
t =0 at r = 0 with the given distribution of velocity vy, e.g. the Maxwellian.

Right-hand side of KE has a form of time convolution of a scattering operator
G = G(k,t) and function f = f(k,vy,t). It is valid not only for long times (in
comparison with time of collision, as it is in case of the Boltzmann equation and
in Brownian movement theory) but also for short times.

KE considered here was found previously by Jan Stecki, [12], cf. also [13, 14].
This is a time convolution equation for a gas which particles interact by attractive-
repelling potential with step dependence on distance. In such a case the phase
space consists of distincly separated regions and the kinetic equations is trans-
formed from a convolutive one into a functional equation.

1.1. Notation

The gas occupies volume V' and consists of N particles, numbered by indices i =
1,..., N, and m;, v; and r; are the mass, velocity and position of particle number
1, respectively. Cartesian coordinates of vector v; are denoted by vz, viy, vi» and
those of r; by LiyYiys -

The Maxwell distribution function of the velocity is denoted by

et = [ oo (- D)

Here the velocity modulus v; = [v;| is used and v} = v, + v}, + v,, while 37 =
kT with the Boltzmann constant kg and absolute temperature T'.
The temperature of an ideal gas is related to its average kinetic energy per

particle by the relation

3 3
= —kgT = —.
2"BT T o
The second law of thermodynamics states that any two interacting systems will
reach the same average energy per particle and hence the same temperature.
In equilibrium, the probability of finding a particle with velocity v; in the in-
finitesimal element dv; = [dv,,dvy, dv;.] about velocity v; = [vig, Viy, viz] is
o (V) dVigdviydvg, or o (vi)dv;.



Kinetic equation for a gas with attractive forces as a functional equation [93]

The interaction potential u;; between particles number ¢ and number j depends
on distance between these particles only:

uij = wij(|ri — ;).
Hence the total potential energy of the system
U= ulr-rh = Y Y ) = Y,
i<j i=1 j=i+1 1<J

where Tij = |rij| = |I‘i — I‘j|.

1.2. Physical meaning

The function f = f(k,vy,t) is related to scattering phenomena. Essential for
interpretation of incoherent scattering experiments is the Van Hove function

Gollr —rol 1) = {5 Zm —r)d(ri(t) = 1)) M

where
/ e PH( YavNarh  with Zy = / e P gvN arv

denotes the canonical average.

The function G(r,t) represents the probability of finding a particle at r at
time ¢ if the same particle was at r = 0 at time ¢ = 0.

Van Hove law for incoherent scattering reads

1

Se(k,w) = Py /exp[ (kr — wt)|Gy(r,t) drdt = % /exp(—iwt)]s(k,t) dt,

Ii(k,t) = /exp(ikr)GS(r,t) dr
cf. [15] - [19]. On the other hand, we have

Lok, ) = / £, v1, ) dvi

and I4(k,t) is the Fourier transform of Gs(r,t) and function f(k,vy,t) can be
found by kinetic theory. Namely, it satisfies the following linear KE

¢
((’;?t —|—sz1 (k,vy,t /g fk,vi,t—71)dr (2)
0

where

fk,vy,t) = / dry e km / dvN " Fn (1)
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and
FN (t) = e_tKN FN (0)
with
Kk e U
Fn(0) =™ ppr(v1) om(vn) 0 (3)
Here U =37, _, uij and

is the N-particle Liouville operator.
Normalization factor in (3)

Q= /e_ﬁU dr’,  where drV = dridry .. .dry
\%

is known as the partition function or sum-over-states.

The partition function @ is related to thermodynamical properties of the sys-
tem, cf. [20], [21], [22]. With a model of the microscopic constituents of a system,
one can calculate the microstate energies, and thus the partition function, which
will then allow us to calculate all the other thermodynamical properties of the
system.

Research in the prediction of binding affinities has been a continuing effort for
more than half a century, [23, 24]. An important application of the configuration
integral lies in the development of computational models for the ligand-receptor
binding affinities. Their study constitutes the most important problem in compu-
tational biochemistry. Especialy, the prediction of absolute ligand-receptor binding
affinities is essential in a wide range of biophysical questions, from the study of
protein-protein interactions to structure-based drug design.

In a ligand-receptor binding, a ligand is in general any molecule that binds to
another molecule; the receiving molecule is called a receptor, which is a protein on
the cell membrane or within the cell cytoplasm. Such binding can be represented by
the chemical reaction describing noncovalent molecular association A + B « AB,
where A represents the protein (receptor), B the ligand molecule, and AB the
protein-ligand complex. The change in the Gibbs free energy can be expressed as
a ratio of configuration integrals, [25].

An alternative form of the kinetic equation (2) is

(—iz 4+ ikvy) f(k,v1,2) — f(k,v1,t =0) = G(k, 2) f(k, v, 2) (5)

where f(k,vi,z) is the Laplace transform of f(k,vi,t) defined as f(z) =
JoT e f(t)dt. We use the same letter for a function and its Laplace transform,
but it does not lead to confusion, because all arguments are explicitly written.

If mi >my, i=2,3,..., N we have the Brownian diffusion of particle num-
ber 1. If my < my, i« = 2,3,...,N - the Lorentz gas is dealt with, cf. also
26, 27].
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1.3. Diffusion in biology

For big times and for isotropic medium the Van Hove function G5 = G4(r,t)
is given by a solution of the classical Fick’s equation, namely,

1 —r2
———edDt
8(mDt)z

Gs (ru t)t—»oo =

)

where D denotes the (macroscopic) diffusion coefficient. After tranformations we
get Is(k,t)i—o0o = exp(—k?Dt) and

1 Dk?
Ss(k,w) = ———————.
(ko) = = F DR
Hence
. w?Ss(k,w)
D= Ly lim w——73
We have also
1 9%I4(k,t)

500 6t Ok2

In spite of passing to the limit, residual information about the dynamics of system
is still contained in the diffusion coefficient D. For example, in the random walk
diffusion the coefficient D = 5, with h and 7 being the length and duration of
one step in the walk, respectively.

The laws of diffusion (in which coeflicient D is used) were discovered in 1855
by physician and physiologist Adolf Eugen Fick, [28] — [30].

At the beginning of the 20th century, Einstein and Smoluchowski, indepen-
dently, have found relation between macroscopic diffusion coefficient D and the
Brownian movement phenomenon, explaining it in microscopic, molecular terms,
cf. [31, 32]. The phenomenon was first explicitly described in 1828 by the physi-
cian and botanist Robert Brown, who observed in aqueous suspensions of pollen
grains from Clarkia pulchella a rapid, continuous, short-range motion of small in-
cluded particles that “arose neither from currents in the fluid nor from its gradual
evaporation, but belonged to the particle itself”, [33, 34].

After discovery of Fick’s laws, in physiology dominated the opinion that dif-
fusion laws should explain all problems of metabolism. It was widely believed
in XIX century that diffusion is responsible for such organic processes as gas ex-
change in the leaves of plants, gas exchange in the lungs of animals, the uptake of
the products of digestion from the gut.

However, the development of knowledge on the cell structure has permitted to
gather an abundant evidence on inadequacy of diffusion theory for explaining much
of the movements of substances in organisms, studied in biology and medicine. The
Fick diffusion alone could described physiological processes only in dead tissues.

In 1912 medical doctor and physiologist, Otto Heinrich Warburg published
a discovery: oxygen utilization requires structural elements in the cell — a solid
phase. These structures, now recognized as mitochondria, had been described by
light microscopists two decades before Warburg’s publication, and 80 years later
were found to be places where Brownian motors work, [35].
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The assumptions of the Einstein—-Smoluchowski model are not even approxi-
mately met in vivo. The cell contains a highly concentrated and heterogeneous
assembly of deformable, interacting and inelastically colliding particles; much of
the solvent (water) is bound to solid structures which, although not necessarily
long-living, have huge surface areas; and in any case the conditions only tend
to thermodynamic equilibrium after death. The model representing the “micro-
scopic” aspect of diffusion theory assumes a dilute, homogeneous suspension of
rigid, non-interacting and elastically colliding particles, a monophasic system with
the solvent (largely) unbound, and a tendency towards equilibrium. Also, the
model assumes that there are no net solvent movements, and this is undoubtedly
relevant in intracellular transport, [36, 37], also [38].

After the idea arose that the cell internum does, at least in part, behave as a gel,
the diffusion through gels became an important subject of study. Investigations
of diffusion in gels put a question on applicability of Fick’s laws in the field.

Bigwood has shown in 1930 that not only is diffusion in gels highly dependent
on the absolute concentration of diffusing substance (in contrast to the classical
linear Fick’s theory that diffusion rates depend only on concentration gradients),
but that it is both slow and unpredictable, particularly when the gel is made of
protein, as the gel state of the cell internum should be, cf. [39, 40]. It became
clear then that in description of biological cell extreme order has to be reconciled
with a fluid anatomy. Two kinds of intracellular transport are possible: one, which
accounts for the movements of macromolecules and assemblies; and second, which
will account for the movements of small molecules and ions, [41].

In 1949 Hans Ussing conducted investigations with use of radioactive tracers
and gave the systematic molecular level account of a “secretion” process in biology,
as an opposite to the “diffusion” description. Ussing defined the term “active
transport”; which means the creation of a genuinely “uphill” concentration gradient,
cf. [42, 43]. Active transport is now an accepted part of biological knowledge, and
individual active transport mechanisms are frequently objects of research.

In 1950 BBC lecture J.Z. Young concluded: the more we come to know of
the flux of chemical changes in the body, the more one great weakness of the
machine analogy stands out. The concept of a dynamic organization, such as that
of a whirlpool, demands a consideration of time — of before and after and of gradual
development and change of pattern, but the machine models of physiology allow
no place for this element. In the tissue spaces, as well as inside the cell, there is
fluid circulation among solid-state elements, [44].

The diffusion concepts persisted for a long time in description of respiratory
processes. Until now, the method of “diffusion capacity” is practicised as a mea-
surement of the lungs ability to transfer gases. Oxygen absorption may be limited
by diffusion in circumstances of low ambient oxygen or high pulmonary blood
flow. Carbon dioxide is not limited by diffusion under most circumstances. The
“diffusion capacity” is part of comprehensive test series of lung function called pul-
monary function testing. It is known, however, diffusivity estimates are seriously
problematic even with modern equipment. Longmuir wrote: “If simple diffusion
is the sole mechanism of tissue oxygen transport as proposed by Krogh (1919),
it is difficult to see how acclimatization could occur without a reduction in the
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diffusion coefficient. The kinetics of oxygen transport cannot be explained by pas-
sive diffusion alone; the search for other mechanisms led to the observation that
all kinetic data could be explained by channels in cells along which the oxygen
diffuses faster than in water, [45, 46].”

The cell internum is far more complex organised right down to the molecular
level than was hitherto appreciated, to the point where ideas of a relatively solid-
state chemistry model have occoured. The flow theory of enzyme kinetics — a role
of solid geometry in the control reaction velocity in live animals. This contrasts
sharply with the former concept that diffusion is the way by which molecules
interact within an aqueous solution of the cell internum, [47] — [52].

In living systems, most molecules do not generally move, but are moved, when
we consider what would happen if everything depended upon Brownian motion
and the law of mass action. R.P.C. Johnson in 1983 recognised a grey area at the
molecular level when considering the movement of molecules within living cells:
“This is the region of scale where flow and diffusion are not clearly separated;
where the concepts of temperature and molecular movement overlap; where it is
not clear whether molecules move or are moved; where the ideas of active and
passive lose their meaning”, [53, 48], also [54] and [55].

Until now, biologists use the term “diffusion” in a twofold meaning. One is
Fick’s diffusion, and the second one is vernacular, for spreading process, when
“diffusion” is not adhered to a specific, defined scientific term. For an active
transport the term active diffusion is sometimes used, as an opposite to passive
(i.e. Fickian) diffusion.

The complication in the description of biological processes may be found in
application of the Smoluchowski diffusion with drift equation. In this equation an
aleatory aspect is coupled with deterministic. The drift force controls diffusion
and diffusion reflects the influence of thermal vibrations of the evironment on the
process.

All phenomena, biological also, are developing in given thermal conditions,
and the application of thermodynamics is inevitable. The “microscopic” aspect
of diffusion theory, is that random thermal motions of molecules in liquids are
respounsible for return of diffusion, particularly Brownian movement theories, into
contemporary biophysics.

Brownian or molecular motors are biological “nanomachinees” and are the es-
sential agents of movement in living organisms. A motor is regarded as a device
that consumes energy and converts it into motion or mechanical power. Adenosine
triphosphate (ATP) is the fuel for the molecular motors action. Many protein-
based molecular motors convert the chemical energy present in ATP into me-
chanical energy. The ATPase molecular motors are found in the membranes of
mitochondria, the microscopic bodies in the cells of nearly all living organisms, as
well as in chloroplasts of plant cells, where the enzyme is responsible for converting
food to usable energy, [56] and [57].

It was shown by Streater that the Smoluchowski equation for a Brownian par-
ticle potentially can be supplemented by an equation for the dynamics of the tem-
perature, so that the first and the second laws of thermodynamics are obeyed. He
considered also a model studied by David Smith, known as the dumbbell model,
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in which the Brownian particle is a two-level atom, and had shown that under
isothermal conditions, the free energy can be given a natural definition out of
equilibrium, and is a decreasing function of time, [58], also [59]. Smith has applied
his model to describe a myosin molecule, [60, 61], also [62] and [63].

Macromolecular particles playing a role in protein motors are heavy (Brown-
ian) in comparison with solvent (water) molecules, but are light (Lorentzian) in
comparison with mass of substratum (mitochondrium).

Another biological example in which the passive diffusion plays a role is pro-
vided by alimentation processes in cartilage, tissue which supplies smooth surfaces
for the movement of articulating bones. The cartilage is built of cells, called chon-
drocytes, producing a large amount of extracellular matrix composed of collagen
fibers, abundant ground substance rich in proteoglycan, and elastin fibers. Unlike
other connective tissues, cartilage does not contain blood vessels. The chondro-
cytes are fed by diffusion, helped by the pumping action generated by compression
of the articular cartilage or flexion of the elastic cartilage. Thus, compared to other
connective tissues, cartilage grows and repairs more slowly, [64].

The diffusion process appears in biology also as the property of homeostasis in
organisms.

Homeostasis (from Greek: homos, “equal”; and istemi, “to stand” lit. “to stand
equally”; coined by Walter Bradford Cannon) is the property of either an open
system or a closed system, especially a living organism, that regulates its internal
environment so as to maintain a stable, constant condition. Multiple dynamic equi-
librium adjustment and regulation mechanisms make homeostasis possible. The
concept came from that of milieu interieur that was created by Claude Bernard,
often considered as the father of physiology, and published in 1865.

With respect to any given life system parameter, an organism may be a con-
former or a regulator. Regulators try to maintain the parameter at a constant
level over possibly wide ambient environmental variations. On the other hand,
conformers allow the environment to determine the parameter. For instance, en-
dothermic animals maintain a constant body temperature, while exothermic ani-
mals exhibit wide body temperature variation. Examples of endothermic animals
include mammals and birds, examples of exothermic animals include reptiles and
some sea animals.

Most homeostatic regulation is controlled by the release of hormones into the
bloodstream. However other regulatory processes rely on simple diffusion to main-
tain a balance.

Homeostatic regulation extends far beyond the control of temperature. All
animals also regulate their blood glucose, as well as the concentration of their
blood. Mammals regulate their blood glucose with insulin and glucagon. These
hormones are released by the pancreas, the inadequate production of the two for
any reason, would result in diabetes. The kidneys are used to remove excess water
and ions from the blood. These are then expelled as urine. The kidneys perform
a vital role in homeostatic regulation in mammals, removing excess water, salt,
and urea from the blood. These are the body’s main waste products, [65].
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2. Projective operator method

The projection operator is introduced, [66],
fO
P = eikrl N /dVN_ldrN e—ikr1,
e (v1)
where
N 1
fx= HSDM(W)QG*W
i=1
is the equilibrium distribution function. We observe
PFy(t) = e'km if(k vi,t)
em(v)” 7
In particular
. 19 .
PFEN(0) = e — N f(k vy,0) =™ £} = Fn(0)
e (v1)
and
(1-P)Fn(0)=0.
Also
/ dvNlarN e P EN (1) = f(k, v, t).

The Liouville equation

%FN(t) = —KnFy(t)

with Kn given by (4), is now rewritten in the form

%[PFN(t)] — —PENPFy(t) — PEn(1— P)Fy(t)
and
%[(1 — P)EN ()] = —(1 = P)KNPFy(t) — (1= P)Kn (1 — P)Fy(t).
Hence
AN

t
= —PKNPFN(t) + PKn / e TUPIEN (1 - PYKNPFn(t —7)dr
0
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and finally

(% +ikv1)f(k,v1,t)

t

‘ . 0
= /va_ldrN e kP Ky / e TP KN gikry v (k,vi,t —7)dT
) om(v1)

it is a general form of KE, correct also for small times, compared to the time of
collision.

3. Density expansion
An alternative form of the kinetic equation (2) is

(—iz + ikvy) f(k,v1,2) = G(k, 2) f(k,v1, 2) + f(k,vi,t = 0),

where

_3
2_”) 23t
OBm

with f(k, vy, 2) being Laplace transform of f(k,vy,t)

ft=0)=pm(v1)= (

o0

f(2) = / 57 f(t) dt.

0

The scattering operator in (2)

, , 1
G(r) = /drNva_1 e_lkrlKNe_T(l_P)KN(l — P)K ek £, .
e (v1)
After Laplace transformation we get the equation
(—iz +ikv1) f(k,vi,2) — @um(v1)
- 1
_ d N*ld N _—ikry K
/V S o I g
ity IN
x (1 —=P)Kye"™ " —=—f(k,vy,z
S T E
which right-hand side can be written as
Gk, 2)f(k,vi,2) = /va’ldrN e*““lKNL L
’ T —iz1—L(1-P)Ky
1krq f]%
X(l_P)KNe 7][(1{,\’1,2)'

o (v1)
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The first terms of the expansion are

Gk, z) = / dvN " LdrN emikn { ! (KnKy — KnPKy)

iz
1 2
n (E) (KnKnKy — KnKEnPEx — KENPENEN + KnPENPKY)

AT R

1z on(v1)”

In the dilute gas approximation only linear terms with respect to p = % are
kept, and the following form of binary scattering operator is obtained

N -1 )
Giak,z) = Vi /// drydrodvy (—iz + ikvy )e ™

X /dt S G e_tKg) (—iz 4 ikvy)e™ e U (vg).
0

For k = 0 and z = 0 the scattering operator reduces to the Boltzmann scattering
operator. It also takes the Boltzmann form for k = 0, arbitrary z and sufficiently
high velocity v;.

4. Lorentz gas

The Lorentz gas corresponds to the case ma — 00, v3 — 0 and s (v2) — §(v2).
Only the velocity of particle 1 remains and is denoted by vi = v. The Lorentz
model is widely studied as a simple model of a crystal, cf. for example [67] — [78].

—_—

light particle / \
N SO

Figure 1. Spherical potential: hard core of radius b (black circle) and well (white

ring) with internal radius b and external radius a

The Lorentz gas was examined in [66] for the following case of repulsive — attractive
potential, see Figure 1,

u(r) =00 if r<b, u(r) =—up <0 if b<r<a, u(r)=0 if r > a,

where r is the radius in polar coordinates. Thus, the potential possesses spherical
rigid repulsive core of radius b surrounded by a well (b < r < a) of depth —uy,
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ug > 0. Scattering operator for this potential, for the dilute Lorentz gas has the
following form

Giaf(k,z,v) =i(—z + kv)g /dr e Pupps(v)e kT

, ‘ k
X /dt S G e_tKg)elk”i(—z + kv)m.
ou(v)
ty

The KE for three-dimensional Lorentz gas of N — 1 fixed rigid spheres with the
square-well attractive potential was given also in [66]. It is an integral (in con-
figurational space) and functional (in velocity space) equation for the unknown
distribution function ¢ (v) which links the values of ¢ (v) at 8 different values of
argument v.

5. Lorentz gas of rigid spheres with finite time of collision 7*

The potential of rigid sphere with rectangular well changes the time of interac-
tion of the light particle with scatterer, is contrast to the zero time of interaction
with the rigid sphere potential alone. To avoid additional consideration of scatter-
ing trajectory we accept the rigid sphere potential (R; = R2), in which, however,
the interacting particles remain connected for a certain time 7*. This time of
collision is negative in case of the potential well. In this case

N a?

G12f(k7 Z, V) = ’USOM(’U)VZ /dQ I:\I](ku Z, Vl)eiz‘r* - \IJ(k, Z,V) +1-— eiZT*},

where integration is performed over the full solid angle and

U(k,z,v) M
o (v)
We introduce the following notation
WGQU%:E‘El, i/dﬂ:fj’.
Kinetic equation takes the form
(—iz 4 ikv +eg )W — h = g5 'e™ (PU) 41 — ™7 .
Here h = §(v — v’) is the initial condition. Hence

Ealeim'* R . h+1— eiZT*
—iz+ikv + ey —iz+ikv +e5

Therefore the solution reads

—1 jiz7" izT” k
Ve (1 e )
—iz + ikv + ¢ kveq 1 —1iggz
R h_|_1_eiz‘r* h_|_1_eiz‘r*
X P— - — + — - — -
—iz +ikv + ¢ —iz +1ikv + ¢,
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For the hydrodynamic pole we have
—iz =gy " + kv cot[(cos 27* — isin 27 )kveg).

If the time of collision 7* = 0, KE equation becomes

. . 1 N a2
(—iz+ikv+e; )P —h = WM(U)VZ Q.
This is the classical Boltzmann equation for the Lorentz gas. Its solution has the
form discussed by Hauge in [78].

6. One-dimensional KE

The 3 dimensional dynamics, even for the Lorentz gas, is still too complicated
to be effectively solved and for this reason we limit ourselves to 1-dimensional
model. It posseses some important features of 3-dimensional case, but mechanics
of the light particle motion is more simple. It may be expected that the obtained
results will have a more general meaning. Such procedure is often used, see [79] —
[82].

The one-dimensional considerations permitted Fermi, Pasta, Ulam and Mary
Tsingou to find that the behaviour of a 32-atom chain is quite different from
intuitive expectation. Instead of thermalisation, a complicated quasi-periodic be-
haviour of the system was observed, [83], also [84].

Morita and Fukui considered the heat transfer in one-dimensional gas, [85],
while Kac [86] — [89] and McKean [90] considered one-dimensional analogues of
the linear Boltzmann equation.

potential
U1
light particle
A% v I1I II I
-a -b 0 b a X
_u 0

Figure 2. Configurational space of one-dimensional model. Light particle moves
in potential of a well of depth —up < 0 and a repulsive core of hight u; > 0
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The Lorentz gas is examined here in one dimension, for the case of attractive
— repulsive potential

Uur, |$| < b7
u(zr) =4 —up <0, b<|z|<a,
0, |z] > a.

The quantity —ug, with ug > 0 is the depth of the potential well, while u; > 0
denotes the height of the potential barrier, see Figure 2.

6.1. Kinetic equation in 1 dimension
The KE has still structure of (5) but vectors are now one-dimensional
(i + ko) f (K, 0, 2) — (0,8 = 0) = G(k, 2)f (K, v, 2).

Scattering operator for the dilute Lorentz gas of N particles in one-dimensional
segment L, (—£ <z < £), has the following form

Gk, 2)f(k,v,2) =i(—z+ kv)% /dw e Pupp(v)e ke

T B B . k,z,v) (6)
X dt e’th e tKo e tKg elkzl 4+ kv f( )
/ ( Jeri(- 4 ko) L2

Here K> is the two particle Liouville operator, see (4), for N = 2. In calculations
L — oo but % is kept constant. Such procedure is known as the thermodynamic
limit (one increases the volume together with the particle number so that the
average particle number density remains constant). Thus, integration with respect
to = extends from minus to plus infinity. Below we put

f(k,z,v)

U(v) = ot (0)

The phase space is now two-dimensional only: one-dimension for positions and
another for velocities of the light particle. The position space is divided into 5
regions, from I to V, see Figure 2, while the velocity space in each of these regions
is divided, in dependence of kinetic energy of the particle (whether it permits for
bounded or unbounded motion of the particle).

6.2. Bounded motions

The bounded motion of particle occurs in regions of the potential well, IT and
IV, only, if simultaneously the particle kinetic energy is less than the depth of the
well ug.
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Regionsb < x < aand —a <z < —b

Let us consider bounded motion of our particle in segment b < x < a with
velocity v < %uo. The position of particle along its trajectory is given by
relation

e g = p(—t)
=z —vtn(ty —t) — vty +0'(t — t1)|n(t — t1)n(ta — t)
— [vt1 + 0 (t2 — t1) + 0" (t — t2)n(t — t2)n(ts — t)
—[vt1 +0'(t2 — t1) + 0" (t3 — t2) + 0" (t — t3)]n(t — 73)n(ts — 1)
— o= oty + 0 (b2 = t1) + 0" (t3 — to) + 0" (ta — t3) + 0" (t5 — t4)
+ o+ 0 (tang — tan) + 0V (= tan ) In(t — Tanga)-

Similarly, the velocity is given by

e 2y = p(—t)
=ty —t) +0'(t = t)n(ta —t) +0'(t — t1)n(t2 —t)
+ 0"t —t2)n(ts —t) +0""n(t —t3)n(ts —t)
4 0Pt — a1 )n(ten — t)
+ 0@t — ton)n(tangr —t) + @ FI(E — tapgr).

In the equation above we have

2n)

v =—v, V=0, 0% =y =y

and 2n denotes the number of full periods performed by the particle in the time
t. Moreover, t,,, m = 1,2, ... denotes the moment of bouncing from the wall of
the well. The instant of the first collision of the particle with wall is given by

=22 (7)

and the next instants satisfy relations

a—b

tz_tl:t3_t2:-..:tm—tm_1:7':
|v]

Differences between the subsequent moments are identical and equal 7. Therefore
the period of bouncing is 27.

For the time being we replace the infinity in the upper limit of time integral in
(6) by T', and next extend T" — oo and n — oo.

(G(k,2)f(k,v,2))r14

a to
— Z(—Z + kv)feﬁuo ©or (1)) / dr elkx{ /dt el(erkv)teflevtli(_Z _ k’U)t\I/(—U)

b t1
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t3
4 /dtei(27k’v)tefik[’ut17’[}(t27t1)7’0t2]i(_z 4 kv)t‘lj(v)
ta
ty
+ / dt 'Rtk vIsli(_y )t (—v)
t3
ts
+ /dtei(z—kv)te—ik[vtl—v(t4—t3)—vt4]i(_z_|_ kl})t‘lf(l})
ty
t2n
+... 4+ / dt ei(z+k”)te_ik[”t1+”t2"*1]i(—z — ku)t¥(—v)
t27171
ton+1
+ / dt ei(z—k'u)te—ik[vt1 —’U(tgn —tgnfl)—vtgn]i(_z + k’U)t‘I](’U)
ton
T
+ / dt ' HEVte IRVt li(—y — )t W (—v)
ton+1
T

— /dt ekt (s kv)t\I/(v)}.
31
We take n so large that
T —topt1 <T.

We integrate at first with respect to ¢, and next with respect to z. Variable x is
found only in time of the first collision t; = ””T’b, cf. (7). After integration and
passing with n to infinity, there appear series ot type

1

= for n — oo.
1— ezz2‘r

1+€iZ2T+€iZ4T—|—...—|—eiZ2nT—|—...

Finally we find the following KE
(—iz 4 ikv)¥(v) — h(v) = C[¥(—v) — T(v)]
with
f(k,v,t=0)
om(v)

Remark that C' is even in v. The solution of KE reads
(—iz —ikv + C)h(v) + Ch(—v)

—22 — 220 + k202 ’

Identical relation describes the bound motion in segment —a < x < —b, with

1 — 2e"7 cos(kvr) + €7 4

ug
1 — et27 '

h(v) = and C = %|v|

U(v) =

velocity v < %uo.
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6.3. Unbounded motions

The phase subspaces of bounded and unbounded one-dimensional motions of
the particle are separated by the value of its kinetic energy, in the dilute gas
approximation. The particle once trapped in bounded motion, persists in it forever,
and a particle in the phase subspace where unbounded motion occurs can never
become bounded.

6.3.1. Regionl:(a < x < 00)

The particle which is at the time ¢ = 0 in this region is subject to 3 accelerations
if its kinetic energy is less then the height of the potential barrier u; (Case IA) or
4 accelerations if it is higher (Case IB).

Case lA:if0 < v < %ul we have

a(—t) =z —vtn(ty —t) — [vty +0'(t — t2)n(t — t1)n(ts — 1)
= [ty + 0 (ta — t1) + 0" (t = t2)]n(t — t2)n(ts —t)
— [ty + 0 (ta — t1) + 0" (t3 — t2) + 0" (t — t3)]n(t — t3)

and
v(—t) = vn(ts —t) + v'n(ta — )n(t — t1) + 0" 'n(ts — t)n(t — t2) + v"'n(t — t3)

with

2
1)/ — i ,UQ + _UO; ,U// — _v/7 UW = —0 (8)
|v] m
and
T —a a—2b a—2>b a—2b
h=—, te=ti+— 5, t3=tot+—F =01 +2—+
|v] V| V'] [v']

denote the moments of subsequent collisions. As before (Section 6.2), the position
variable x is hidden in ¢;.

After straightforward calculations we get the part of right hand side of (6)
linked to this subregion

N i(z—kv') 9452
Gfaa = Thlen ) {[1 -0 ww)

+ [1 = RO STy (—of) 4T W (—0) - W(0) |

Case IB:if v > %ul we have

a(—t) = o —vin(ty —t) — [vtr +0'(t — t1)]n(t — t)n(t2 — 1)
— [ty + 0 (t2 — t1) + 0" (t — t2)In(t — ta)n(ts — t)
— [vty + 0 (t2 — t1) + 0" (t3 — t2) + 0" (t — t3)|n(t — 73)n(ts — t)
— vty + 0" (b2 — t1) + 0" (t3 — t2) + 0" (ts — t3) + 0" (t — ta)]n(t — t4)
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and
v(=t) = on(ts —t) + v'nlta — t)n(t — t1) + v n(ts — t)n(t — t2)
+ 0"t — )n(t —t3) + "0t — ta)
with
2 2
= 1\/v2 + —ug, V' = 1\/v2 ——uy, V=, V" =vw 9)
v m [v] m
and

—-b 2b a—
> t3:t2+ﬁ la=t3+ ——

In this subregion

Gfus) = %Ivle(v) { [1 — el )_ﬂ [1 4 iR

—b

+ [1 —e 7w (")

- |:1 - ei(sz'u )2"1 1‘7 i(z—kv'") ‘3})/‘ :| \I/(’U)} .

i(z+k'u//)‘u,, :| i(z—kv')

6.3.2. Regionl:b < xz < a

The bounded motion in this region was described in Section 6.2.

The particle which is at the time ¢ = 0 in this region and has kinetic energy
higher than the depth of the well ug, is in an unbounded motion and has undergone
2 accelerations if its kinetic energy is lower than the hight of potential barrier u,
(Case IIA) or 3 accelerations if its kinetic energy is higher than the barrier (Case
IIB).

L 2 2
Case llA:if |/ =u; > v > |/ =up we have

x(—t) =x —vtn(ty —t) — [vt1 +0'(t — t1)|n(t — t1)n(tas — t)
— [vty + ' (ta — t1) + 0" (t — t2)]n(t — t2)

and
o(=t) = vty — t) +v'ntz = )yt — 1) + "9t - t2)
with
v =—v, V' = Y v2—zuo and tl:x—b, tg—tl—i—a—_b
v m |v] v
Now

N —
Gfura = f|v|eﬁ“°cpM(v) {1 — o] }

{{1 _ ei(z-i—kv)a;‘b}\ll(_v) 4 ei(z+kv)17*f’q}(vn)) _ \I,(U)} '
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Case lIB: if v > —u1 we have

a(—t) =z —vtn(ty —t) — vty + 0" (t = t1)|n(t — t)n(tz —t)
— [vt1 + 0 (t2 — t1) + 0" (t — t2)In(t — t2)n(ts — t)
— [vty + 0 (t2 — t1) + 0" (t3 — t2) + 0" (t — t3)|n(t — 73)

and
v(=t) =vn(ty —t) +v'n(ta — )t —t1) + 0"t —ta)n(ts —t) + 0" n(t — t3)

with

2
\/ uo +up), ' =v, V= e - —up (10)
" Tl |v] m
and
z—0b 2b a—2b
1= , o=t +— t3g=t2+
v |vr] v
Now

Gfuis) = % o] € o (v) [1 - ei(z_kv)a‘%‘b}
% { [1 z(z kv’ )ﬁ}\IJ(v/) 4 ei(szv’)%ei(szv)a;‘b\Ij(vm)
+([1—ei( ko) } =k )2 —1) ‘I’(v)}.

6.3.3. Regionll: —b < x <b

The particle being at ¢ = 0 in this region, has undergone 2 accelerations. The
time dependence of its position and velocity is the following

x(—t) = x —vin(ty —t) — [vty + ' (t — t1)]n(t — t1)n(ts — t)
— [vty + 0" (t2 — t1) + 0" (t — ta)|n(t — ta)

and
v(—t) = vn(ty —t) + v'n(ta — t)n(t —t1) + 0"t — t2)
with
2 2
Vo= o (g ), o = oy [o? 4+ (11)
o] m |v] m
and
T +b a—b
t = , ta=t 4+ —.
|v] V']
Now
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6.3.4. RegionlIV: —a < x < —b

The particle which is at the time ¢ = 0 in this region and has kinetic energy
less than the depth of the well, is in the bounded motion (see section 6.2). In the
opposite case, the particle has undergone 1 acceleration.

Ifo> %uo we have

z(—t) =z —vtn(ts —t) — [vt1 + V(¢ — t1)n(t — 1)

and
v(=t) = vn(ty —t) +v'n(t —t1)
with
2
o =2 v2 — Zug and tl_:v—i—a
|v] m |v]
Then

a—=b

Gl = T lolon ()1 - R | [00) — W)

6.3.5. RegionV: —oco < x < —a

In this region the potential vanishes and operators exp(—tKs) and exp(—tK>)
are identical, and contribution of this region to the integral operator G is zero.

7. Kinetic equation in 1 dimension

We gather all contributions to the scattering operator found in the previous
section to get KE for unbounded motions (v? > %uo). At first we introduce

common definitions of velocities appearing in the equation. These are

2 2
v = |%|\/v2 - E(uo + 1) for v* > E(UO +u1)  cf. (10)
2 2
Vg = |%| v2 — 1 for v* > poel} cf. (9)2
2 2
vg = v 02— Zug for v2 > Zug cf. (10)3
v m m
2
vy = v v2 4+ —ug cf. (8)1
|v] m
v 2
vy = m ’1)2 + Eul cf. (11)2
_ v 2.2 f. (11
o |v|\/v o (w0 +u) of (1

in the form
(—iz + ikv)¥(v) — h(v) = G¥(v)
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and
G¥(v)
_ %lﬂw%@) {Gf([[[) + Gf(IV)

2 2
+n(v* < Eul) (Gf(IA) =+ Gf(HA)) + 77(02 > Eul) (Gf(IB) =+ Gf(HB))}

or

g (v)

= ol [ere (1 B [l )
+ [1 - e“*“*’“’ﬁ)ﬁ} U (vg) — \I/(v)} + efuo [1 - e“z—kv)“%b} [0 (v3) — W(v)]
T n(zul _ Uz){ [1 B ei(z—km)fv}b} U (vy)
+ [1 ey wu} SRR g () + 2Tl W (—0) — ‘Il(v)}
4 efuo [1 — g7 iEHkY) alwb}
<{|1- ei<z+’“”>”2wb]\y(—v) + T g (—ug) — W (v) }
(e — —u1 {[ ][1+ei(z_m)%eaz—m)%;?}‘I,(M)
+ [T R )
o {1_61@ kv4)2‘v4l" i(z— kv2)‘ul’2|}\1/(v)}
1 oPuo [1 _ eilz=kv) a‘;‘b] { {1 _ ile—ku) 2 } en)
T ei(z—kvl)%ei(z—kv)%b U (vs)

4 ({1_ez(z kv) o p } i(z—kv) 22y 1) \I/(v)}}

For k,z — 0, it is for the long waves and low frequencies, the scattering operator
of our KE changes to the Boltzmann operator

GU((v) = %Ivl [W(=v) = ¥(v)]. (12)

Our scattering operator takes also the form of the Boltzmann operator for suffi-
ciently high velocity v, if the time of collision of light partile with heavy particle
of crystal can be neglected.

From mathematical point of view, we see that our KE generates an infinite
sequence of functional equations. Its solution is a problem for the next publication.
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8. Conclusions

We have analyzed KE valid for a dilute Lorentz gas with short range attraction
potential and have given the explicit forms of the scattering operator for different
forms of potential, for which some exact solutions can be found. For & = 0 and
z = 0 operator reduces to the Boltzmann scattering operator. Thus our approach
enlarges the possibility of description of diffusion for the case when time of particle
collisions is not negligeable. The KE for light particle diffusion in one-dimensional
Lorentz gas was also derived. The solution of this KE will be discussed later.

The common feature of the obtained kinetic equations is that they link the
values of the probability density Fourier-Laplace transform in different points of
the velocity axis. Therefore these equations are the functional equations, [91, 92].
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The Thirteenth International Conference on Functional Equations and Inequal-
ities was held from September 13 to 19, 2009 at the Hotel Tatry in Male Ciche,
Poland.

The series of ICFEI meetings has been organized by the Institute of Mathemat-
ics of the Pedagogical University of Cracow since 1984. This year the Organizing
Committee consisted of Janusz Brzdek as Chairman, Pawet Solarz, Janina Wier-
cioch, Wtladystaw Wilk, and Krzysztof Ciepliniski, who also acted as Scientific
Secretary. The help of Jacek Chmielinski, Marek Czerni, Zbigniew Le$niak and
Jolanta Olko is acknowledged with thanks.

The Scientific Committee consisted of Professors Dobiestaw Brydak as Hon-
orary Chairman, Janusz Brzdek as Chairman, Nicole Brillouét-Belluot, Jacek
Chmielinski, Bogdan Choczewski, Roman Ger, Hans-Heinrich Kairies, Léaszlo
Losonczi, Zsolt Pales and Marek Cezary Zdun.

As usual, the conference was devoted mainly to various aspects of functional
equations and inequalities. A special emphasis was given to the stability of func-
tional equations. A Special Session in honor of the 100th anniversary of the
birthday of Stanistaw M. Ulam, devoted to this topic and chaired by Professor
Themistocles M. Rassias, was held on Tuesday, September 15.

The 76 participants came from 10 countries: Austria, France, Germany, Greece,
Hungary, Israel, Italy, Romania, Russia and Poland.

The conference was opened on Monday, September 14 by Professor Janusz
Brzdek — Chairman of the Scientific and Organizing Committees, who welcomed
the participants in the name of the Organizing Committee and read a letter to
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them from Professor Wladystaw Blasiak, the Dean of the Faculty of Mathematics,
Physics and Technical Science of the Pedagogical University. Opening address was
given by Professor Jacek Chmieliniski, the Director of the Institute of Mathematics.
Professor Bogdan Choczewski conveyed best regards for the participants from the
Honorary Chairman of the ICFEI, Professor Dobiestaw Brydak. The opening
ceremony was followed by the first scientific session chaired by Professor Roman
Ger and the first lecture was given by Professor Gian Luigi Forti. Altogether,
during 26 scientific sessions 3 lectures and 67 talks were delivered. They focused
on functional equations in a single variable and in several variables, functional
inequalities, stability theory, convexity, multifunctions, iteration theory, means,
dynamical systems and other topics. Several contributions have been made during
special Problems and Remarks sessions.

On Tuesday, September 15, a picnic was organized. On the next day afternoon
participants visited Zakopane, the “Winter Capital” of Poland. The excursion
included a walking tour to Strazyska Valley, Sarnia Skata and Bialego Valley in
the Tatra Mountains. In the evening the piano recital was performed by Marek
Czerni and Hans-Heinrich Kairies. On Thursday, September 17, a banquet was
held. On the following day a Flamenco Evening was hosted by Malgorzata Drzal
(dance & vocal), Grzegorz Guzik (guitar) and Jagoda Romanowska (dance).

The conference was closed on Friday, September 18 by Professor Bogdan Cho-
czewski. The 14th ICFEI will be organized in 2011.

The following part of the report contains abstracts of the talks (in alphabetical
order of the authors’ names), problems and remarks (in chronological order of
presentation) and a list of participants (with addresses).

Abstracts of Talks

Roman Badora Stability of some functional equations

Let X be a group and let A be a finite subgroup of the automorphism group
of X (N = card A and the action of A € A on = € X is denoted by Az). We study
the stability of the following functional equations

% d o fa+xy) = f@)gly) +hly),  wyeX,
AEA

© 3 f 4 M) = f@)ge) £ he),  myeX
AEA

(f,9,h: X — K € {R,C}), which cover Jensen’s functional equation, Cauchy’s
functional equation, the exponential functional equation, the functional equation
of the square of the norm and d’Alembert’s functional equation.

Anna Bahyrycz On systems of equations with unknown multifunctions

Let (G, +) be a grupoid, T be a nonempty set. Inspired by problem posed by
Z. Moszner in [1] we investigate for which additional assumptions putting on the



13th International Conference on Functional Equations and Inequalities [119]

multifunctions Z(t): T — 2¢ which satisfy condition
Uzw=¢
teT

and system of conditions

Geer (030 #0) = ( 2009+ () 2070 €  2009©), )
teT teT teT
where Z(t)! := Z(t), Z(t)° := G\ Z(t) and i(t),j(t): T — {0,1} are the arbitrary
functions not identically equal to zero, the inclusion in the above conditions (1)
may be replaced by equality, obtaining the system of equations with unknown
multifunctions.

[1] Z. Moszner, Sur la fonction de choiz et la fonction d’indice, Ann. Acad. Pedagog.
Crac. Stud. Math. 4 (2004), 143-169.

Szabolcs Bajak Invariance equations for Gini and Stolarsky means
(joint work with Zs. Pales)

Given three strict means M, N, K: Ri — R, we say that the triple (M, N, K)
satisfies the invariance equation if
K(M(I,y),N(.I,y)) :K(Iay)v $,y€R+

holds. It is well known that K is uniquely determined by M and N, and it is
called the Gauss composition K = M ® N of M and N.

Our aim is to solve the invariance equation when each of the means M, N, K
is either a Gini or a Solarsky mean with different parameters, thus we have to
consider four different equations. With the help of the computer algebra system
Maple V Release 9, we give the general solutions of these equations.

Karol Baron On Baire measurable solutions of some functional equations

We establish conditions under which Baire measurable solutions f of

U, y, [f (@) = f(W)]) = ®(z,y, fx+01(), - 2+ on(y))

defined on a metrizable topological group are continuous at zero.

Svetlana S. Belmesova On the unbounded invariant curves of some polynomial
maps
(joint work with L.S. Efremova)

The unbounded trajectories of the quadratic mapping Fa(z,y) = (zy, (v —2)?)
in the plane R? has been studied in [1].

In this work we deal with the one-parameter family of the quadratic mappings

F#(xvy) = (Iya (I - /L)2)a (1)

where (z,y) € R?, u € (0,1]. It is proved the existence of the unbounded invariant
curves for the mappings (1) for every u € (0,1].

[1] S.S. Belmesova, L.S. Efremova, On unbounded trajectories of a certain quadratic map-
ping of the plane, J. Math. Sci. (N. Y.) 157 (2009), 433-441.
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Mihaly Bessenyei On a class of single variable functional equations

In the last few years, functional equations have had a growing importance
in competitions for secondary school students in Hungary (browse the issues of
Mathematical and Physical Journal for Secondary Schools). A typical exercise is
of the form

arfogi+...+anfogy,=nh,

where g, ag, h, [ are given functions (with appropriate domain and range) under
the assumption that g1, ..., g, generate a group under the operation of composi-
tion. The main results of the present talk guarantee that, under some reasonable
assumptions, the functional equation above (and also its nonlinear correspondence)
has a unique solution. The proofs are based on Cramer’s rule and the inverse-
function theorem.

[1] Mathematical —and  Physical —Journal for  Secondary  Schools (KdéMal)

(http://www.komal.hu).

[2] V.S. Brodskii, A.K. Slipenko, Functional equations, Visa Skola, Kiev, 1986 (in Rus-
sian).
[3] K. Lajko, Functional equations in ezercises, University Press of Debrecen, 2005 (in

Hungarian).

Zoltan Boros Inequalities for pairs of additive functions

Representation theorems are presented for pairs of additive functions, under
the assumption that a related expression is locally bounded. Let us assume that
f and g are real additive functions. If

1 1
—f(x) + g (—)
x x
is bounded on a non-void open interval or
af(z) + V1 - x2g(\/1 — 2)

is bounded on every compact subinterval of the open interval (0,1), then there
exists a real derivation d such that

f(x) =d(z) + f(1)x and g(z) =d(z) +g(1)x
for every real number x. However, if, for instance,
V1—a2f(z) —zg(V1—2?)

is bounded on every compact subinterval of the open interval (0,1), then f and g
are linear.

Nicole Brillouét-Belluot Some further results concerning a conditional Gotgb—
Schinzel equation
(joint work with J. Chudziak and J. Brzdek)

Let X be a real linear space and let M:R — R be a continuous and multiplica-
tive function. We determine the solutions f: X — R of the functional equation

fl@+M(f(@)y)f (@) f(W)lf (2 + M(f(2)y) = f(@)f(y)] =0
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which are continuous on rays, i.e., which are such that, for every € X \ {0},
f2: R — R defined by f.(t) = f(tz) is continuous.

In the particular cases where M =1 and M (z) = z, we obtain the continuous
on rays solutions of a conditional exponential equation and those of a conditional
Gotab—Schinzel equation.

These results extend those given by the authors at the 47th ISFE in Gargnano.

Janusz Brzdek On nonstability of the linear recurrence of order one
(joint work with D. Popa and B. Xu)

Let K be either the field of reals or the field of complex numbers, X be a
Banach space over K, (a,)n>0 a sequence in K\ {0}, and (b,)n>0 a sequence in
X. We present a result concerning nonstability of the linear recurrence

Yn+1 = AnlYn + by, n > 0.

This corresponds to the contents, e.g., of recent papers [1-5].
[1] J. Brzdek, D. Popa, B. Xu, Note on nonstability of the linear recurrence, Abh. Math.
Sem. Univ. Hamburg 76 (2006), 183-189.

[2] J. Brzdek, D. Popa, B. Xu, The Hyers—Ulam stability of nonlinear recurrences, J.
Math. Anal. Appl. 335 (2007), 443-449.

[3] J. Brzdek, D. Popa, B. Xu, Hyers—Ulam stability for linear equations of higher orders,
Acta Math. Hungar. 120 (2008), 1-8.

[4] D. Popa, Hyers—Ulam—Rassias stability of a linear recurrence, J. Math. Anal. Appl.
309 (2005), 591-597.

[5] T. Trif, On the stability of a general gamma-type functional equation, Publ. Math.
Debrecen 60 (2002), 47-61.

Pal Burai Some results on Orlicz-conver functions
(joint work with A. Hazy)

Let X be a linear space over the real field R, and C C X be an open, nonempty
cone. A function f:C — R is called s-convex (Orlicz-convex) if

fXr+ (1 =X) <Af(x) + (1= A)f(y)

forall z,y € C, A € (0,1], where s € [1,00) is a fixed number. In this talk we make
some examination in this class of functions.

Liviu Cadariu Remarks on the fized point method for Ulam—Hyers stability

In [1] and [2] some generalized Ulam-Hyers stability results for Cauchy func-
tional equation have been proved. One of the results reads as follows:

Let us consider a real linear space E, a complete p-normed space F' and a sub-
homogenous functional of order o ||(,*)||a: E x E — [0,00), with o # p. In
these conditions, the following stability property holds: For each € > 0 there exists
d(g) > 0 such that for every mapping f: E — F which satisfies

f @)+ fy) = f+yll, <o) - (@, y)lla; zy€E,
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there exists a unique additive mapping a: E — F such that

| f(z) —a(x)||, < e-|[(x,2)]|a, z € E.

We intend to outline the results concerning the generalized Ulam—-Hyers stabil-
ity for different other kinds of functional equations. Both the Hyers direct method
and the fixed point method will be emphasized and we shall consider functions
defined on linear spaces and taking values in p-normed spaces or random normed
spaces.

[1] L. Cadariu, A general theorem of stability for the Cauchy’s equation, Bull. Stiint.
Univ. Politeh. Timig. Ser. Mat. Fiz. 47(61) (2002), 14-28.

[2] L. Cadariu, V. Radu, On the stability of the Cauchy functional equation: a fized
points approach, lteration theory (ECIT’02), 43-52, Grazer Math. Ber. 346, Karl-
Franzens—Univ. Graz, Graz, 2004.

[3] D.H. Hyers, G. Isac, Th.M. Rassias, Stability of functional equations in several
variables, Progress in Nonlinear Differential Equations and their Applications 34,
Birkh&user Boston, Inc., Boston, MA, 1998.

[4] V. Radu, The fized point alternative and the stability of functional equations, Fixed
Point Theory 4 (2003), 91-96.

Jacek Chmielinski Stability of linear isometries and orthogonality preserving
mappings

In reference to a question posed by the author during the 12th ICFEL a short
survey on linear approrimate isometries in normed spaces and respective stability
problems will be given.

Next, an application to the problem of stability of orthogonality preserving
mappings in normed spaces will be shown. Results from a joint work with P. Wéj-
cik will be presented.

Jacek Chudziak Stability of a composite functional equation

At the 47th International Symposium on Functional Equations (Gargnano,
Italy) J. Brzdek has posed several questions concerning a quotient stability of the
following generalization of the Gotab—Schinzel functional equation

flz+ M(f(x)y) = f(@)f(y)-

In our talk we present the answers for some of them.

Krzysztof Ciepliniski Stability of the multi-Jensen equation

Assume that V is a normed space, W is a Banach space and m > 2 is an
integer. A function f: V™ — W is called multi-Jensen (we also say that f satisfies
multi-Jensen equation) if it is a Jensen mapping in each variable, that is

1

f(xla-"w/'[:i—luE(xi—i_yi)axi-i-lu"'axm)

1
= Ef(xl,...,xi,l,xi,xprl,. ..,.’,Em) + gf(.fl,. ey Li—13Yiy Lit1y - ..,Im),

ie{l,....m}, X1, ., T Yiyeoo, Ty € V.
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This notion was introduced by W. Prager and J. Schwaiger in 2005 with the
connection with generalized polynomials (see [1]).
In this talk the stability of multi-Jensen equation is discussed.

[1] W. Prager, J. Schwaiger, Multi-affine and multi-Jensen functions and their connection
with generalized polynomials, Aequationes Math. 69 (2005), 41-57.

Stefan Czerwik S.M. Ulam — his life and results in mathematics, physics and
biology

We shall present the information about the life of S.M. Ulam and his results
in different areas of science: mathematics, physics and biology; particularly in
stability of functional equations and H-bomb.

Zoltan Daroczy On an elementary inequality and conjugate means
(joint work with Zs. Pales)

Let n > 2, k > 1. In this talk we give the necessary and sufficient condition
for the real numbers p1,p2, ..., pn, q1,q2, - - -, g, to fulfill the following property:
If

min{z;} < M; < max{z;}, 1=1,2,...,k

holds for all real numbers x1,xs, ..., 2, and My, Mo, ..., My, then

n k
min{z; } < Zpixi + quMl < max{z; }.
i=1 =1

Let I be a nonvoid open interval and let M;: I — I (I =1,2,...,k) be means.
If there exist p1,p2,...,Pn,q1,42,---,qr With the property above and a strictly
monotone, continuous function ¢ on I, then

M(,’El,xz,...,xn)
n k
= ! <sz‘%0(:m) + ZQISD(MZ(M,M, .. .,xn))), T1,%9,...,Tp €1
i=1 =1

is a mean value and we call it the conjugate mean generated by the means M,
Mo, ..., M.
We deal with several problems on conjugate means.

Judita Dascal On conjugate means
(joint work with Z. Daréczy)

Let I C R be a nonvoid open interval.

A function M:I? — I is said to be a conjugate mean on I if there exist real
numbers p, ¢ € [0,1] and a continuous, strictly monotone real valued function ¢
defined on I such that

M(z,y) = ¢ (pcp(w) +ap(y) + (1 —p— q)w(xTer)), z,y €I

We deal with the equality problem in the class of conjugate means.
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Joachim Domsta A comparison of quantum dynamical semigroups obtainable by
mixing or partial tracing

Some simple examples of quantum systems are collected to illustrate require-
ments sufficient for the evolution of a subsystem according to a quantum dynamical
semigroup. For this, a class of quantum dynamics of a system S coupled to a reser-
voir R is analyzed in the Hilbert space Hsr = Hs ® Hr, where Hr = L?(R) and
Hs =12, with I standing for a complete at most countable set of pure orthogonal
states of S. The Hamiltonian of SR is built of tensor products of multipliers acting
on Hg and Hg. The chosen linear coupling implies the exponential decoherence
of the reduced evolution of S if and only if the occupation density in R is of the
Cauchy type. Then the system indicates the exponential decoherence. On the
other hand, since the occupation density in S is discrete, the reduced evolution of
R is never governed by a semigroup (unless there is no coupling).

In the considered case, the reduced evolution of the subsystem S as well as
of the reservoir R can be equivalently obtained by taking the expectation (i.e.
by averaging) of the unitary dynamics of the alone standing system S or R with
suitably chosen random Hamiltonians. Thus again, the probability distribution
of the random perturbation for S must be of the Cauchy type if the exponential
decoherence should follow.

In the models of the third class the phase of the quantum system S varies ac-
cording to a stochastic process with independent stationary increments. In other
words, this is an example of a random dynamical system. Then the exponential
decoherence of the evolution of the averaged state follows, independently of the
distribution of the process. In such cases the It6-Schrédinger equation for the ran-
dom unitary dynamics and the master equation for the averaged density matrices
are obtained in the dependence on the probability distribution of the process. For
presenting the Cauchy distribution in a different context, a relation to the expo-
nential decay of the autocorrelation of autonomous systems is discussed briefly.

Andrey S. Filchenkov On the simplest topologically transitive skew products in
the plane
(joint work with L.S. Efremova)

Let F(xz,y) = (f(2),92(y)): I — I be a skew product of interval maps, I is a
rectangle in the plane, I = I; x I (I, I5 are closed intervals). Let T (I) be the
space of C1(I)-smooth skew products of interval maps.

In this talk we present conditions of the density of the set of periodic points in
the phase space of the skew product.

THEOREM.
Let F € TY(I) satisfy the following conditions:

1) F(x,y) is a topologically transitive skew product of interval maps,

2) the partial derivative aggéy) monotonically decreases with respect to y € I

for any x € I,

3) g.(012) = 0I5 for any x € Iy, where Ol is the boundary of I.
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Then the set of periodic points of the skew product of interval maps is dense in I.

In this talk we also construct the topologically transitive skew product which
satisfies all conditions of the above theorem. We use here the unimodal maps
theory (see [2]). For the comparison in [3] it is proved the existence of the topolog-
ically transitive cylindrical cascade (the skew product over the irrational rotation
of the circle) without periodic points. In [1] it is constructed an example of con-
tinuous but not smooth topologically transitive skew product in the unit square
which has the dense set of periodic points in horizontal fibers y =0 and y = 1.
[1] LL Alseda, S. Kolyada, J. Llibre, L. Snoha, Entropy and periodic points for transitive

maps, Trans. Amer. Math. Soc. 351 (1999), 1551-1573.

[2] L.S. Efremova, A.S. Filchenkov, About one example of the topologically transitive skew

product of interval maps in the plane, Math problems, M.:MPhTI 2009, 61-68.

[3] E.A. Sidorov, Topologically transitive cylindrical cascades (Russian), Mat. Zametki
14 (1973), 441-452.

Gian Luigi Forti Symbolic dynamics generated by graphs

In many natural phenomena strings consisting of sequences of symbols play
a central role. Also the evolution of large classes of dynamical systems can be
described, under certain conditions, as a sequence of symbols. In this context,
a central question is how to enumerate and to characterize the full set of possible
sequences generated by a dynamical system.

At first, the properties of the symbolic dynamics generated by a graph on
an alphabet are presented and it is shown that the number of sequences of length
n is either exponential or polynomial with respect to n.

Then by a combination of several graphs we obtain different laws. In partic-
ular we can obtain laws observed in complex systems and conjectured in 1992 by
Ebeling and Nicolis.

We finish by presenting a probabilistic approach to the problem.

[1] V. Basios, G.-L. Forti, G. Nicolis, Symbolic dynamics generated by a combination of
graphs, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 18 (2008), 2265-2274.

Roman Ger On a problem of Cuculiére

In the February 2008 issue of The American Mathematical Monthly (Problems
and Solutions, p.166) the following question was proposed by R. Cuculiére:

Find all nondecreasing functions f from R to R such that

f@+f(y) = f(f(x) + f(y) for all real x and y

(Problem 11345).
We shall present:

— the general Lebesgue measurable solution,
— monotonic solutions,
— a description of the general solution

of the functional equation in question.
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Attila Gilanyi Conditional stability of monomial functional equations

During the 42nd International Symposium on Functional Equations in Opava,
Czech Republic, 2004, J. Aczél announced the program of the investigation of
conditional functional equations (c.f. [1]). Connected to this program, we present
some conditional stability results for monomial functional equations.

More precisely, in the case of various sets D C RxR and H C R, and assuming
that Y is a Banach space, n is a positive integer, a is an arbitrary, ¢ and § are
nonnegative real numbers, we examine whether the validity of the inequality

AT f(2) — nlf(y)|| < elz|* +dlyl*,  (z,y) €D

implies the existence of nonnegative constants ¢ and d and a monomial function
g:R — Y of degree n (i.e. a solution of the functional equation A} g(z) —nlg(y) =
0, 2,y € R) for which

If(2) = g(@)I| < (ce +dd)||*,  weH

holds.
[1] J. Aczél, 5. Remark, Report of Meeting, Aequationes Math. 69 (2005), 183.

Dorota Glazowska An invariance of the geometric mean with respect to the
Cauchy mean-type mappings
(joint work with J. Matkowski)

We consider the problem of invariance of the geometric mean with respect to
the Cauchy mean-type mappings (Dﬁg, Dh’k), i.e., the functional equation

Go (DM, DM = G.

Assuming that the generators g and k are power functions we show that the
functions f and h have to be of high class of regularity. This fact allows to
reduce the problem to differential equations and find some necessary conditions
for generators f and h.

Eszter Gselmann On the stability of derivations

In this talk we investigate the stability of a system of functional equations
that defines real derivations. More precisely, the problem of Ulam is considered in
connection with the following system of equations

fle+y)=fl@)+fly), zeR

and
f(x”):c;ka(:tm), xeR\ {0},

where f:R — R is the unknown function, ¢ € R and n,m,k € R are arbitrarily
fixed. Using a preliminary lemma that is also presented, it is proved that the
above system of functional equations is stable in the sense of Hyers and Ulam,
under some conditions on the parameters ¢,n, m and k.
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Grzegorz Guzik On some disjoint iteration semigroups on the torus

General construction of measurable (continuous) disjoint iteration semigroups
of triangular mappings on the torus is given.
Attila Hazy Bernstein—Doetsch type results for h-convex functions

The concept of h-convexity was introduced by S. VaroSanec in [1]. In our talk
we introduce a more general concept of the h-convexity, and the concept of the so
called (H, h)-convexity.

A h-convex (or (H,h)-convex) function is defined as a function f:D — R
(where D is a nonempty, open, convex subset of a real (or complex) linear space)
which satisfies

Oz + (1= XNy) <h(A)f(z) +h(1 =) [(y),

for all x,y € D and A € [0,1] (resp. A\ € H), where h is a given real function.

The main goal of our talk is to prove some regularity and Bernstein—Doetsch
type result for h-convex and (H, h)-convex functions. We also collect some facts
on such functions. Finally, we collect some interesting, easily-proved properties of
h-convex functions.

[1] S. VaroSanec, On h-convezity, J. Math. Anal. Appl. 326 (2007), 303-311.

Eliza Jablonska About solutions of a generalized Gotgb—Schinzel equation

Let n € N and let X be a metrizable linear space over K € {R, C}. We consider
solutions f: X — K of the functional equation

flx+f(@)"y) = f(x)f(y) forz,yeX

such that either f is bounded on a set of second category with the Baire property
or f is Baire measurable. Our result generalizes a result of J. Brzdek.

Hans-Heinrich Kairies A sum type operator

Our sum type operator F: D — F[D] is given by
Flpl(z) =Y 27 p(2 ),
k=0

where D = {¢:R — R: Y22 27 Fp(2k2) converges for every € R}.

We treat the following aspects:
1. Historical background.

2. Basic properties of F' and its restrictions F4: D,y — F[D,4] to sixteen sub-
spaces D4 of D, which are all vector spaces and in part Banach spaces.

3. Functional equations for F'[p] and characterizations.

4. Some Fourier analysis for F'[g].
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5. Images F[S] and F~'[S].
6. Eigenvalues and eigenspaces for all the sixteen F.4.
7. Continuous and residual spectra.

8. Extensions.

Barbara Koclega-Kulpa On a class of equations stemming from various quadra-
ture rules
(joint work with T. Szostok)

We deal with a functional equation of the form

n
F(y)— F(z) = (y—;v)Zakf()\k:E—i—(l — e)Y)s r,y € R (1)
k=1
motivated by quadrature rules of approximate integration. In previous results the
solutions of this equation were found only in some particular cases. For example,
coefficients A\x were supposed to be rational or the equation in question was solved
only for n = 2.

We prove that every function f:R — R satysfying equation (1) with some
function F:R — R, where >, _, ai # 0, is a polynomial of degree at most 2n — 1.
In our results we do not assume any specific form of coefficients occuring at the
right-hand side of (1) and we allow n to be any positive integer. Moreover, we
obtain solutions of our equation without any regularity assumptions concerning
functions f and F.

Zygfryd Kominek On a Jensen—Hosszi equation
(joint work with J. Sikorska)

It is known that in the class of functions acting the interval I = [0, 1] (I = (0, 1))
into a real Banach space the Jensen functional equation is stable and the Hossza
functional equation has not this property. So, we have a nontrivial pair of the
equivalent equations such that one of them is stable and the other is not. From
this point of view it seems interesting to consider the functional equation of the
form

Ja+y—ay)+ fy) =2f(F2L), wyel 1)

The left-hand-side of equation (1) is the same as the left-hand-side of the Hosszu
functional equation, and the right-hand-side of our equation coincides with the
left-hand side of the Jensen equation. We will prove that equation (1) is also
equivalent to the Jensen (and in the same reason to the Hosszi) equation and,
moreover, that equation (1) is stable in the sense of Hyers and Ulam.

Dorota Krassowska On iteration semigroups containing generalized convex and
concave functions

Let I C R be an open interval and let M, N:I? — I be continuous functions.
A function f:T — I is said to be (M, N)-convex ((M, N)-concave) if

f(M(z,y)) < (Z)N(f(2), f(y), wyel
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A function f:I — I simulteneously (M, N)-convex and (M, N)-concave is
called (M, N)-affine (see [1]).

We prove that if in a continuous iteration semigroup {f*, ¢ > 0} every element
ftis (M, N)-convex or (M, N)-concave and there exist 7 > s > 0 such that f" and
f% are (M, N)-affine, then M = N and every element of a semigroup is (M, M)-
affine. We also consider the case where M = N and we show that if in a continuous
iteration semigroup {f*, ¢ > 0} there exist f” < id and f* < id such that £ ¢ Q
and f" is (M, M)-convex and f* is (M, M)-concave, then every element of the
semigroup is (M, M)-affine.

[1] J. Matkowski, Iteration groups with generalized convexr and concave elements, Iter-
ation theory (ECIT 94) (Opava), 199-216, Grazer Math. Ber. 334, Karl-Franzens-

Univ. Graz, Graz, 1997.

Zbigniew Les$niak On conjugacy of Brouwer homeomorphisms

We consider Brouwer homeomorphisms of the plane for which the oscillating
set is empty. The main result says that if the sets of indices of coverings of the
plane consisting of maximal parallelizable regions for two Brouwer homeomor-
phisms are isomorphic and if for each of these regions there exists a one-to-one
correspondence between the set of singular lines contained in the boundary of the
region and the set of singular lines contained in the interior of the region, then
these Brouwer homeomorphisms are conjugated. This theorem holds for Brouwer
homeomorphisms that are embeddable in a flow as well as for Brouwer homeo-
morphisms for which there exists a foliation of the plane consisting of invariant
topological lines.

Andrzej Mach Stability of some functional equations and open problems
(joint work with Z. Moszner)

Some results on stability of certain equations and systems of equations are
given. A number of open problems of stability, raised by Z. Moszner, is presented.
The answer for one of them is given.

[1] D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci.

U.S.A 27 (1941), 222-224.

[2] A. Mach, On some functional equations involving Babbage equation, Results Math.

51 (2007), 97-106.

[3] A. Mach, Z. Moszner, On stability of the translation equation in some classes of

functions. Aequationes Math. 72 (2006), 191-197.

[4] A. Mach, Z. Moszner, On some functional equations involving involutions, Osterreich.

Akad. Wiss. Math.-Natur. KI. Sitzungsber. II 216 (2007), 3-13 (2008).

[6] Z. Moszner, On the stability of functional equations, Aequationes Math. 77 (2009),
33-88.

Ewelina Mainka On uniformly continuous Nemytskii operators generated by set-
valued functions

Let I =[0,1], let Y be a real normed linear space, C' a convex cone in Y and
Z a Banach space. Denote by clb(Z) the set of all nonempty closed and bounded
subsets of Z.
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If a superposition operator N generated by a set-valued function F: I x C' —
clb(Z) maps the set H, (I,C) of all functions ¢: I — C satisfying the Holder con-
dition into the set Hg(I, clb(Z)) of all set-valued functions ¢: I — clb(Z) satistying
the Holder condition and is uniformly continuous, then

F(z,y) = A(z,y) + B(x), €l , yeC

for some set-valued functions A, B such that A(-,y), B € Hg(I,clb(Z)), y € C and
A(z,-) € L(C,clb(2)), z € 1.

Using Jensen functional equation is essential in the proof. A converse result is
also considered.

Judit Maké On p-convezity
(joint work with Zs. Pales)

In this talk a new concept of approximate convexity is definied, termed -
convexity. The function ¢ is chosen in a particular way. Assume that [ is
a nonempty open real interval of R and denote I* := (I — I) N Ry, where Ry
stands for the set of nonnegative real numbers. Let ¢: I* — Ry be a given func-
tion. A real valued function f: I — R is called p-convezr if

fltz+ 1 =t)y) <tf(x)+ 1=t f(y) +te((L—t)z—yl) + (1 - )p(tlr —yl) (1)
for all t € [0,1] and for all ,y € I. If (1) holds for ¢ = 1, then we say that f is
p-midconver.

In this talk we give some equivalent conditions for yp-convexity. Furthermore,
we search relations between the local upper-bounded ¢-midconvex functions and
p-convex functions.

Gyula Maksa Nonnegative information functions revisited
(joint work with E. Gselmann)

Motivated by the known result that there are nonnegative information func-
tions different from the Shannon information function, in this talk, we present some
properties of the set on which every nonnegative information function coincides
with the Shannon’s one.

Fruzsina Mészaros Density function solutions of a functional equation
(joint work with K. Lajko)

The functional equation
for () fu () = fx

is investigated for almost all (u,v) € (0,1)". Suppose only that the unknown
functions fx, fy, fu, fv: (0,1) — R are density functions of some random variables
(i.e. nonnegative and Lebegue integrable with integral 1). Does it follow that they
are positive almost everywhere on (0,1)?

Using a method of A. Jarai in connection with the characterization of the
Dirichlet distribution, we give an affirmative answer to this question.

The obtained result is related to an independence property for beta dist-
ributions.

(%
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Bartosz Micherda On the properties of four elements in function spaces

Let X, be a modular space which is a lattice with respect to the ordering >
given by some pointed convex cone K C X,. For z,y € X, denote z Ay = inf(z,y)
and z V y = sup(z,y).

Then we say that p satisfies the lower property of four elements (LPFE) if for
any z,y,w, z € X, such that z > y, we have

pl@—w)+ply—2z) = plx—wVz)+ply —wAz),

and it satisfies the upper property of four elements (UPFE) if for any x,y,w,z €
X, such that x > y, we have

p(x —w)+ply—z) < ple—wAz)+ply—wVz).

These inequalities are useful for the study of projection and antiprojection
operators in modular spaces (see [1] and [2]).

In our talk we present a class of function modulars which satisfy both (LPFE)
and (UPFE). We also give some other examples and counterexamples.

[1] G. Isac, G. Lewicki, On the property of four elements in modular spaces, Acta Math.
Hungar. 83 (1999), 293-301.

[2] B. Micherda, The properties of four elements in Orlicz-Musielak spaces, Math. In-
equal. Appl. 4 (2001), 599-608.

Vladimir Mityushev Application of functional equations to determination of the
effective conductivity of composites with elliptical inclusions

Analysis concerning the transport properties of inhomogeneous materials is of
fundamental theoretical interest. Analytical formulae for the macroscopic proper-
ties with physical and geometrical parameters in symbolic form is useful to predict
the behavior of composites. The method of functional equations is one of the con-
structive methods to derive such analytical exact and approximate formulae. The
present talk is devoted to application of the method to two—dimensional compos-
ites with elliptical inclusions. The sizes, the locations and the orientations of the
ellipses can be arbitrary. The analytical formulae contains all above geometrical
parameters in symbolic form.

Lajos Molnar Characterizing some specific elements in spaces of operators and
functions and its use

We characterize certain specific elements in spaces of functions or Hilbert space
operators and use those characterizations to determine the structures of different
kinds of automorphisms and isometries of the underlying spaces.

Janusz Morawiec Refinement equations and Markov operators
(joint work with R. Kapica)

Let (Q,A, P) be a complete probability space, let L: 2 — R™ be a random
vector and let K: Q) — R™*"™ be a random matrix. We discuss the close connection
between the problem of the existence of non-trivial L'-solutions f:R™ — R of the
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refinement equation
o) = / | det K (w)|f (K ()2 — L(w)) dP(w)
Q

and the problem of the existence of invariant probability Borel measures of a very
special Markov operator defined (on the space of all finite Borel measures on R™)
by

Mpu(4) = / / xa(K (@) "1z + L(w)))dp(x) dP(w).

Q Rp

Jacek Mrowiec On stability of some functional equation

Recently, Soon—Mo Jung has proved the Hyers—Ulam stability of the Fibonacci
functional equation

f@)=flz=1)+ f(z-2)
in the class of functions f:R — X, where X is a real Banach space. The same

method with little modifications may be applied to prove stability of the more
general functional equation

flx) =af(x—1)+bf(z —2),
where a,b € R, in the same class of functions. However, for some values of a and
b this equation is not stable.
Anna Murenko A generalization of Bernstein—Doetsch theorem

Let V be an open convex subset of a nontrivial real normed space X. We give
a partial generalization of Bernstein—Doetsch theorem. Namely, if there exist a
base B of X and a point z € V such that a midconvex function f: X — R is locally
bounded above on b-ray at x for each b € B, then f is convex. Moreover, under
the above assumption, f is also continuous in case X = R”, but not in general.
Adam Najdecki On stability of some functional equation

Let S be a nonempty set, k,n € N and ¢g;: S x S — S for j € {1,...,k}. We
are going to discuss the stability of the functional equation

k
Y flgi(s.0)) = f)f (1),  stesS
j=1
in the class of functions f from S to the normed algebra M,,(C) of complex n x n

matrices.

Kazimierz Nikodem Remarks on strongly convex functions

Let D be a convex subset of a normed space and ¢ > 0. A function f: D — R
is called strongly conver with modulus c if

fltz+ (1 =t)y) < tf(x) + (1= )f(y) — ct(1 = )]z -yl
for all z,y € D and ¢t € [0,1]. We say that f is midpoint strongly convex with
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modulus c if

x—l—y) fl@)+ fly) ¢ 5
< — —|x - , x,y € D.
f(52) < 55 7z =l y
Some properties of midpoint strongly convex functions (corresponding to the
classical results of Jensen convex functions) are presented. A relationship between

strong convexity and generalized convexity in the sense of Beckenbach is also given.

Andrey A. Nuyatov Representation of space of entire functions of Fischer’s
pairs

In [2] resolvability of the equation
U1(2)Mp [f1+ -+ bm(2) M, [f] = 9(2) (1)

is proved, ¢ = (V1(2), ..., ¥m(2)) € HE., MF,[f] = (Fj, f(2 +w)) — the operator
of convolution in the space H(C™), which characteristic function is equal to ¢;(2),
7 =1,...,m. Resolvability of this equation is connected by concept of Fisher’s
pairs (see [1]):

A pair of polynomials (P(z),Q(D)), D = (Ds,...,D,), D; = 9/0z; forms a
Fischer pair if

H(C") = (P(2)) ® KerQ(D).

In this connection, equation (1) can be written down in the following way

Shem Pe(2)Mpe[f] = g(2), (2)

where degPj, = degP,;k =k, k=0,...,m. Equation (2) will become
We will show under what conditions the differential equation with variable factors
Z0512m [(Zfaj=mbasz®) D’ f] = g(2) (4)

is led to equation (3), i.e., the factors of equation (3) are expressed through the
factors of equation (4). Let B = ||bag|| be matrix of factors of equation (4).

THEOREM.
If the transposed matriz to B can be represented in the form of BT = ¥9_ By,
where By, = [|bE,]] (k = m,m —1,...,0) - Hermitean conjugate matrizes of a

rank 1, thus the only elements of the last of o= 1 T ZZ 0 HJ 1 Yi+7), n > 2 rows

(n—l)! Zi:o Hj:1 (i+7), n > 2 columns are nonzero, then equation (4) is led
to equation (3).

The program which checks conditions of reduction of the given equation to
equation (3) and if it is possible is written and expresses the factors of equation
(3) through the factors of equation (4) and writes down equation (3).

[1] H.S. Shapiro, An algebraic theorem of E. Fischer, and the holomorphic Goursat prob-
lem, Bull. London Math. Soc. 21 (1989), 513-537.
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[2] V.V. Napalkov, On the theory of linear differential equations with variable coefficients
(Russian), Dokl. Akad. Nauk 397 (2004), 748-750.

Andrzej Olbrys On some inequality connected with Wright convezity

We consider the functional inequality

f(>‘$+ (1 - A)y) < G(I,y,)\)f(fb) + [1 - G(:Evya /\)]f(y)a T,y € (avb)a AE (07 1)a

where f:(a,b) — R and G: (a,b) x (a,b) x (0,1) — R is a function symetric with
respect to x and y.

Jolanta Olko On a family of multifunctions

Let {ft, t € R}, {g%, t € R} be groups of increasing selfmappings of an interval
I such that ft < g*, t € R. We study properties of the family {H?, ¢t € R} of
multifunctions defined as follows

H'(z) = [f'(x), " (x)], zel, teR.

Zsolt Pales An application of Blumberg’s theorem in the comparison of weighted
quasi-arithmetic means

We present comparison theorems for the weighted quasi-arithmetic means and
for weighted Bajraktarevi¢ means without supposing in advance that the weights
are the same. The results have been obtained jointly with Gyula Maksa under
differentiability assumptions. Using Blumberg’s theorem (stating, for every real
function, the existence of a countable dense set such that the restriction of the
function to this set is continuous), these regularity assumptions are completely
removed.

Boris Paneah Several remarks on approzimate solvability of the linear functional
equations

We consider the general linear functional operator
Zc] z)F o aj(z), x €D CRP.

Here F' € C(I, B) (the space of all B-valued continuous functions on I) with I =
(—1,1), B a Banach space, coefficients ¢; and arguments a; of P are continuous
functions D — R and D — I, respectively, D is a domain with a compact closure.
Recently a deep connection between this operator and different problems from
analysis, geometry and even gas dynamic has been discovered. In a series of works
some existing and uniqueness problems have been studied as well as the overde-
terminedness for some types of the operators P has been established. Because
of the linearity of P studying homogeneous equation PF ~ 0 and, in particular,
searching an approximate solution to this equation provokes the special interest
(from both theoretical and practical points of view). It worth noting that even
the notion of the approximate solution by itself needs to be defined accurately.
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At the first part of the talk I formulate and discuss the new notions identifying
problem and approximate solution related to linear functional operator P. In
particular, it will be clarified the interrelation of the identifying and well-known
Ulam problems. It will be explained also that the latter problem bears a direct
relation to the approximate solvability rather then to some mythic stability.

At the second part of the talk the set of linear functional operators for which I
succeeded in proving the solvability of the identifying problem and the approximate
solvability of the equation PF =~ 0 will be described and discussed.

In conclusion a list of the most interesting unsolved problems will be demon-
strated.

Boris Paneah On approximate solvability of the Cauchy equation of arbitrary
degree

The talk is devoted to the well-known but not well studied functional operator

GF = FO) 430 S Pl o),

k=1 1< <. <jr<n

where © = (z1,...,x,) is a point of a bounded domain in R” and F' is a function:
I — B with B a Banach space and I = {t: 0 <t < 1}. We show at first where
from this operator arises in different fields of mathematics and physics, and then
we formulate the problem of approximate solvability of the equation €, F ~ 0. In
the second part of the talk we solve this problem.

Magdalena Piszczek On multivalued iteration semigroups

Let K be a closed convex cone with a nonempty interior in a Banach space
and let G: K — cc¢(K) be a continuous additive multifunction. The equality

FtOG:GOFt, tZO

is a necessary and sufficient condition under which the family {F;, ¢ > 0} of

multifunctions
o

.
Ft(x):ZEGZ(x), reK, t>0
i=0

is an iteration semigroup.

Dorian Popa A property of a functional inclusion connected with Hyers-Ulam
stability

We prove that a set-valued map F: X — Py(Y) satisfying the functional inclu-
sion F(2)0F(y) C F(x *y) admits, in appropriate conditions, a unique selection
f: X — Y satistying the functional equation f(z) < f(y) = f(z *y), where (X, %),
(Y, ¢) are square-symmetric grupoids and ¢ is the extension of ¢ to the collection
Po(Y) of all nonempty parts of Y.

[1] J. Aczél, Lectures on functional equations and their applications, Mathematics in
Science and Engineering 19, Academic Press, New York—London, 1966.
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[2] J. Brzdek, A. Pietrzyk, A note on stability of the general linear equation, Aequationes
Math. 75 (2008), 267-270.

[3] Z. Gajda, R. Ger, Subadditive multifunctions and Hyers—Ulam stability, General in-
equalities 5 (Oberwolfach, 1986), 281-291, Internat. Schriftenreihe Numer. Math. 80
Birkh&user, Basel, 1987.

[4] D.H. Hyers, G. Isac, Th.M. Rassias, Stability of functional equations in several
variables, Progress in Nonlinear Differential Equations and their Applications 34,
Birkh&user Boston, Inc., Boston, MA, 1998.

[5] Zs. Pales, Hyers—Ulam stability of the Cauchy functional equation on square-
symmetric grupoids, Publ. Math. Debrecen 58 (2001), 651-666.

[6] D. Popa, A stability result for a general linear inclusion, Nonlinear Funct. Anal. Appl.
9 (2004), 405-414.

[7] D. Popa, Functional inclusions on square-symmetric grupoids and Hyers—Ulam sta-
bility, Math. Inequal. Appl. 7 (2004), 419-428.

[8] A. Smajdor, Additive selections of superadditive set-valued functions, Aequationes
Math. 39 (1990), 121-128.

[9] W. Smajdor, Subadditive set-valued functions, Glas. Mat. Ser. III 21 (41) (1986),
343-348.

[10] W. Smajdor, Superadditive set-valued functions and Banach-Steinhaus theorem,
Rad. Mat. 3 (1987), 203-214.

Vladimir Yu. Protasov Lipschitz stability of linear operators in Banach spaces

The well-known concept of Ulam—Hyers—Rassias stability for the additive
Cauchy equation establishes, in particular, the p-stability of linear maps between
Banach spaces for all positive parameters p # 1. The only exception is the Lip-
schitz case, when p = 1 (see [1] and references therein). One of possible ways to
obtain stability results for this case is to introduce the notion of Lipschitz linear
stability. Let X,Y be arbitrary Banach spaces and F: X — Y be a map with the
only assumption that there is K > 0 such that |F(z)|] < K||z|, = € X. For a
given € > 0 we consider the following condition on F:

{a,b}p — {b,c}r| <e a,ce X, bela,d, (1)

where {21, 22} denotes the divided difference %

filled for ¢ = 0 precisely when F' is linear. We say that a map F' can be linearly
Lipschitz C-approximated if there is a linear operator A: X — Y such that

. This condition is ful-

{z1,wobral <C, 21,22 € X

This means that ||F(z1) — F(z2) — (Az1 — Azs)|| < C|lay — 22]|. Observe that if
F(0) =0, then ||F(z) — Az|| < C||z|| for any x. Thus, Lipschitz linear approxima-
tion property implies the linear approximation in the sense of Ulam—-Hyers—Rassias
stability for p = 1. Consider now the following property called in the sequel Lips-
chitz linear stability (LLS):

For given Banach spaces X andY there is a function C(g), which tends to zero
as € — 0, such that any map F: X — Y possessing property (1) can be linearly
Lipschitz C(e)-approzimated.
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Any Lipschitz e-perturbation of a linear operator possesses property (1). The
question is whether the converse is true: if (1) holds for a map F, then F' can be
linearly Lipschitz C(e)-approximated? In other words, if a map F: X — Y can
be linearly Lipschitz e-approximated on any straight line | C X, can it be C(e)-
approximated globally on X7 This problem was stated for case of functionals
(when Y = R) by Prof. Zsolt Pales in 12th ICFEI [2, Problem 2, pp.150-151]
both for the entire space X and for convex domains D C X. First we answer the
question of LLS for functionals:

THEOREM 1
If X is an arbitrary Banach space and Y = R, then the LLS property holds with
C(e) = 2e.

The proof is based on the separation principle, and cannot be extended from the
case Y = R to an arbitrary Banach space Y. This extension, nevertheless, can be
realized using a totally different idea, which leads to the following result:

THEOREM 2
The LLS property holds with C(g) = 2¢ for any Banach spaces X,Y , whenever X
is separable.

It appears that the estimate C(e) = 2¢ is the best possible in both those theorems,
and cannot be improved already for X = R?,Y = R. Then we consider LLS for
maps F defined on convex open bounded domains D C X, in which case C(g)
already depends on the geometry of the domain.

[1] Th.M. Rassias, On the stability of functional equations and a problem of Ulam, Acta
Appl. Math. 62 (2000), 23-130.

[2] Report of Meeting: 12th ICFEI, Ann. Acad. Pedagog. Crac. Stud. Math. 7 (2008),
125-159.

Vladimir Yu. Protasov Euler binary partition function and refinement equa-
tions

Refinement equations, i.e., difference functional equations with the double con-
tractions of the argument have been studied in the literature in great detail due
to their applications in functional analysis, wavelets theory, ergodic theory, prob-
ability, etc. Any refinement equation is written in the form

d—1
o ()= crp(2w — k), (1)
k=0

where {cj} are complex coefficients such that Zz;é ¢, = 2. This equation al-
ways possesses a unique, up to multiplication by a constant, compactly supported
solution ¢ in the space of distributions S’.

We present a rather surprising application of refinement equations to a well-
known problem of the combinatorial number theory: the asymptotics of the Euler
partition function. For an arbitrary integer d > 2 the binary partition function
b(k) = b(d, k) is defined on the set of nonnegative integers k as the total number of
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different binary expansions k = Z;io d;27, where the “digits” d; take values from
the set {0,...,d — 1}. The asymptotic behavior of b(k) as k — oo was studied by
L. Euler, K. Mahler, N.G. de Bruijn, D.E. Knuth, B. Reznick and others.

It appears that the exponent of growth of the function b(k) can be expressed
by the solution ¢ of refinement equation (1) with equal coefficients ¢ = 5. Using
this argument we answer two open questions formulated by B. Reznick in 1990

(see [1]).

[1] B. Reznick, Some binary partition functions, Analytic number theory (Allerton Park,
IL, 1989), 451-477, Progr. Math. 85, Birkhduser Boston, Boston, MA, 1990.

[2] V.Yu. Protasov, On the problem of the asymptotics of the partition function, Math.
Notes 76 (2004), 144-149.

Viorel Radu Ulam—Hyers stability of functional equations in locally convex prob-
abilistic spaces: a fixed point method

In [1] and [2] some generalized Ulam—Hyers stability results for Cauchy func-
tional equation have been proved. Our aim is to outline the results concerning the
generalized Ulam—Hyers stability for different other kinds of functional equations.

The fixed point method (cf. [4]) will be emphasized, for functions defined
on linear spaces and taking values in fuzzy normed spaces and locally convex
probabilistic spaces.

[1] D. Mihet, V. Radu, On the stability of the additive Cauchy functional equation in
random normed spaces, J. Math. Anal. Appl. 343 (2008), 567-572.

[2] L. Cadariu, V. Radu, On the stability of the Cauchy functional equation: a fized
points approach, Iteration theory (ECIT’02), 43—52, Grazer Math. Ber. 346, Karl-
Franzens—Univ. Graz, Graz, 2004.

[3] D.H. Hyers, G. Isac, Th.M. Rassias, Stability of functional equations in several
variables, Progress in Nonlinear Differential Equations and their Applications 34,
Birkhduser Boston, Inc., Boston, MA, 1998.

[4] V. Radu, The fized point alternative and the stability of functional equations, Fixed
Point Theory 4 (2003), 91-96.

Ewa Rak Domination and distributivity inequalities
(joint work with J. Drewniak)

Domination is a property of operations which plays an important role in consid-
erations connected with the distributivity functional inequalities. Schweizer and
Sklar [4] introduced the notion of domination for associative binary operations
with common range and common neutral element. In particular, the property of
domination was considered in the families of triangular norms and conorms (see
e.g. [1, 2, 3]). In our considerations we shall show some of dependencies between
the property of domination and the subdistributivity or the superdistributivity of
operations on the unit interval.

[1] J. Drewniak, P. Drygas, U. Dudziak, Domination between multiplace operations, Is-
sues in Soft Computing. Decisions and Operations Research, EXIT, Warszawa 2005,
149-160.
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[2] S. Saminger-Platz, The dominance relation in some families of continuous
Archimedean t-norms and copulas, Fuzzy Sets and Systems 160 (2009), 2017-2031.

[3] P. Sarkoci, Domination in the families of Frank and Hamacher t-norms, Kybernetica
(Prague) 41 (2005), 349-360.

[4] B. Schweizer, A. Sklar, Probabilistic metric spaces, North-Holland Series in Probabil-
ity and Applied Mathematics, North-Holland Publishing Co., New York, 1983.

Themistocles M. Rassias Stanistaw Marcin Ulam

In this special session, I will talk briefly on the life and works of S.M. Ulam.

Maciej Sablik Bisymmetrical functionals

Let ©;, i = 1,2 be compact sets. Consider spaces B(£2;,R) of bounded func-
tions defined on €;, and let F' and G be functionals defined in B(€;,R) and
B(22,R), respectively. We characterize F' and G such that the equation

G (Fy(x(s,1))) = F (Gs(2(s,1)))

holds for every = € B(€1 x {23, R), under some additional regularity assumptions.
It turns out that F' and G are conjugated to an integral with respect to some Radon
measure in B;. The main tool in the proof is a result of Gy. Maksa from [1].

[1] Gy. Maksa, Solution of generalized bisymmetry type equations without surjectivity
assumptions, Aequationes Math. 57 (1999), 50-74.

Ekaterina Shulman Stable quasi-mizing of the horocycle flow
(joint work with F. Nazarov)

We consider the behavior of a one-parameter subgroup of a Lie group under
the influence of a sequence of kicks. Our approach follows [1] where a special case
of the problem was related to an asymptotic behavior of “approximate” solutions
of some functional equations on a discrete group.

Let a Lie group G act on a set X, and (h');cr be a one-parameter subgroup of
G} it is a dynamical system acting on X. We perturb this system by a sequence of
kicks {¢;} C G. The kicks arrive with some positive period 7. The dynamics of the
kicked system is described by a sequence of products P, (i) = ¢;h"¢;—1h™ ... $1h™
that depend on the period 7.

A dynamical property of a subgroup (h') is called kick stable, if for every
sequence of kicks {¢; }, the kicked sequence Py (i) inherits this property for a “large”
set, of periods 7. The property we will concentrate on, is quasi-mixing.

A sequence {P(i)} acting on a measure space (X, ) by measure-preserving
automorphisms is called quasi-mizing if there exists a subsequence {iy} — oo
such that for any two Lo-functions F; and F on X

/Fl(P(ik)x)Fg(:E) du—»/Fl(:L“) d‘LL/FQ(I) dp when k — oo.
X X X

In our case X = PSL(2,R)/T", where I' C PSL(2,R) is a lattice. The group
PSL(2,R) acts on X by left multiplication. The principal tool used in [1] for the
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study of stable mixing in this setting, is the Howe—Moore theorem which gives the
geometric description of quasi-mixing systems: if the sequence P(7) is unbounded
then it is quasi-mixing.

It follows from the Howe-Moore theorem that the horocycle flow

t 1t
“=(01)

is quasi-mixing on X. We prove that it is kick stably quasi-mixing. This answers
the question raised by L. Polterovich and Z. Rudnick in [1].

Let us mention an application to second order difference equations. A discrete
Schrodinger-type equation is the equation

Qet+1 — (2 +ter)qr + qe—1 = 0, k>1. (1)

COROLLARY.
For every sequence {c,}, the set of the parameters t € Ry for which all solutions
of the difference equation (1) are bounded, has finite measure.

[1] L. Polterovich, Z. Rudnick, Kick stability in groups and dynamical systems, Nonlin-
earity 14 (2001), 1331-1363.

Justyna Sikorska A direct method for proving the Hyers—Ulam stability of some
functional equations

We study the stability of the equation of the form
f(x) = af(h(x)) + bf (=h(x))

with some conditions imposed on constants a,b and function h. The results are
later applied (by use of a direct method — the Hyers sequences) for proving the
stability of several functional equations.

Barbara Sobek Quadratic equation of Pexider type on a restricted domain

Let X be a real (or complex) locally convex linear topological space. Assume
that U is a nonempty, open and connected subset of X x X. Let

Uy :={x: (z,y) € U for some y € X},
Us :={y: (x,y) € U for some x € X}
and
U+ = {‘T—i_y (J,',y)EU},
U_={x—y: (z,y) e U}

We consider the functional equation

fle+y)+g(z—y)=h)+ky), (2 el

where f:U; — Y, gU_ —Y, h:U; — Y and k:Us — Y are unknown functions
and (Y, +) is a commutative group. The general solution of the equation is given.
We also present an extension result.
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Joanna Szczawiniska Some remarks on a family of multifunctions

Let f:R — R denote the function given by

o
t)=> ant", teR,
n=0

where a,, > 0 for n € N. If K is a closed convex cone in a real Banach space and
H: K — cc(K) alinear and continuous set-valued function with nonempty, convex
and compact values in K, then for all ¢ > 0 the set-valued function

= Zant"H"(x), re K

is linear and continuous and

o0
to F?(x) C Z cn H™ (x r e K,
n=0
where
n
Cn = Zakan,ktksnfk, t,s > 0.
k=0

The necessary and sufficient condition for the equality
F'o F*(x chH" reK, t,s>0

will be given.
Tomasz Szostok On a functional equation stemming from some property of tri-
angles

Basing on some geometrical property discovered by G. Monge, in [1] authors
considered the following functional equation

r+y

S 07 (552) - 3000 - 1 5| = [ e+ gas@) - i

2

They proved that the only solutions of this equation are the affine functions.
Roughly speaking this means that Monge theorem works only for collinear points.

In the present talk we modify this equation in such way that it will be satisfied
by some functions different from f(z) = ax + b. Then we solve the obtained
equation.

[1] C. Alsina, M. Sablik, J. Sikorska, On a functional equation based upon a result of
Gaspard Monge, J. Geom. 85 (2006), 1-6.
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Jacek Tabor Approzimate (g, p)-midconverity for p € [0,1]
(joint work with J6zef Tabor and M. Zoldak)

For p € [0,1] we put

— 1
Tp(x) = Z 2—kdp(2kx), x € R,
k=0

where d(z) = 2dist(z,Z) and by 0° we understand 0.
A function f: I — R, where I is a subinterval of R, is called (e, p)-midconves if

D P (G (IR (I (R

It is known that if f is a continuous (g, p)-midconvex function, then

flre+ @ =r)y) —rf(z) - (A =r)fy) <eTp(rle—yl),  wyel, rel0l]

The above estimation is optimal for p = 0 (theorem of C.T. Ng and K. Nikodem)
and p = 1 (theorem of Z. Boros). Zs. Palés asked what happens in the case when
p € [0,1].

We show that the above problem can be reduced to verification of the following
hypotheses:

min{Jdp(:ay)—i-%dp(:E—y)a jdlﬂ(gc,y)—iéjd?”@ac7 2y)+idi’(2x—2y)} < dP(I ; y)

for 2,y € [—1,1]. The above inequality can be easily verified for p =0 and p = 1
(giving in particular another proof of the result of Z. Boros). Although numerical
simulations support the assertion that the above hypothesis holds for all p € (0, 1),
we were not able to prove it.

Jozef Tabor Jensen semiconcave functions with power moduli
(joint work with Jacek Tabor and A. Mureriko)

We study the relation between Jensen semiconcavity and semiconcavity in the
case when modulus of semiconcavity is of the form w(r) = Cr? for p € (0,1]. As it
is known continuous Jensen semiconcave function with modulus w is semiconcave

with modulus
~ = T
w(r) = Zw (2_1@) )
k=0

In case of w(r) = Cr? for p € (0,1] we improve this result and determine the
smallest @.

Gheorghe Toader Invariance in some families of means
(joint work with S. Toader)
As it is known from the classical example of the arithmetic-geometric mean

of Gauss (see [1]), the determination of a (M, N)—invariant mean P is a very
difficult problem. That is why we study the (equivalent) problem of finding a
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mean N which is complementary to M with respect to P. For the determination
of complementaries, three methods have been used: the direct calculation (see [4]),
the use of the methods of functional equations (see [2]), and the series expansion
of means (see [3]). In the current paper we consider the method of series expansion
of means to study the invariance in the family of extended logarithmic means.

[1] J.M. Borwein, P.B. Borwein, Pi and the AGM. A study in analytic number theory and
computational complexity, Canadian Mathematical Society Series of Monographs and
Advanced Texts, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New
York, 1987.

[2] Z. Daroczy, Zs. Pales, Gauss-composition of means and the solution of the Matkowski-
Sutd problem, Publ. Math. Debrecen 61 (2002), 157-218.

[3] D.H. Lehmer, On the compounding of certain means, J. Math. Anal. Appl. 36 (1971),
183-200.

[4] Gh. Toader, S. Toader, Greek means and the arithmetic-geometric mean, RGMIA
Monographs, Victoria University, 2005 (http://rgmia.vu.edu.au/monographs).

Peter Volkmann Continuity of solutions of a certain functional equation

The continuous solutions f:R — R of the functional equation

min{f(z +y), f(z —y)} = [f(x) = f(y)]

had been given in a talk during the Conference on Inequalities and Applications
at Noszvaj 2007 (http://riesz.math.klte.hu/~cia07). Here we show that the con-
tinuity of a solution of this functional equation follows from the continuity at one
point.

Marek C. Zdun Iteration groups and semigroups — recent results

This is a survey talk on selected topics concerning iteration groups and semi-
groups where some progress has been achieved during the last years. Especially
we concern on the problem of embeddability of given functions in iteration groups
and iterative roots.

In the talk we discuss the following directions in iteration theory:

1. Measurable iteration semigroups.
2. Embedding of diffeomorphisms in regular iteration semigroups on R™.
3. Iteration groups of fixed point free homeomorphisms on the plane.

4. Embedding of interval homeomorphisms with two fixed points in regular
iteration groups.

5. Commuting functions and embeddability.
6. Iterative roots.
7. The structure of iteration groups of homeomorphisms on an interval.

8. The structure of iteration groups of homeomorphisms on the circle.
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9. Approximately iterated functions.

10. Set-valued iteration semigroups.

Marek Zoldak Bernstein-Doetsch type theorem for approximately convex func-
tions
(joint work with Jacek Tabor and Jézef Tabor)

Let X be a real topological vector space, let D be a subset of X and let
a: X — [0,00) be an even function locally bounded at zero.
A function f: D — R is called («, t)-preconver (where t € (0,1) is fixed), if

fltz+ (1 —t)y) <tf(zx)+ (1 -1)f(y) +a(z —y)

for all z,y € D such that [z,y] C D.
We give a version of Bernstein—Doetsch theorem and some related results for
such functions.

Problems and Remarks

1. Problem.
Consider functional equations of the form

Z%f(i bikfck) =0, Z a; #0 (1)
i1 =1 i—1
and
Zaif<z @'k%) =0, > a#0, (2)
i1 =1 i1

where all parameters are real and f: R — R.

Assume that the two functional equations are equivalent, i.e., they have the
same set of solutions.

Can we say something about the common stability? More precisely, if (1)
is stable, what can we say about the stability of (2). Under which additional
conditions the stability of (1) implies that of (2)7

Gian Luigi Forti

2. Problem and Remark.
Let X be a normed space, D C X be an open convex set and let f: D — R be
a Lipschitz perturbation of a convex function g: D — R, i.e., let f be of the form

f=9+1
where ¢ is a convex function and ¢: D — R is e-Lipschitz, i.e.,

[l(z) = Ly)| <elle—yll,  @yeD.
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Then, for x,y € D and ¢ € [0, 1], we have

flte+ (1 —t)y) —tf(x) — (1 —1)f(y)
= [g(te + (1 = t)y) —tg(z) — (1 = t)g(y)]
+ [tz + (1 = t)y) — tl(z) — (1 — t){(y)]
<tll(tz+ (1 —t)y) — ()] + (1 =t) [tz + (1 — t)y) — L(y)]
<tttz + (1 —t)y) — L(z)| + (1 — )]tz + (1 — t)y) — L(y)]
< tel[(te + (1= t)y) —zf + (1 = t)e||(tz + (1 = t)y) — ¥l
=2et(1—t)||z — y]|.

Therefore, f satisfies the approximate convexity inequality:

[z + (1 =t)y) <tf(z)+ (1 =) f(y) +2et(1 = t)[| —y]. (1)

On the other hand, in the case X = R, we have the following converse of the
above observation (which is a particular case of a result obtained in [1]).

PROPOSITION.

Let I be an open interval and € > 0. Assume that f: I — R satisfies, for all x,y € T
and t € [0, 1], inequality (1). Then there exists a convex function g : I — R such
that the function € .= f — g is (2¢)-Lipschitz.

The following more general and open problem seems to be of interest.

PROBLEM

Does there exist a constant «y (that may depend on X and D) such that, whenever
a function f: D — X satisfies inequality (1) for all 2,y € D and t € [0,1], then
there exists a convex function g: D — R such that the function ¢ := f — g is
~ve-Lipschitz on D?

A result related to this problem was stated by V. Protasov during the 13th
ICFEL

If a function f: X — R satisfies, for all z,y € X and t € [0,1],

[f(tz+ (1= t)y) —tf(x) = A=) f(y)| < 2et(1 = t)||lz —y],

then there exists a continuous linear functional z* € X™* such that ¢ := f —x* is
(4e)-Lipschitz on X.

[1] Zs. Pales, On approzimately conves functions, Proc. Amer. Math. Soc. 131 (2003),
243-252.

Zsolt Pdles

3. Problem.
Let X be a Hilbert space, D C X an open convex set, € > 0 and let f: D — R
be a continuous function such that

fllz+ (1 =t)y) —tf(z) = A -)f(y) <et(l =t)|lz—yll, z,yeD,tel01]
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Does there exist an xy € D such that [ is differentiable at z¢?

This problem is motivated by the results of S. Rolewicz.
Jacek Tabor and Jozef Tabor

4. Problem.
In connection with some problem in theoretical physics, O.G. Bokov introduced
in [1] the following functional equation

f(xay)f($+yaz) —l—f(y,z)f(y—l—z,aj) —|—f(z,:1:)f(z—|—:1:,y) =0. (1)

In [2] A.V. Yagzhev determined all analytic solutions f:C" x C" — C of (1).
However, his proof is not clear and presents several gaps. So, we may wonder
about the validity of the result. Therefore, the problem is to find all analytic
solutions f:C x C — C of (1) with a nice mahematical proof. Also, we may ask
about the solutions of (1) in a more general setting.

[1] O.G. Bokov, A model of Lie fields and multiple-time retarded Green’s functions of an
electromagnetic field in dielectric media, Nauchn. Tr. Novosib. Gos. Pedagog. Inst.
86 (1973), 3-9.

[2] A.V. Yagzhev, A functional equation from theoretical physics, Funct. Anal. Appl. 16
(1982), 38-44.

Nicole Brillouét-Belluot

5. Remark.

During the last fifteen years a great number of papers concerning stability
of functional equations have been published. Unfortunately in many of these
papers motivations for studying a given equation or/and possible applications
of the stability results are missing. In my opinion this will eventually produce
a discredit of the topic and, consequently, a discredit of the field of functional
equations: a thing that we, functional equationists, certainly do not want. These
considerations are mainly directed to younger colleagues, in order to invite them
to investigate genuine, not rather artificial, mathematical problems.

Gian Luigi Forti

6. Remark.
Let (X,] - ||) be a normed space, D C X be a convex set and ¢ > 0 be a fixed
constant. A function f: D — R is called strongly convex with modulus c if

flte+ 1 =t)y) <tf(@)+ 1 =) f(y) — ct(l = t)l|lz — y? (1)

for all z,y € D and ¢ € [0,1]. Under the assumption (A) that (X, -||) is an inner
product space, the following equivalence (B) holds:

f:D — R is strongly convex with modulus ¢ if and only if g = f —c|| - ||? is
conver.

The following example gives an answer to the question posed by Zsolt Pales
after my talk at this conference and shows that assumption (A) is essential for

(B).
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EXAMPLE.
Let X = R? and ||z]| = |z1| + |22| for 2 = (21,22). Take f = || - [|>. Then
g=f—1 "> =0 is convex. However, f is not strongly convex with modulus 1.

Indeed, for z = (1,0) and y = (0,1) we have

f(x;y) PR CO el AC)

1 2

which contradicts (1).

One can also prove that if (B) holds for every f: X — R, then (X, || - ||) must
be an inner product space. Thus condition (B) gives another characterization of
the inner product spaces among normed spaces.

Kazimierz Nikodem

7. Remark.

The Institute of Mathematics of the Pedagogical University of Cracow accepted
in 1983 for realization Dobiestaw Brydak’s proposal of continuing in Poland the
series of five international conferences on functional equations, which had been
organized by our Hungarian colleagues at Miskolc and Debrecen from 1966 to
1979 (see [1]).

The First International Conference on Functional Equations and Inequalities
was held at Sielpia in Kielce region of Poland from May 27 to June 2, 1984. In
fact, it was a second conference on functional equations held in Poland, ever after
that organized by Professors Stanistaw Gotab and Marek Kuczma at Zakopane
in October 9-13, 1967 (see [2]). The organizers of the 1st ICFEI were Dobiestaw
Brydak, Bogdan Choczewski and Jozef Tabor. The meeting was opened (and
then attended) by Professor Zenon Moszner, Rector Magnificus of the Pedagogical
University of Cracow (see [3]).

The general statistical data, concerning 1st, 13th and all ICFEIs (in brackets:
the numbers of different persons participating) are presented in Table 1, whereas
in Tables 2 and 3 the distribution of participants into countries and cities (of
affiliation) is exhibited. Table 4 shows the number of all ICFEIs the participant of
the 13th one attended, with "x" meaning her or his presence at the 1st ICFEL (All
the data have been collected by Miss Janina Wiercioch, a member of organizing
staffs from 1991 (3rd ICFEI) on.)

‘ ICFEI ‘ All participants ‘ Foreign participants ‘ Countries ‘ Talks ‘ Sessions

1st 59 9 8 41 8
13th 76 31 10 73 26
All 13 857 (269) 206 (111) 32 694 239

Table 1. General data
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| Country 1st ICFEIL | 13th ICFEI | Cities
Australia 2 - La Trobe, Melbourne
Austria 1 1 Graz || Innsbruck
Czechoslovakia 1 - Brno
France - 1 Nantes
Germany - 2 Clausthal-Zellerfeld, Lobau
Greece - 1 Athens
Hungary 2 14 Miskolc || Debrecen 13, Miskolc 1
Israel - 1 Haifa
Ttaly 1 1 Milan || Milan
Romania - 5 Cluj-Napoca 3, Timigoara 2
Russia - 5 Moscow 1, Nizhny Novgorod 3,
Vologda 1
Switzerland 1 Bern
West Germany 1 - Karlsruhe
> 9 31

Table 2. Participants from abroad

City 1st ICFEI | 13th ICFEI
Biatystok 1 -
Bielsko-Biata 3 3
Czestochowa 1 -
Gdansk 1 1
Gliwice - 2
Katowice 11 12
Kielce 4 1
Krakow 22 16
Rzeszow 6 8
Zielona Gora - 2
> 50 45

Table 3. Polish participants

According to Table 4 in the 13th ICFEI took part 13 colleagues who also
attended our first meeting held 25 years ago. Among them were: Karol Baron,
Roman Ger, Maciej Sablik (all from Katowice) who participated in all ICFEIs,
and from abroad: Gian Luigi Forti (Milan) and Peter Volkmann (Karlsruhe) who
took part in 5, respectively 10, conferences. Moreover, what may be surprising, at
the 13th ICFEI were present less Polish mathematicians than in the 1st one. One
can also observe that 9 colleagues (7 from abroad) came to our conference for the
first time (at least four of them seemed to be younger than the ICFEI).

The most numerous group of our guests from abroad usually was that of Hun-
garians (altogether 85 presences, 14 participants of the 13th ICFEI). The author
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then proposed to transform the popular saying on Hungarian-Polish fraternity as
follows:

Magyar-Lengyel jo bardt - igen fliggvényegyenletek, igen fiigguényegyenldtlen-
ségek (Hungarian and Pole are good nephews - both in functional equations and
inequalities).

R. Badora 9 J. Mako 1
A. Bahyrycz 5 G. Maksa 6
Sz. Bajak 1 F. Mészaros 3
K. Baron 13 x || B. Micherda 1
L. Bartlomiejczyk 8 V. Mityushev 3
S. Belmesova 1 L. Molnar 3
M. Bessenyei 2 J. Morawiec 10
7. Boros 6 J. Mrowiec 5
N. Brillouét-Belluot 7 A. Murenko 5
J. Brzdek 9 A. Najdecki 5
P. Burai 2 K. Nikodem 10 *
L. Cadariu 2 A. Nuyatov 1
J. Chmielinski 11 A. Olbrys 3
B. Choczewski 12 % || J. Olko 6
J. Chudziak 7 B. Paneah 4
K. Cieplinski 6 7. Péles 9
M. Czerni 11 % || M. Piszczek 4
S. Czerwik 9 V.D. Popa 2
Z. Daroczy 8 V.Yu. Protasov 2
J. Dascal 2 B. Przebieracz 3
J. Domsta 8 V. Radu 2
A. Filchenkov 1 E. Rak 2
G.-L. Forti 5 % || Th.M. Rassias 3
W. Forg-Rob 10 M. Sablik 13 %
R. Ger 13 % || E. Shulman 3
A. Gilanyi 6 J. Sikorska 8
D. Glazowska 4 A. Smajdor 10 %
E. Gselmann 1 B. Sobek 2
G. Guzik 6 P. Solarz 6
A. Hazy 3 J. Szczawinska 10
E. Jabtonska 3 T. Szostok 6
H.-H. Kairies 11 Jacek Tabor 7
B. Koclega-Kulpa 4 Jozef Tabor 12
Z. Kominek 12 % || G. Toader 4
D. Krassowska 5 S. Toader 1
7. Lesniak 9 P. Volkmann 10
A. Mach 8 x || M.C. Zdun 10 *
E. Mainka 1 M. Zotdak 4

Table 4. Numbers of all ICFEIs attended by participants
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[1] B. Choczewski, International meetings organized by Polish schools on functional equa-
tions, Ann. Acad. Pedagog. Crac. Stud. Math. 5 (2006), 13-32.

[2] Miedzynarodowa Konferencja z Réwnan Funkcyjnych, International Conference on
Functional Equations, Zakopane, 9.X.-13.X.1967, Zeszyty Nauk Uniw. Jagiello. Prace
Mat. 14 (1970).

[3] Proceedings of the International Conference on Functional Equations and Inequalities,
May 27 - June 2, 1984, Sielpia (Poland), Rocznik Nauk.-Dydakt. Prace Mat. 11
(1985), 185-265.

Bogdan Choczewski
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