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Darren CrowdyExpliit solution of a lass of Riemann�HilbertproblemsAbstrat. Analytial solutions to a speial lass of Riemann�Hilbert bound-ary value problems on multiply onneted domains are presented. The so-lutions are expressed, up to a �nite number of aessory parameters, asnon-singular inde�nite integrals whose integrands are expressed in terms ofthe Shottky�Klein prime funtion assoiated with the Shottky double ofthe planar domain.1. A lass of Riemann�Hilbert problemsThe subjet of this paper is a speial lass of Riemann�Hilbert problems (RHproblems) on multiply onneted planar domains. The study of general RH prob-lems is a lassial subjet and disussions of it an be found in standard mono-graphs on boundary value problems [9℄, [18℄, [13℄. A solution of the general(Riemann)�Hilbert boundary value problem has been found, using suessive it-eration methods, by Mityushev [14℄. Here we restrit attention to a speial (butimportant) sublass of the same RH problems and �nd an analytial expressionfor the solutions, up to a �nite set of aessory parameters, in terms of a transen-dental funtion known as the Shottky�Klein prime funtion [3℄ assoiated withthe multiply onneted domain.We de�ne a irular domain Dζ in a omplex parametri ζ-plane to be a domainwhose boundaries are all irles. Let Dζ be the M +1 onneted irular domain ina ζ-plane onsisting of the unit dis with M smaller diss exised from its interior.The outer boundary of Dζ is the unit irle whih we label C0. Label the M innerboundary irles of Dζ as C1, . . . , CM . For k = 0, 1, . . . , M let the entre andradius of Ck be δk and qk respetively.Consider the Riemann�Hilbert problem for the funtion w(ζ):

Re
[

λk w(ζ)
]

= dk on Ck, k = 0, 1, . . . , M, (1)where {λk ∈ C | |λk| = 1, k = 0, 1, . . . , M} is a set of omplex onstants with unitmodulus and {dk ∈ R | k = 0, 1, . . . , M} is a set of real onstants. We solve forAMS (2000) Subjet Classi�ation: 30C20, 30E25, 35F15.Volumes I-VII appeared as Annales Aademiae Paedagogiae Craoviensis Studia Mathematia.



[6℄ Darren Crowdy
w(ζ) satisfying (1) that is analyti, but not neessarily single-valued, in Dζ exeptfor a simple pole, with known residue, at some point ζ = β stritly inside Dζ .Cirular domains are a anonial lass of planar domains beause every planardomain is onformally equivalent to some irular domain [10℄. Beause of this,and beause the lass of RH problems (1) is onformally invariant, it means thatthe solution sheme whih follows is rather general. It applies, up to onformalmapping from the anonial lass of irular domains, to any multiply onnetedplanar region.Problem (1) is a generalization of the lassial Shwarz problem [9℄, [18℄, [13℄,a ase of whih is retrieved on making the hoie, for example, that λk = 1for all k = 0, 1, . . . , M in (1). This paper produes an analytial expression forthe solution of (1) when the onstants {λk ∈ C | k = 0, 1, . . . , M} are generallydistint. The solution is expressed as a non-singular, inde�nite integral whoseintegrand is written in terms of the Shottky�Klein prime funtion [3℄ assoiatedwith Dζ . This integrand depends on a �nite set of aessory parameters thatan, in priniple, be determined (for example, numerially) from the given data
{λk, dk ∈ C | k = 0, 1, . . . , M}.The speial form of RH problem (1) has been onsidered by other authors.Vekua [18℄ shows that, if it exists, the solution of the RH problem (1) is unique [18℄.Wegmann & Nasser [19℄ study the doubly onneted ase M = 1 of (1) in a reentpaper on numerial solutions of RH problems on multiply onneted regions usingintegral equations based on the generalized Neumann kernel.The lass of RH problems appears in a variety of appliations, espeially inthe more general (disontinuous) ase when the value of the onstant λk assumesdi�erent values on di�erent segments of the irle Ck (the methods of this paper,presented for the ontinuous problem, an be generalized to this ase). One ofthe more important appliations is to free streamline theory in hydrodynamis.There, in the study of jets and avities, it is traditional to study a funtion knownas the Joukowski funtion [11℄, often written as

Ω(ζ) ≡ log

(

1

V0

dw(z)

dz

)

,where z = x+iy, V0 is a onstant saling fator and w(z) is an analyti funtion inthe �ow region (known as the omplex veloity potential). On any solid boundariesin ontat with the �uid, the imaginary part of Ω(ζ) is onstant; on any freestreamlines, owing to the onstany of pressure in a avity region on one sideof the free streamline and Bernoulli's theorem, it is the real part of Ω(ζ) thatis onstant. Sine a single streamline in a real �ow an, in part, be in ontatwith a solid boundary and then separate into a free streamline bounding a avity,
Ω(ζ) turns out to satisfy a (disontinuous) Riemann�Hilbert problem of preiselythe form (1). In the simply onneted situation, Shwarz�Christo�el methodshave proved to be very useful in problems of this kind [11℄. Interestingly, therehas been reent interest [2℄ in developing this nonlinear theory to �ows involvingmultiple body-avity systems. The theory presented here, for multiply onnetedsituations, should �nd appliation in suh studies.



Expliit solution of a lass of Riemann�Hilbert problems [7℄2. Funtion theoryThe investigation we now present borrows ideas from prior work by the author[5℄, [6℄ in whih new analytial formulae for the Shwarz�Christo�el mappingsto bounded and unbounded polygonal domains were onstruted. Although thisviewpoint is not the one taken in [5℄, [6℄, suh Shwarz�Christo�el mappings an beviewed as satisfying a RH problem on a multiply onneted domain of exatly theform (1). Here, the same onstrutive method is exploited to �nd expliit repre-sentations of the solution of broader lasses of RH problems in multiply onneteddomains.In this paper, for ease of exposition, we fous on the ontinuous ase wherethe onstant λk assumes the same value at all points on the irle Ck (in thedisontinuous analogue, whih is more akin to the usual Shwarz�Christo�el prob-lem, the value of this onstant is allowed to be di�erent on di�erent segments of
Ck). A onsequene of this assumption is that we e�etively do not allow anybranh point singularities of w(ζ) on any of the irles {Cj | j = 0, 1, . . . , M}.The method, however, an be readily generalized to the ase where branh pointsare present.We now onstrut some speial funtions assoiated with Dζ . First, for k =
0, 1, . . . , M , de�ne the Möbius transformation φk(ζ) by

φk(ζ) = δk +
q2
k

ζ − δk
, k = 0, 1, . . . , M. (2)It is straightforward to hek that for ζ on irle Ck,

φk(ζ) = ζ.We de�ne the re�etion of a point ζ in the irle Ck by φk(ζ). Then, for k =
1, . . . , M , introdue the Möbius transformation θk(ζ) de�ned by

θk(ζ) = φk

(

ζ
−1)

, k = 1, . . . , M. (3)It follows from (3) and (2) that
θk(ζ) = δk +

q2
kζ

1 − δkζ
, k = 1, . . . , M.For k = 1, . . . , M , let C′

k denote the re�etion of Ck in C0. It an be shown that
θk(ζ) maps C′

k onto Ck.Let Θ denote the set of all ompositions of the maps {θk(ζ) | k = 1, . . . , M} andtheir inverses. It is an example of an in�nite Shottky group. Further informationon Shottky groups an be found in [3℄, [4℄. We refer to the maps {θk(ζ) | k =
1, . . . , M}, together with their inverses, as the generators of Θ. A fundamentalregion of Θ is a onneted region whose images under all maps in Θ tessellate thewhole of the plane. Consider the region onsisting of Dζ and its re�etion in C0,i.e., the 2M -onneted region bounded by {Ck, C′

k | k = 1, . . . , M}. Label thisregion as F . F is a fundamental region of Θ.



[8℄ Darren CrowdyAssoiated with Θ are M funtions known as integrals of the �rst kind whihwe denote {υk(ζ) | k = 1, . . . , M}. These are analyti, but not single-valued, in F .Indeed, for j, k = 1, . . . , M we have
[υk(ζ)]Cj

= −[υk(ζ)]C′

j
= δjk, (4)where [υk(ζ)]Cj

and [υk(ζ)]C′

j
denote respetively the hanges in υk(ζ) on travers-ing Cj and C′

j with the interior of F on the right, and δjk denotes the Kronekerdelta funtion. Furthermore, for j, k = 1, . . . , M ,
υk(θj(ζ)) − υk(ζ) = τjk (5)for some {τjk | j, k = 1, . . . , M} whih are onstants, i.e., independent of ζ. Thefuntions {υk(ζ) | k = 1, . . . , M} are uniquely determined (up to an additive on-stant) by their periods given by (4) and (5).2.1. The Shottky�Klein prime funtionLet α be some arbitrary point in F . It is established in [12℄ that there existsa unique funtion X(ζ, α) de�ned by the properties:(i) X(ζ, α) is single-valued and analyti in F .(ii) X(ζ, α) has a seond-order zero at eah of the points θ(α), θ ∈ Θ.(iii) limζ→α

X(ζ,α)
(ζ−α)2 = 1.(iv) For k = 1, . . . , M ,

X(θk(ζ), α) = exp (−2πi(2υk(ζ) − 2υk(α) + τkk))
dθk(ζ)

dζ
X(ζ, α).The Shottky�Klein prime funtion (heneforth referred to as S�K prime funtion),whih we denote ω(ζ, α), is de�ned as

ω(ζ, α) = (X(ζ, α))1/2,where the branh of the square root is hosen so that ω(ζ, α) behaves like (ζ − α)as ζ → α.There are two known ways to evaluate the S�K prime funtion. One possibilityis to use a lassial in�nite produt formula for it as reorded, for example, inBaker [3℄. It is given by
ω(ζ, α) = (ζ − α)

∏

θk

(θk(ζ) − α)(θk(α) − ζ)

(θk(ζ) − ζ)(θk(α) − α)
, (6)where the produt is over all ompositions of the basi maps {θj , θ

−1
j | j =

1, . . . , M} exluding the identity and all inverse maps. This produt, even if itis onvergent, an onverge so slowly and require suh a large number of termsin the produt, that its use in many irumstanes is impratial. An alternativenumerial sheme has reently been put forward by Crowdy & Marshall [8℄; it ismuh more omputationally e�ient than methods based on the in�nite produt(6) over the Shottky group.



Expliit solution of a lass of Riemann�Hilbert problems [9℄3. The irular slit domainTo proeed with the onstrution, we introdue an intermediate η-plane. Con-sider a onformal mapping, denoted η(ζ; α), taking the multiply onneted iru-lar domain Dζ to a onformally equivalent irular slit domain alled Dη. α isthe point in Dζ mapping to η = 0 in Dη, i.e., η(α; α) = 0. Figure 1 showsa shemati in a triply onneted ase. Let the image of C0 under this map-ping be the unit irle in the η-plane whih will be alled L0. The M irles
{Cj | j = 1, . . . , M} will be taken to have irular-slit images, entred on η = 0,and labelled {Lj | j = 1, . . . , M}. Let the irular ar Lj be haraterized by theonditions

|η| = rj , arg[η] ∈ [φ
(j)
1 , φ

(j)
2 ].There will be two pre-image points on the irle Cj orresponding to the two end-points of the irular-slit Lj. These two pre-image points, labelled γ

(j)
1 and γ

(j)
2 ,satisfy the onditions

η(γ
(j)
1 ; α) = rje

iφ
(j)
1 , ηζ(γ

(j)
1 , α) = 0,

η(γ
(j)
2 ; α) = rje

iφ
(j)
2 , ηζ(γ

(j)
2 , α) = 0.These two zeros of ηζ(ζ) on Cj are simple zeros.
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Figure 1: A typial irular slit mapping from a triply onneted irular region
Dζ in a ζ-plane to a triply onneted irular slit domain Dη in a η-plane.It is shown in [5℄ and [7℄ that an expliit expression for the onformal slitmapping from Dζ to Dη an be found in terms of the S�K prime funtion of Dζ .It is given by

η(ζ; α) =
ω(ζ, α)

|α|ω(ζ, α−1)
. (7)Formula (7) will be ruial in the solution sheme to follow.



[10℄ Darren Crowdy4. Solution shemeThe required funtion w(ζ) is analyti in Dζ . One an also onsider the om-posed funtion W (η), analyti in Dη, de�ned by
W (η(ζ; α)) ≡ w(ζ).The boundary onditions (1), expressed in terms of this new funtion W (η), are

Re
[

λk W (η)
]

= dk on Lk, k = 0, 1, . . . , M.These an be rewritten in the form
λk W (η) + λkW (η) = 2dk on Lk, k = 0, 1, . . . , M,or, on use of the fat that η = r2

kη−1 on Lk,
λk W (η) + λkW (r2

kη−1) = 2dk on Lk, k = 0, 1, . . . , M. (8)Using W ′(η) to denote the derivative of W with respet to its argument, di�eren-tiation of (8) with respet to η gives
λk W ′(η) −

r2
k

η2
λkW

′
(r2

kη−1) = 0 on Lk, k = 0, 1, . . . , M,whih an be rewritten as
ηW ′(η)

ηW ′(η)
=

λk

λk

on Lk, k = 0, 1, . . . , M.This is a statement of the fat that the argument of ηW ′(η) is onstant on Lk.Let us now suppose that we seek a solution for whih there are preisely twozeros of the derivative dw/dζ on eah of the boundary omponents {Cj | j =
0, 1, . . . , M}. Let the positions of the two zeros on Cj be at points aj and cj , i.e.,

dw

dζ
(aj) = 0 =

dw

dζ
(cj).These zero positions will not be known a priori but will enter our representationof the solution as aessory parameters.4.1. Building blok funtionsA set of �building blok� funtions will be used to onstrut the required solu-tions. Their haraterizing feature is that they all have onstant argument on theboundary irles {Cj | j = 0, 1, . . . , M}. These funtions were introdued in [5℄and their properties established there.It is shown in [5℄ that funtions of the form

R1(ζ; ζ1, ζ2) =
ω(ζ, ζ1)

ω(ζ, ζ2)
, (9)



Expliit solution of a lass of Riemann�Hilbert problems [11℄where ζ1 and ζ2 are any two points on the same irle Ck (for k = 0, 1, . . . , M) hasonstant argument on eah of the boundary irles {Cj | j = 0, 1, . . . , M}. Also,funtions of the form
R2(ζ; ζ1, ζ2) =

ω(ζ, ζ1)ω(ζ, ζ1
−1

)

ω(ζ, ζ2)ω(ζ, ζ2
−1

)
, (10)where ζ1 and ζ2 are any two ordinary points of the Shottky group (these pointsneed not be points on the boundary irles) similarly have onstant argument oneah of the boundary irles {Cj | j = 0, 1, . . . , M}.Let γ0 be some point on C0 that is distint from a0 and c0. Consider thefuntion

R1(ζ; a0, γ0)R1(ζ; c0, γ0)R2(ζ; γ0, β)R2(ζ; α, β)

×
M
∏

k=1

R1(ζ; ak, γ
(1)
k )R1(ζ; ck, γ

(2)
k ).

(11)First, sine it is a produt of the building blok funtions just introdued, thefuntion in (11) has onstant argument on the irles {Cj | j = 0, 1, . . . , M}. Asfor its singularities, it is a meromorphi funtion in Dζ with a seond order pole at
ζ = β (and at β

−1), simple poles at the points {γ(1)
k , γ

(2)
k | k = 1, . . . , M}, simplezeros at ζ = α and α−1 and simple zeros at the points {ak, ck | k = 0, 1, . . . , M}.It has no other singularities in Dζ . Let the funtion (11), onsidered now asa funtion of η, be alled U(η).Now onsider the funtion ηW ′(η) whih, we have already established, musthave onstant argument on the irles {Cj | j = 0, 1, . . . , M}. By the hain rulewe have

ηW ′(η) = η
dw/dζ

dη/dζ
.This funtion is analyti everywhere in Dη exept for simple poles at the zerosof dη/dζ, i.e., at the points {γ

(1)
k , γ

(2)
k | k = 1, . . . , M}. It also has seond orderpoles at ζ = β and β

−1. It has a simple zero at ζ = α sine η(ζ; α) has a sim-ple zero there and, as an be seen after making use of (7), it also has a simplezero at α−1. By assumption, it also has 2(M + 1) simples zeros at the points
{ak, ck | k = 0, 1, . . . , M}. In short, it has all the same zeros and poles in Dζ asthe funtion U(η).We are thus led to onsider the ratio

V (η) ≡
ηW ′(η)

U(η)in the domain Dη. Sine we know that U(η) and ηW ′(η) have the same polesand zeros inside and on the boundaries of Dζ , the funtion V (η) an be deduedto be analyti everywhere in the domain Dη, as well as on its boundaries. Thismeans that V (η) is analyti everywhere in |η| ≤ 1. Moreover, it is known that thearguments of both U(η) and ηW ′(η) are onstant on L0. Thus,
V (η) = ǫV (η) on L0,



[12℄ Darren Crowdyfor some onstant ǫ implying that
V (η−1) = ǫV (η) on L0.This equation furnishes the analyti ontinuation of V (η) into |η| > 1 and, inpartiular, shows that it is analyti there (and bounded at in�nity). Sine V (η) isanalyti everywhere in the omplex η-plane, and bounded as η → ∞, Liouville'stheorem implies V (η) = B, where B is some omplex onstant.On use of (9) and (10), and after some anellations, we dedue that

dw(ζ)

dζ
=

BS(ζ; α)

ω(ζ, β)2ω(ζ, β
−1

)2

M
∏

k=0

ω(ζ, ak)ω(ζ, ck),where
S(ζ; α) ≡

(

ω(ζ, α−1)ωζ(ζ, α) − ω(ζ, α)ωζ(ζ, α−1)
∏M

k=1 ω(ζ, γ
(1)
k )ω(ζ, γ

(2)
k )

)

.Hene, the required solution an be written as the inde�nite integral
w(ζ) = A + B

ζ
∫

1

S(ζ′; α)

ω(ζ′, β)2ω(ζ′, β
−1

)2

M
∏

k=0

ω(ζ′, ak)ω(ζ′, ck) dζ′, (12)where A is some omplex onstant. Formula (12) is the main result of this paper.It is demonstrated in the appendix that for any two distint hoies of α1and α2, S(ζ; α1) = CS(ζ; α2), where C is some onstant (independent of ζ).This means that making di�erent hoies of α in the representation (12) simplyorresponds to making a di�erent hoie of the onstant B.5. The doubly onneted aseAs veri�ation we onsider two problems in the doubly onneted ase. Let
Dζ to be the onentri annulus ρ < |ζ| < 1 for some real ρ. Any doubly on-neted domain is onformally equivalent to some suh annulus. The solutions tothe following two problems an, it turns out, be found in analytial form usingalternative arguments whih allows us to hek our analysis.Problem 1We speialize to the ase where λ0 = λ1 = 1 with c0 = 0. The problem is then thelassial Shwarz problem. One form of the solution is

w(ζ) =
U

ζ − β
+ Ã log ζ + I(ζ), (13)where Ã is a onstant and the single-valued funtion I(ζ) an be written in termsof the lassial Villat formula [1℄:

I(ζ) =
1

2πi

∮

|ζ′|=1

dζ′

ζ′
(1 − 2K(ζ/ζ′, ρ))

[

−Re

[

U

ζ − β
+ Ã log ζ

]]



Expliit solution of a lass of Riemann�Hilbert problems [13℄
−

1

2πi

∮

|ζ′|=ρ

dζ′

ζ′
(2 − 2K(ζ/ζ′, ρ))

[

c1 − Re

[

U

ζ − β
+ Ã log ζ

]]

,where
K(ζ, ρ) ≡

ζPζ(ζ, ρ)

P (ζ, ρ)
(14)and

P (ζ, ρ) ≡ (1 − ζ)

∞
∏

k=1

(1 − ρ2kζ)(1 − ρ2kζ−1). (15)Alternatively, the same solution an be written in the form
w(ζ) =

U

β

(

K(ζβ−1, ρ) + K(ζ β, ρ)
)

+ C log ζ + D,where
C =

1

log ρ

(

c1 −
U

β

(

K(ρβ−1, ρ) + K(ρ β, ρ) − K(β−1, ρ) − K(β, ρ)
)

)and
D = −

U

α

(

K(β−1, ρ) + K(β, ρ)
)

.The new solution method given earlier provides a third representation of thesame solution:
w(ζ)

= A + B

ζ
∫

1

S(ζ′; α)

ω(ζ′, β)2ω(ζ′, β
−1

)2
ω(ζ′, a0)ω(ζ′, c0)ω(ζ′, a1)ω(ζ′, c1) dζ′,

(16)where, in this doubly onneted ase, it an be shown (see [5℄ for details) that
S(ζ; α) ∝

1

ζ2
.To hek (16) we use the solution (13) to numerially ompute (using Newton'smethod) the two points on C0 at whih dw/dζ = 0. These are substituted into(16) as the values of a0 and c0. Similarly, we �nd the two points on C1 at whih

dw/dζ = 0 and take these as the values of a1 and c1. Next, we set A = w(1),where the right hand side is omputed using the known solution (13). We also�x B by ensuring that
w(ρ) = A + B

ρ
∫

1

S(ζ′)

ω(ζ′, β)2ω(ζ′, β
−1

)2
ω(ζ′, a0)ω(ζ′, c0)ω(ζ′, a1)ω(ζ′, c1) dζ′,where the left hand side of this equation is evaluated using the known solution(13). With all the parameters in (16) now determined, we hek the value of theintegral (16) against the values given by (13) for di�erent (arbitrary) hoies of ζ in



[14℄ Darren Crowdythe annulus (the integral (16) is omputed using the trapezoidal rule). The valuesare found to be in agreement (to within the auray of the numerial method)thereby on�rming that (16) is indeed a representation of the required solution.Problem 2We now speialize to the ase where λ0 = 1, λ1 = eiπ/2 with no restritions on d0and d1. This is no longer a lassial Shwarz problem so the Villat formula annotbe used here. An analytial formula for the solution an, however, be found:
w(ζ) =

U

β

[

K(ζβ−1, ρ2) − K(ζβ, ρ2) − K(ζβ−1ρ−2, ρ2) + K(ζβρ−2, ρ2)
]

+ d0 + id1,

(17)where the speial funtion de�ned in (14) again appears. A derivation of (17) isgiven in appendix B. In a manner akin to that used in Problem 1, the expression(17) was used to �nd the loations of the zeros of dw/dζ on both C0 and C1 (thereare two on eah irle). These are then used as the values of a0, c0, a1 and c1 inan expression of the form (16). The values of A and B are determined in the sameway as in Problem 1 and the values of the integral (16) for arbitrary values of ζheked against the values given by (17). They are found to be in agreement.6. DisussionThis paper desribes a onstrutive method for �nding solutions to Riemann�Hilbert problems of the speial form (1) on multiply onneted domains. Thesolution having two zeros of the derivative on eah of the boundary irles isgiven in (12) as a non-singular inde�nite integral ontaining a �nite set of aes-sory parameters. In general, these parameters must be determined from a setof equations obtained by substituting the form (12) into the boundary ondi-tions (1). In other words, given the 2M + 2 real parameters assoiated with theset {λk, dk | k = 0, 1, . . . , M} it is possible to determine the 2M + 2 real parame-ters assoiated with the set of zeros {ak, ck | k = 0, 1, . . . , M}. How to determinethese aessory parameters numerially in an e�ient manner remains a subjetfor future researh.In priniple, it is possible to extend the onstrutive method herein to �nd rep-resentations to solutions of the disontinuous analogues of the speial RH problemsonsidered here where the onstant λk is allowed to assume di�erent pieewise on-stant values on di�erent segments of irle Ck. In suh ases, one must generallyintrodue branh point singularities in the derivative wζ(ζ) but this just requiresthe inorporation of appropriate non-integer powers of the building blok funtionswhen performing the onstrution desribed herein. It is very similar to what isdone in onstruting multiply onneted Shwarz�Christo�el formulae [5℄, [6℄.AknowledgementsThe author aknowledges support from a 2004 Philip Leverhulme Prize inMathematis, an EPSRC Advaned Researh Fellowship and partial support from



Expliit solution of a lass of Riemann�Hilbert problems [15℄the European Siene Foundation's MISGAM and HCAA researh networks. Thiswork was initiated during the BFA onferene, Kraków, Poland, April 16-23, 2008;the author thanks Prof. V. Mityushev for suggesting this problem as a topi ofstudy.A. The funtion S(ζ; α)In this appendix we establish the fat that S(ζ; α1) = CS(ζ; α2), where C issome onstant (independent of ζ). To this end, onsider the ratio
R(ζ) ≡

S(ζ; α1)

S(ζ; α2)
, (18)where α1 and α2 are two distint values in Dζ . First, notie that S(ζ; α1) an berewritten in the form

S(ζ; α1) =

(

ωζ(ζ, α1)

ω(ζ, α1)
−

ωζ(ζ, α1
−1)

ω(ζ, α1
−1)

)

ω(ζ, α1)ω(ζ, α1
−1)

∏M
k=1 ω(ζ, γ

(1)
k )ω(ζ, γ

(2)
k )

, (19)where {γ
(1)
k , γ

(2)
k | k = 1, . . . , M} are the zeros of the slit map η(ζ; α1). Similarly

S(ζ; α2) =

(

ωζ(ζ, α2)

ω(ζ, α2)
−

ωζ(ζ, α2
−1)

ω(ζ, α2
−1)

)

ω(ζ, α2)ω(ζ, α2
−1)

∏M
k=1 ω(ζ, γ̃

(1)
k )ω(ζ, γ̃

(2)
k )

, (20)where {γ̃
(1)
k , γ̃

(2)
k | k = 1, . . . , M} are the zeros of the slit map η(ζ; α2). It is alsoeasy to hek that, for j = 1, 2,

ωζ(ζ, αj)

ω(ζ, αj)
−

ωζ(ζ, αj
−1)

ω(ζ, αj
−1)

=
ηζ(ζ; αj)

η(ζ; αj)
.Next, observe that on Cj (and for any α),

η(ζ; α)η(ζ; α) = r2
j ,where rj is some real onstant. A di�erentiation with respet to ζ yields

ηζ(ζ; α)

η(ζ; α)
= −

(

dζ

dζ

)(

ηζ(ζ; α)

η(ζ; α)

)

.It follows that the ratio of any two suh funtions, that is,
T (ζ) ≡

ηζ(ζ; α1)/η(ζ; α1)

ηζ(ζ; α2)/η(ζ; α2)will be real (and, in partiular, have onstant argument) on all the irles {Cj | j =
0, 1, . . . , M}.Substitution of (19) and (20) into (18) then produes

R(ζ) = T (ζ)R2(ζ; α1, α2)

M
∏

j=1

R1(ζ; γ̃
(1)
j , γ

(1)
j )R1(ζ; γ̃

(2)
j , γ

(2)
j ).



[16℄ Darren CrowdyThe important observation is that this is a produt of funtions that all haveonstant argument on the irles {Cj | j = 0, 1, . . . , M}. These onditions an bewritten as
R(ζ) = κjR(ζ) on Cj , j = 0, 1, . . . , M, (21)for some set of omplex onstants {κj | j = 0, 1, . . . , M}. R(ζ) an be shown tobe a onstant. One way to do this is to use arguments similar to those used in�4.1. to show that V (η) is onstant, but it is instrutive to present an alternativeargument based on RH methods. The funtion R(ζ) is known to be analyti andsingle-valued everywhere in the fundamental region of the group Θ. Consider thereal part of equation (21); it an be written in the standard form of a RH problem:
Re[ µj R(ζ)] = 0 on Cj , j = 0, 1, . . . , M, (22)for some set of omplex onstants {µj | j = 0, 1, . . . , M}. The (homogeneous)Riemann�Hilbert problem (22) has been well studied and it is known (see, forexample, p. 257 of Vekua [18℄) that it admits no solution for R(ζ) unless all theonstants {µj | j = 0, 1, . . . , M} are idential. In this ase, the unique solutionis R(ζ) = C, where C is a onstant. Thus, we have established that S(ζ; α1) =

CS(ζ; α2) for some onstant C that is independent of ζ.B. Derivation of (17)To �nd solution (17), onsider the following boundary value problem for w(ζ):
Re[w(ζ)] = 0 on |ζ| = 1,

Im[w(ζ)] = 0 on |ζ| = ρ.These imply that
w(ζ) + w(ζ−1) = 0 on |ζ| = 1,

w(ζ) − w(ρ2ζ−1) = 0 on |ζ| = ρ.
(23)The relations (23) an be analytially ontinued o� the respetive irles and implythat w(ζ) satis�es the funtional relation

w(ρ4ζ) = w(ζ). (24)Now P (ζ, ρ) an be shown, diretly from its de�nition (15), to satisfy the funtionalrelations
P (ζ−1, ρ) = −ζ−1P (ζ, ρ), P (ρ2ζ, ρ) = −ζ−1P (ζ, ρ),from whih it also follows that
K(ζ−1, ρ) = 1 − K(ζ, ρ), K(ρ2ζ, ρ) = K(ζ, ρ) − 1.Furthermore, near ζ = 1, K(ζ, ρ) has a simple pole with unit residue, i.e.,

K(ζ, ρ) =
1

ζ − 1
+ analytic.



Expliit solution of a lass of Riemann�Hilbert problems [17℄We an therefore use K(ζ, ρ2) to onstrut a funtion w(ζ) satisfying (24) andhaving a simple pole at ζ = β. The relations (23) imply that w(ζ) also has simplepoles at ζ = β−1, ρ2β, ρ2β−1 (and at all points equivalent to these under ζ 7→ ρ4ζ).The required form of solution an now easily be dedued to be that given in (17).Referenes[1℄ N.I. Akhiezer, Elements of the theory of elliptial funtions, AMS Translations ofMathematial Monographs, Providene, RI, 1990.[2℄ Y. Antipov, V.V. Silvestrov, Method of Riemann surfaes in the study of super-avitating �ow around two hydrofoils in a hannel, Physia D. 235 (2007), 72�81.[3℄ H.F. Baker, Abelian funtions: Abel's theorem and the allied theory of theta fun-tions, Cambridge University Press, 1897.[4℄ A.F. Beardon, A primer on Riemann surfaes, London Mathematial SoietyLeture Note Series 78, Cambridge University Press, 1984.[5℄ D.G. Crowdy, The Shwarz�Christo�el mapping to bounded multiply onnetedpolygonal domains, Pro. Roy. So. A. 461 (2005), 2653�2678.[6℄ D.G. Crowdy, Shwarz�Christo�el mappings to unbounded multiply onnetedpolygonal regions, Math. Pro. Camb. Phil. So. 142 (2007), 319�339.[7℄ D.G. Crowdy, J.S. Marshall, Conformal mappings between anonial multiply on-neted domains, Comput. Methods Funt. Theory 6 (2006), 59�76.[8℄ D.G. Crowdy, J.S. Marshall, Computing the Shottky�Klein prime funtion on theShottky double of planar domains, Comput. Methods Funt. Theory 7 (2007),293�308.[9℄ F.D. Gakhov, Boundary value problems, Dover, New York, 1990.[10℄ G.M. Goluzin, Geometri theory of funtions of a omplex variable, Amer. Math.So., Providene, RI, 1969.[11℄ M.I. Gurevih, Theory of jets in ideal �uids, Aademi Press, New York, 1965.[12℄ D.A. Hejhal, Theta funtions, kernel funtions and Abelian integrals, Mem. Amer.Math. So. 129 (1972).[13℄ V.V. Mityushev, S.V. Rogosin, Construtive methods for linear and nonlinearboundary value problems, Monographs & Surveys in Pure & Applied Mathematis,Chapman & Hall/CRC, 1999.[14℄ V.V. Mityushev, Solution of the Hilbert boundary value problem for a multiplyonneted domain, Slup. Prae Mat. Przyr. Mat. Fiz. 9A (1994), 37�69.[15℄ Z. Nehari, Conformal mapping, Dover, New York, 1952.[16℄ M. Shi�er, Reent advanes in the theory of onformal mappings, appendix to:R. Courant, Dirihlet's priniple, onformal mapping and minimal surfaes, Pureand Applied Mathematis. A Series of Text and Monographs III, IntersienePublishers, New York, 1950.[17℄ S. Tanveer, New solutions for steady bubbles in a Hele-Shaw ell, Phys. Fluids 30(1987), 651�658.[18℄ I.N. Vekua, Generalized analyti funtions, Pergamon Press, New York, 1962.



[18℄ Darren Crowdy[19℄ R. Wegmann, M.M.S. Nasser, The Riemann�Hilbert problem and the general-ized Neumann kernel on multiply onneted regions, J. Comput. Appl. Math. 214(2008), 36�57. Department of MathematisImperial College London180 Queen's GateLondon, SW7 2AZUnited KingdomE-mail: d.rowdy�imperial.a.ukReeived: 2 July 2008; �nal version: 17 Deember 2008;available online: 9 April 2009.



FOLIA 70Annales Universitatis Paedagogiae CraoviensisStudia Mathematia VIII (2009)
Barbara Kol�ga�Kulpa, Tomasz Szostok and Szymon W¡sowizOn some equations stemming from quadrature rulesAbstrat. We deal with funtional equations of the type

F (y) − F (x) = (y − x)
n
∑

k=1

fk ((1 − λk)x + λky) ,onneted to quadrature rules and, in partiular, we �nd the solutions of thefollowing funtional equation
f(x) − f(y) = (x − y)[g(x) + h(x + 2y) + h(2x + y) + g(y)].We also present a solution of the Stamate type equation

yf(x) − xf(y) = (x − y)[g(x) + h(x + 2y) + h(2x + y) + g(y)].All results are valid for funtions ating on integral domains.1. IntrodutionWe deal with some equations onneted to quadrature rules. Having a funtion
f : R → R we may approximate its integral using the following expression

F (y) − F (x) ≈ (y − x)

n
∑

k=1

αkf((1 − λk)x + λky)(where F is a primitive funtion for f), whih is satis�ed exatly for polynomials ofertain degree. One of the simplest funtional equations onneted to quadraturerules is an equation stemming from Simpson's rule
F (y) − F (x) = (y − x)

[

1

6
f(x) +

2

3
f

(

x+ y

2

)

+
1

6
f(y)

]

.Another example is given by the equation
F (y) − F (x) = (y − x)

[

1

8
f(x) +

3

8
f

(

x+ 2y

3

)

+
3

8
f

(

2x+ y

3

)

+
1

8
f(y)

]

,AMS (2000) Subjet Classi�ation: 39B52.Volumes I-VII appeared as Annales Aademiae Paedagogiae Craoviensis Studia Mathematia.



[20℄ Barbara Kol�ga�Kulpa, Tomasz Szostok and Szymon W¡sowizwhih is satis�ed by polynomials of degree not greater than 3. The generalizedversion of this equation
g(x) − f(y) = (x− y)[h(x) + k(sx+ ty) + k(tx+ sy) + h(y)] (1)was onsidered during the 44th ISFE held in Louisville, Kentuky, USA by P.K. Sa-hoo [7℄. The solution has been given in the lass of funtions f , g, h, k mapping

R into R and suh that g and f are twie di�erentiable, and k is four times di�er-entiable.On the other hand, M. Sablik [5℄ during the 7th Katowie�Debreen WinterSeminar on Funtional Equations and Inequalities presented the general solutionof this equation in the ase s, t ∈ Q without any regularity assumptions onerningthe funtions onsidered.We deal with a speial ase of (1) (with s = 1, t = 2) for funtions atingon integral domains. However, it is easy to observe that if we take x = y in (1),then we immediately obtain that f = g. Thus we shall �nd the solutions of thefollowing funtional equation
f(x) − f(y) = (x− y)[g(x) + h(x+ 2y) + h(2x+ y) + g(y)]. (2)Using the obtained result we will also present a solution of a similar Stamate typeequation
yf(x) − xf(y) = (x− y)[g(x) + h(2x+ y) + h(x+ 2y) + g(y)]. (3)In the proof of Lemma 1 below we use the lemma established by M. Sablik[6℄ and improved by I. Pawlikowska [3℄. First we need some notations. Let G,

H be Abelian groups and SA0(G,H) := H , SA1(G,H) := Hom(G,H) (i.e., thegroup of all homomorphisms from G into H), and for i ∈ N, i ≥ 2, let SAi(G,H)be the group of all i-additive and symmetri mappings from Gi into H . Fur-thermore, let P :=
{

(α, β) ∈ Hom(G,G)2 : α(G) ⊂ β(G)
}. Finally, for x ∈ G let

xi = (x, . . . , x
︸ ︷︷ ︸

i

), i ∈ N.Lemma 1Fix N ∈ N ∪ {0} and let I0, . . . , IN be �nite subsets of P. Suppose that H isuniquely divisible by N ! and let the funtions ϕi:G→ SAi(G,H) and ψi,(α,β):G→
SAi(G,H) ((α, β) ∈ Ii, i = 0, . . . , N ) satisfy

ϕN (x)(yN ) +

N−1
∑

i=0

ϕi(x)(y
i) =

N
∑

i=0

∑

(α,β)∈Ii

ψi,(α,β)(α(x) + β(y))(yi)for every x, y ∈ G. Then ϕN is a polynomial funtion of order at most k − 1,where
k =

N
∑

i=0

card

(

N
⋃

s=i

Is

)

.



On some equations stemming from quadrature rules [21℄Now we will state a simpli�ed version of this lemma. We take N = 1 and weonsider funtions ating on an integral domain P . Moreover, we onsider onlyhomomorphisms of the type x 7→ yx, where y ∈ P is �xed.Lemma 2Let P be an integral domain and let I0, I1 be �nite subsets of P 2 suh that for all
(a, b) ∈ Ii the ring P is divisible by b. Let ϕi, ψi,(α,β):P → P satisfy

ϕ1(x)y + ϕ0(x) =
∑

(a,b)∈I0

ψ0,(a,b)(ax+ by) + y
∑

(a,b)∈I1

ψ1,(a,b)(ax+ by)for all x, y ∈ P . Then ϕ1 is a polynomial funtion of order at most equal to
card(I0 ∪ I1) + card I1 − 1.In the above lemmas a polynomial funtion of order n means a solution of thefuntional equation ∆n+1

h f(x) = 0, where ∆n
h stands for the n-th iterate of thedi�erene operator ∆hf(x) = f(x+ h)− f(x). Observe that a ontinuous polyno-mial funtion of order n is a polynomial of degree at most n (see [2, Theorem 4,p. 398℄).It is also well known that if P is an integral domain uniquely divisible by n!and f :P → P is a polynomial funtion of order n, then

f(x) = c0 + c1(x) + . . .+ cn(x), x ∈ P,where c0 ∈ P is a onstant and
ci(x) = Ci(x, x, . . . , x), x ∈ Pfor some i-additive and symmetri funtion Ci:P

i → P .2. ResultsWe begin with the following lemma whih will be usefull in the proof of themain result. However, we state it a bit more generally.Lemma 3Let P be an integral domain and let f, fk:P → P , k = 0, . . . , n, be funtionssatisfying the equation
f(y) − f(x) = (y − x)

n
∑

k=0

fk(akx+ bky), (4)where ak, bk ∈ P are given numbers suh that for every k ∈ {0, . . . , n} we have
ak 6= 0 or bk 6= 0.Let i ∈ {0, . . . , n} be �xed. If P is divisible by ai, bi and also by aibk − akbi,
k = 0, . . . , n; k 6= i, then the funtion

f̃(x) := (ai + bi)fi((ai + bi)x)is a polynomial funtion of degree at most 2n+ 1.



[22℄ Barbara Kol�ga�Kulpa, Tomasz Szostok and Szymon W¡sowizMoreover, if there exists k1 ∈ {0, 1, . . . , n} suh that ak1 = 0 or bk1 = 0,then funtion f̃ is a polynomial funtion of order at most 2n and if there exist
k1, k2 ∈ {0, . . . , n} suh that ak1 = bk2 = 0, then f̃ is a polynomial funtionof order at most 2n− 1.Proof. Fix an i ∈ {0, . . . , n}, put in (4) x − biy and x + aiy instead of x and
y, respetively, to obtain

f(x+ aiy) − f(x− biy)

= (ai + bi)y[f0((a0 + b0)x+ (aib0 − a0bi)y) + . . . (5)
+ fi((ai + bi)x) + . . .+ fn((an + bn)x+ (aibn − anbi)y)].There are two possibilities:1. ai, bi 6= 0,2. ai = 0 or bi = 0.Let us onsider the �rst ase. Then from (5) we obtain

y(ai + bi)fi((ai + bi)x) = f(x+ aiy) − f(x− biy)

− (ai + bi)y

n
∑

k=0,k 6=i

fk((ak + bk)x + (aibk − akbi)y),whih means that
yf̃(x) = f(x+ aiy) − f(x− biy)

−(ai + bi)y

n
∑

k=0,k 6=i

fk((ak + bk)x+ (aibk − akbi)y).
(6)Now we are in position to use Lemma 2 with

I0 = {(1,−bi), (1, ai)}and
I1 = {(ak + bk, aibk − akbi) : k = 0, . . . , n; k 6= i}.We learly obtain that f̃ is a polynomial funtion of order at most equal to

card(I0 ∪ I1) + card I1 − 1 ≤ (n+ 2) + n− 1 = 2n+ 1.Further, if for example ak1 = 0 for some k1 ∈ {0, . . . , n}, k1 6= i, then we havea summand
fk1(bk1x+ aibk1y) = fk1(bk1(x+ aiy))on the right-hand side of (6). Thus we put f̃k1(x) := fk1(bk1x) and (6) takes form

yf̃(x)

= f(x− biy) − f(x+ aiy)

− (ai + bi)y

[

n
∑

k=0,k 6=i,k1

fk((ak + bk)x+ (aibk − akbi)y) + f̃k1(x+ aiy)

]

.



On some equations stemming from quadrature rules [23℄Similarly as before we take
I0 = {(1,−bi), (1, ai)}and

I1 = {(ak + bk, aibk − akbi) : k = 0, . . . , n; k 6= i, k1} ∪ {(1, ai)}.In this ase we have I0 ∩ I1 = {(1, ai)}, i.e.,
card(I0 ∪ I1) + card I1 − 1 ≤ (n+ 1) + n− 1 = 2n.The proof in the ase ak1 = bk2 = 0 is similar.Now we onsider the ase ai = 0 or bi = 0. Let for example ai = 0, thenfrom (6) we have

y(bi)fi(bix) − f(x) = −f(x− biy) − biy

n
∑

k=0,k 6=i

fk((ak + bk)x − akbiy),i.e.,
ybif̃(x) − f(x) = −f(x− biy) − biy

n
∑

k=0,k 6=i

fk((ak + bk)x− akbiy).In this ase we take
I0 = {(1,−bi)}and

I1 = {(ak + bk,−akbi) : k = 0, . . . , n; k 6= i}.Thus similarly as before f̃ is a polynomial funtion of degree not greater than
card(I0 ∪ I1) + card I1 − 1 ≤ (n+ 1) + n− 1 = 2n.It is easy to see that if for some k2 ∈ {0, . . . , n}, bk2 = 0, then f̃ is a polynomialfuntion of order at most 2n− 1.Now we are in position to state the most important result of this paper.Namely, we give a general solution of (2) for funtions ating on integral domainssatisfying some assumptions.Theorem 1Let P be an integral domain with unit element 1I, uniquely divisible by 5! and suhthat for every n ∈ N we have n1I 6= 0. The funtions f, g, h:P → P satisfy theequation (2) if and only if there exist a, b, c, d, d̄, e ∈ P and an additive funtion

A:P → P suh that
f(x) = 18ax4 + 8bx3 + cx2 + 2dx+ e, x ∈ P,

g(x) = 9ax3 + 3bx2 + cx− 3A(x) + d− d̄, x ∈ P,

h(x) = ax3 + bx2 +A(x) + d̄, x ∈ P.



[24℄ Barbara Kol�ga�Kulpa, Tomasz Szostok and Szymon W¡sowizProof. Assume that f, g, h:P → P satisfy the equation (2). From Lemma 3we know that g and h are polynomial funtions of order at most 5. Therefore
g(x) = c0 + c1(x) + c2(x) + c3(x) + c4(x) + c5(x), x ∈ P (7)and
h(x) = d0 + d1(x) + d2(x) + d3(x) + d4(x) + d5(x), x ∈ P, (8)where ci, di:P → P are diagonalizations of some i-additive and symmetri fun-tions Ci, Di:P

i → P , respetively. Taking in (2) y = 0, we obtain the followingformula
f(x) = x[g(x) + h(x) + h(2x) + g(0)] + f(0), x ∈ P, (9)whih used in (2) gives us

x[g(x) + h(x) + h(2x) + g(0)] − y[g(y) + h(y) + h(2y) + g(0)]

= (x− y)[g(x) + h(x+ 2y) + h(2x+ y) + g(y)], x, y ∈ P.After some simple alulations we get
x[h(2x) + h(x) − h(x+ 2y) − h(2x+ y) − g0(y)]

= y[h(2y) + h(y) − h(x+ 2y) − h(2x+ y) − g0(x)], x, y ∈ P,
(10)where g0(x) := g(x) − g(0), x ∈ P .Further, putting 2x instead of y in (10), we have

h(5x) − h(4x) − h(2x) + h(x) = g0(2x) − 2g0(x), x 6= 0,whih is also satis�ed for x = 0, sine g0(0) = 0. Thus
h(5x) − h(4x) − h(2x) + h(x) = g0(2x) − 2g0(x), x ∈ P. (11)By (7) we obtain
g0(2x) − 2g0(x) = 2c2(x) + 6c3(x) + 14c4(x) + 30c5(x) (12)and similarly from (8) we have

h(5x) − h(4x) − h(2x) + h(x) = 6d2(x) + 54d3(x) + 354d4(x) + 2070d5(x). (13)Using (13) and (12) in (11) we may write
6d2(x) + 54d3(x) + 354d4(x) + 2070d5(x) = 2c2(x) + 6c3(x) + 14c4(x) + 30c5(x).Comparing the orresponding terms on both sides of this equality we get

c2(x) = 3d2(x),

c3(x) = 9d3(x),

7c4(x) = 177d4(x),

c5(x) = 69d5(x).



On some equations stemming from quadrature rules [25℄Using these equations in (7) we have
g(x) = c0 + c1(x) + 3d2(x) + 9d3(x) + c4(x) + 69d5(x), x ∈ P, (14)where

7c4(x) = 177d4(x), x ∈ P. (15)Substitute in (10) −x in plae of y. Then
h(2x) + h(−2x) − [h(x) + h(−x)] = g0(x) + g0(−x), x ∈ P.This, in view of (8) and (14), means that

6d2(x) + 30d4(x) = 6d2(x) + 2c4(x), x ∈ P,i.e,
c4(x) = 15d4(x), x ∈ Pand from (15) we have

d4(x) = 0, x ∈ P (16)and also c4 = 0.Now we shall show that d5(x) = 0 for all x ∈ P . To this end we put in (10) inplaes of x and y, respetively −x and 2x. Thus
−2h(4x) + 3h(3x) − 2h(2x) − h(−2x) − h(−x) + 3h(0) = −g0(2x) − 2g0(−x)for x ∈ P . Similarly as before, using (8), (14) and (16), we have

−18d2(x) − 54d3(x) − 1350d5(x) = −18d2(x) − 54d3(x) − 2070d5(x), x ∈ P,whih means that
d5(x) = 0, x ∈ P.Now formulas (14) and (8) take forms

g(x) = c0 + c1(x) + 3d2(x) + 9d3(x), x ∈ P (17)and
h(x) = d0 + d1(x) + d2(x) + d3(x), x ∈ P. (18)Using these equalities in (10), we get

x[−c1(y) − 3d1(y) + 5d2(x) − 3d2(y) − d2(x + 2y) − d2(2x+ y)

+ 9d3(x) − 9d3(y) − d3(x+ 2y) − d3(2x+ y)]

= y[−c1(x) − 3d1(x) + 5d2(y) − 3d2(x) − d2(x+ 2y) − d2(2x+ y)

+ 9d3(y) − 9d3(x) − d3(x+ 2y) − d3(2x+ y)].Now, sine the ring P is divisible by 3 and 2, the funtions di are diagonal-izations of symmetri and i-additive funtions Di:P
i → P , i.e., di(x) = Di(x

i),
x ∈ P . Using these forms of di in the above equation we obtain

2(x− y)[4D2(x, y) + 9D3(x, x, y) + 9D3(x, y, y)]

= y[c1(x) + 3d1(x) + 8d2(x) + 18d3(x)]

−x[c1(y) + 3d1(y) + 8d2(y) + 18d3(y)]

(19)



[26℄ Barbara Kol�ga�Kulpa, Tomasz Szostok and Szymon W¡sowizfor all x, y ∈ P . Put in (19) −y instead of y. Then for all x, y ∈ P we have
2(x+ y)[−4D2(x, y) − 9D3(x, x, y) + 9D3(x, y, y)]

= −y[c1(x) + 3d1(x) + 8d2(x) + 18d3(x)]

−x[−c1(y) − 3d1(y) + 8d2(y) − 18d3(y)].

(20)Adding the equations (19) and (20) we arrive at
9xD3(x, y, y) − y[4D2(x, y) + 9D3(x, x, y)] = −4xd2(y), x, y ∈ P,and, onsequently,

9xD3(x, y, y) − 9yD3(x, x, y) = 4yD2(x, y) − 4xd2(y), x, y ∈ P. (21)Interhanging in these equations x with y and using the symmetry of both D2 and
D3 we may write

9yD3(x, x, y) − 9xD3(x, y, y) = 4xD2(x, y) − 4yd2(x), x, y ∈ P. (22)Now, we add (21) and (22) to get
(x+ y)D2(x, y) = xd2(y) + yd2(x), x, y ∈ P.Put here x+ y in plae of x, then

(x+ 2y)D2(x+ y, y) = (x+ y)d2(y) + yd2(x+ y), x, y ∈ P,whih yields
xD2(x, y) = yd2(x), x, y ∈ P (23)and hanging the roles of x and y
yD2(x, y) = xd2(y), x, y ∈ P. (24)Now, we multiply (23) by y and (24) by x to obtain
xyD2(x, y) = y2d2(x), x, y ∈ Pand
xyD2(x, y) = x2d2(y), x, y ∈ P.Thus
y2d2(x) = x2d2(y), x, y ∈ P,whih after substituing y = 1I gives the formula

d2(x) = bx2, x ∈ P, (25)where b := d2(1I). Thus from (24) we obtain
D2(x, y) = bxy, x, y ∈ P. (26)



On some equations stemming from quadrature rules [27℄Using the formulas (25) and (26) in (21) we have
yD3(x, x, y) = xD3(x, y, y), x, y ∈ P. (27)Putting x+ y in plae of x (27), we get

yD3(x+ y, x+ y, y) = (x+ y)D3(x+ y, y, y),whih after some alulations gives
yD3(x, x, y) − (x − y)D3(x, y, y) = xd3(y), x, y ∈ P.We use here the ondition (27). Then
xD3(x, y, y) − (x − y)D3(x, y, y) = xd3(y), x, y ∈ P,i.e.,

yD3(x, y, y) = xd3(y), x, y ∈ P. (28)Clearly we also have
xD3(x, x, y) = yd3(x), x, y ∈ P. (29)Now, multiply the equation (28) by x and (29) by y2. Then we have
xyD3(x, y, y) = x2d3(y), x, y ∈ P (30)and

xy2D3(x, x, y) = y3d3(x). (31)On the other hand, we multiply (27) by y. We obtain
y2D3(x, x, y) = xyD3(x, y, y), x, y ∈ P. (32)Using (32) in (30) we arrive at
x2d3(y) = y2D3(x, x, y), x, y ∈ P,whih multiplied by x yields
x3d3(y) = xy2D3(x, x, y), x, y ∈ P. (33)Comparing the equation (31) and (33) we obtain

y3d3(x) = x3d3(y), x, y ∈ P,i.e.,
d3(x) = ax3, x ∈ P, (34)where a := d3(1I). Now equalities (28) and (29) take forms

D3(x, y, y) = axy2, x, y ∈ P (35)



[28℄ Barbara Kol�ga�Kulpa, Tomasz Szostok and Szymon W¡sowizand
D3(x, x, y) = ax2y, x, y ∈ P. (36)Using the formulas (25), (26), (34), (35) and (36) in (19) we have

y[c1(x) + 3d1(x)] = x[c1(y) + 3d1(y)], x, y ∈ P.Substituting here y = 1I we obtain
c1(x) + 3d1(x) = x[c1(1I) + 3d1(1I)], x ∈ P,whih means that

c1(x) = cx− 3d1(x), x ∈ P,where c := c1(1I) + 3d1(1I).Thus we have shown that the formulas (17) and (18) may be written in theform
g(x) = 9ax3 + 3bx2 + cx− 3d1(x) + c0, x ∈ Pand

h(x) = ax3 + bx2 + d1(x) + d0, x ∈ P,where d1 is a given additive funtion. Now it su�es to use the obtained expres-sions in (9), to get the desired formula for f .It is an easy alulation to show that these funtions f , g, h satisfy the equa-tion (2).With the aid of this theorem we may prove also a Stamate-kind result.Corollary 1Let P be an integral domain with unit element 1I, uniquely divisible by 5! andsuh that for every n ∈ N we have n1I 6= 0. Funtions f, g, h:P → P satisfy theequation (3) if and only if there exist a, ā, b, c, d, d̄ ∈ P and an additive funtion
A:P → P suh that

f(x) =

{

18ax3 + 8bx2 + cx+ 2d, x 6= 0

ā, x = 0
,

g(x) =

{

−9ax3 − 5bx2 − 3A(x) − d− d̄, x 6= 0

d− d̄− ā, x = 0
,

h(x) = ax3 + bx2 + A(x) + d̄, x ∈ P.Conversely, f, g, h:P → P given by the above equalities satisfy (2).Proof. First we write the equation (3) in the form
(y − x)f(y) − yf(y) + (y − x)f(x) + xf(x)

= (x− y)[g(x) + h(2x+ y) + h(x+ 2y) + g(y)]



On some equations stemming from quadrature rules [29℄and, onsequently,
xf(x) − yf(y) = (x− y)[g(x) + f(x) + h(2x+ y) + h(x + 2y) + g(y) + f(y)].Putting here k(t) := g(t) + f(t) and F (t) := tf(t) for all t ∈ P we obtain
F (x) − F (y) = (x− y)[k(x) + h(2x+ y) + h(x+ 2y) + k(y)], x, y ∈ P.Thus, using Theorem 1, we get

xf(x) = 18ax4 + 8bx3 + cx2 + 2dx+ e, x ∈ P, (37)
g(x) + f(x) = 9ax3 + 3bx2 + cx− 3A(x) + d− d̄, x ∈ P, (38)

h(x) = ax3 + bx2 +A(x) + d̄, x ∈ P.Now, from (37) it easily follows that e = 0 and furthermore
xf(x) = 18ax4 + 8bx3 + cx2 + 2dx,i.e.,

f(x) = 18ax3 + 8bx2 + cx+ 2d, x 6= 0,whih gives us
g(x) = −9ax3 − 5bx2 − 3A(x) − d− d̄, x 6= 0.Moreover, from (38) we get g(0) + f(0) = d− d̄, thus putting ā := f(0) we obtainthat g(0) = d− d̄− ā.On the other hand, it is easy to see that funtions given by the above formulaeyield a solution of the equation (3).AknowledgementThe authors are grateful to Professor Joanna Ger for her valuable remarksonerning the Corollary 1.Referenes[1℄ B. Kol�ga�Kulpa, T. Szostok, On some equations onneted to Hadamard in-equalities, Aequationes Math. 75 (2008), 119�129.[2℄ M. Kuzma, An Introdution to the Theory of Funtional Equations and In-equalities. Cauhy's Equation and Jensen's Inequality, Pa«stwowe WydawnitwoNaukowe (Polish Sienti� Publishers) and Uniwersytet �l¡ski, Warszawa�Kraków�Katowie, 1985.[3℄ I. Pawlikowska, Solutions of two funtional equations using a result of M. Sablik,Aequationes Math. 72 (2006), 177�190.[4℄ T. Riedel, P.K. Sahoo, Mean value theorems and funtional equations, World Si-enti�, Singapore�New Jersey�Lodon�Hong Kong, 1998.
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FOLIA 70Annales Universitatis Paedagogiae CraoviensisStudia Mathematia VIII (2009)
Magdalena PiszzekOn a multivalued seond order differential problemwith Jensen multifuntionAbstrat. The aim of this paper is to present a generalization of the resultspublished in [5℄ and [8℄ for ontinuous Jensen multifuntions. In partiular,we study a seond order di�erential problem for multifuntions with theHukuhara derivative.Throughout this paper all vetor spaes are supposed to be real. Let X bea vetor spae. We introdue the notations:

A + B := {a + b : a ∈ A, b ∈ B} and λA := {λa : a ∈ A}for A, B ⊂ X and λ ∈ R.A subset K of X is alled a one if tK ⊂ K for all t ∈ (0, +∞). A one is saidto be onvex if it is a onvex set.Let X and Y be two vetor spaes and let K ⊂ X be a onvex one. A set-valued funtion F : K → n(Y ), where n(Y ) denotes the family of all nonemptysubsets of Y , is alled additive if
F (x + y) = F (x) + F (y) for x, y ∈ Kand F is Jensen if

F

(

x + y

2

)

=
F (x) + F (y)

2
for x, y ∈ K. (1)From now on, we assume that X is a normed vetor spae, c(X) denotes thefamily of all ompat members of n(X) and cc(X) stands for the family of allonvex sets of c(X).Lemma 1 ([4℄, Theorem 5.6)Let K be a onvex one with zero in X and Y be a topologial vetor spae. A set-valued funtion F : K → c(Y ) satis�es the equation (1) if and only if there existan additive multifuntion AF : K → cc(Y ) and a set GF ∈ cc(Y ) suh that

F (x) = AF (x) + GF for x ∈ K.AMS (2000) Subjet Classi�ation: 26E25, 39B52, 47D09.Volumes I-VII appeared as Annales Aademiae Paedagogiae Craoviensis Studia Mathematia.



[32℄ Magdalena PiszzekThe Hukuhara di�erene A − B of A, B ∈ cc(X) is a set C ∈ cc(X) suh that
A = B+C. By Rådström's Canellation Lemma [9℄ it follows that if this di�ereneexists, then it is unique.For a multifuntion F : [a, b] → cc(X) suh that there exist the Hukuhara dif-ferenes F (t) − F (s) as a ≤ s ≤ t ≤ b, the Hukuhara derivative at t ∈ (a, b) isde�ned by the formula

DF (t) = lim
k→0+

F (t + k) − F (t)

k
= lim

k→0+

F (t) − F (t − k)

k
,whenever both these limits exist with respet to the Hausdor� distane h (see [3℄).Moreover,

DF (a) = lim
s→a+

F (s) − F (a)

s − a
, DF (b) = lim

s→b−

F (b) − F (s)

b − s
.Let X be a Banah spae and let [a, b] ⊂ R. If a multifuntion F : [a, b] → cc(X)is ontinuous, then there exists the Riemann integral of F (see [3℄). We need thefollowing properties of the Riemann integral.Lemma 2 ([7℄, Lemma 10)If F : [a, b] → cc(X) is ontinuous, then H(t) =

∫ t

a
F (u) du for a ≤ t ≤ b isontinuous.Lemma 3 ([10℄, Lemma 4)If F : [a, b] → cc(X) is ontinuous and H(t) =

∫ t

a
F (u) du, then DH(t) = F (t) for

a ≤ t ≤ b.Let (K, +) be a semigroup. A one-parameter family {Ft : t ≥ 0} of set-valuedfuntions Ft: K → n(K) is said to be a osine family if
F0(x) = {x} for x ∈ Kand

Ft+s(x) + Ft−s(x) = 2Ft(Fs(x)) := 2
⋃

y∈Fs(x)

Ft(y)for x ∈ K and 0 ≤ s ≤ t.Let X be a normed spae. A osine family is alled regular if
lim

t→0+
h(Ft(x), {x}) = 0.Example 1Let K = [0, +∞) and Ft(x) = [x cosh at, x cosh bt], where 0 ≤ a ≤ b. Then

{Ft : t ≥ 0} is a regular osine family of ontinuous additive multifuntions.Example 2Let K = [0, +∞) and Ft(x) = [x, x cosh t + cosh t − 1]. Then {Ft : t ≥ 0} isa regular osine family of ontinuous Jensen multifuntions.



On a multivalued seond order differential problem with Jensen multifuntion [33℄We say that a osine family {Ft : t ≥ 0} is di�erentiable if all multifuntions
t 7→ Ft(x) (x ∈ K) have the Hukuhara derivative on [0, +∞).Lemma 4 ([8℄, Theorem)Let X be a Banah spae and let K be a losed onvex one with a nonemptyinterior in X. Suppose that {At : t ≥ 0} is a regular osine family of ontinuousadditive set-valued funtions At: K → cc(K), x ∈ At(x) for all x ∈ K, t ≥ 0 and
At ◦ As = As ◦ At for all s, t ≥ 0. Then this osine family is twie di�erentiableand

DAt(x)|t=0 = {0}, D2At(x) = At(A(x))for x ∈ K, t ≥ 0, where DAt(x) denotes the Hukuhara derivative of At(x) withrespet to t and A(x) is the seond Hukuhara derivative of this multifuntion at
t = 0.We would like to obtain a similar result to the above one for a osine familyof ontinuous Jensen multifuntions. For this purpose we remind some propertiesof suh a family.Lemma 5 ([6℄, Theorem 3)Let X be a Banah spae and let K be a losed onvex one in X suh that
intK 6= ∅. A one-parameter family {Ft : t ≥ 0} is a regular osine family of on-tinuous Jensen multifuntions Ft: K → cc(K) suh that x ∈ Ft(x) for all x ∈ K,
t ≥ 0 and Ft ◦Fs = Fs ◦Ft for all s, t ≥ 0 if and only if there exist a regular osinefamily {At : t ≥ 0} of ontinuous additive multifuntions At: K → cc(K) suhthat x ∈ At(x) for all x ∈ K, t ≥ 0, At ◦ As = As ◦ At for all s, t ≥ 0 and a set
D ∈ cc(K) with zero for whih onditions

At+s(D) + At−s(D) = 2At(As(D)) for 0 ≤ s ≤ t,

Ft(x) = At(x) +

t
∫

0

( s
∫

0

Au(D) du

)

ds for t ≥ 0hold.Using Lemmas 2, 3, 4 and 5 we obtain the following theorem.Theorem 1Let X be a Banah spae and let K be a losed onvex one with a nonemptyinterior in X. Suppose that {Ft : t ≥ 0} is a regular osine family of ontinuousJensen set-valued funtions Ft: K → cc(K), x ∈ Ft(x) for all x ∈ K, t ≥ 0 and
Ft ◦Fs = Fs ◦Ft for all s, t ≥ 0. Then this osine family is twie di�erentiable and

DFt(x)|t=0 = {0}, D2Ft(x) = At(A(x) + D)for x ∈ K, t ≥ 0, where DFt(x) denotes the Hukuhara derivative of Ft(x) withrespet to t, D ∈ cc(K) with zero, A(x) = D2At(x)|t=0, {At : t ≥ 0} is a regularosine family of ontinuous additive multifuntions (as in Lemma 5 ).



[34℄ Magdalena PiszzekLet K be a losed onvex one with a nonempty interior in X . We onsidera ontinuous multifuntion Φ: [0, +∞) × K → cc(K) Jensen with respet to theseond variable. Aording to Lemma 1 there exist multifuntions AΦ: [0, +∞) ×
K → cc(X) additive with respet to the seond variable and GΦ: [0, +∞) → cc(X)suh that

Φ(t, x) = AΦ(t, x) + GΦ(t) for x ∈ K, t ∈ [0, +∞). (2)Setting x = 0 in (2) we have
Φ(t, 0) = GΦ(t) ∈ cc(K) for t ∈ [0, +∞).Sine AΦ(t, x) + 1

nGΦ(t) = 1
nΦ(t, nx) ⊂ K for all n ∈ N and the set K is losed,

AΦ(t, x) ∈ cc(K) for x ∈ K, t ∈ [0, +∞). Moreover, multifuntions AΦ, GΦare ontinuous. Indeed, t 7→ GΦ(t) = Φ(t, 0) is ontinuous. As Φ and GΦ areontinuous, the multifuntion AΦ is also ontinuous.Theorem 1 is a motivation for studying existene and uniqueness of a solution
Φ: [0, +∞) × K → cc(K), whih is Jensen with respet to the seond variable, ofthe following di�erential problem

Φ(0, x) = Ψ(x),

DΦ(t, x)|t=0 = {0},

D2Φ(t, x) = AΦ(t, H(x)),

(3)where H, Ψ: K → cc(K) are given ontinuous Jensen set-valued funtions, DΦ(t, x)denotes the Hukuhara derivative of Φ(t, x) with respet to t and AΦ is the additive,with respet to the seond variable, part of Φ.Definition 1A multifuntion Φ: [0, +∞) × K → cc(K) is said to be a solution of the prob-lem (3) if it is ontinuous, twie di�erentiable with respet to t and Φ satis�es (3)everywhere in [0, +∞) × K and in K, respetively, where H, Ψ: K → cc(K) aretwo given ontinuous Jensen multifuntions.With the problem (3), we assoiate the following equation
Φ(t, x) = Ψ(x) +

t
∫

0

( s
∫

0

AΦ(u, H(x)) du

)

ds (4)for x ∈ K, t ∈ [0, +∞), where H, Ψ: K → cc(K) are given ontinuous Jensenmultifuntions and AΦ is the additive, with respet to the seond variable, partof Φ.Definition 2Let H, Ψ: K → cc(K) be two ontinuous Jensen set-valued funtions. A map
Φ: [0, +∞) × K → cc(K) is said to be a solution of (4) if it is ontinuous andsatis�es (4) everywhere.



On a multivalued seond order differential problem with Jensen multifuntion [35℄Theorem 2Let K be a losed onvex one with a nonempty interior in a Banah spae and let
H, Ψ: K → cc(K) be two ontinuous Jensen multifuntions. Let Φ: [0, +∞)×K →
cc(K) be a given Jensen with respet to the seond variable set-valued funtion.This Φ is a solution of the problem (3) if and only if it is a solution of (4).The proof of Theorem 2 is the same as the proof of Theorem 1 in [5℄.In the proof of the next theorem we use the following lemmas.Lemma 6 ([12℄, Theorem 3)Let X and Y be two normed spaes and let K be a onvex one in X. Supposethat {Fi : i ∈ I} is a family of superadditive lower semiontinuous in K and Q+-homogeneous set-valued funtions Fi: K → n(Y ). If K is of the seond ategoryin K and ⋃i∈I Fi(x) ∈ b(Y ) for x ∈ K, then there exists a onstant M ∈ (0, +∞)suh that

sup
i∈I

‖Fi(x)‖ ≤ M‖x‖ for x ∈ K.Let K be a losed onvex one in X . Applying Lemma 6 we an de�ne thenorm ‖F‖ of a ontinuous additive multifuntion F : K → n(K) to be the smallestelement of the set
{M > 0 : ‖F (x)‖ ≤ M‖x‖, x ∈ K}.Lemma 7Let K be a losed onvex one with a nonempty interior in a Banah spae and let

H, Ψ: K → cc(K) be two ontinuous Jensen multifuntions. Assume that a on-tinuous multifuntion A: [0, T ]×K → cc(K) is additive with respet to the seondvariable. Then the multifuntion
F (t, x) := Ψ(x) +

t
∫

0

( s
∫

0

A(u, H(x)) du

)

ds, (t, x) ∈ [0, T ]× K (5)is Jensen with respet to the seond variable and ontinuous.Proof. The proof is based upon ideas found in the proof of Theorem 2 in thepaper [5℄. Aording to the proof of Theorem 1 in [5℄ we have that the multifun-tion u 7→ A(u, H(x)) is ontinuous for all x ∈ K. We see that every set F (t, x)belongs to cc(K) and F is Jensen with respet to the seond variable.Next we show that F is ontinuous. Let x, y ∈ K and 0 ≤ t1 ≤ t2 ≤ T . Theset
A([0, T ], x) =

⋃

t∈[0,T ]

A(t, x)is ompat (see [1℄, Ch. IV, p. 110, Theorem 3), so it is bounded. Therefore, byLemma 6, there exists a positive onstant MA suh that
‖A(u, a)‖ ≤ MA‖a‖ (6)



[36℄ Magdalena Piszzekfor u ∈ [0, T ] and a ∈ K. This implies that
‖A(u, H(x))‖ ≤ MA‖H(x)‖for u ∈ [0, T ]. Thus

∥

∥

∥

∥

∥

∥

t2
∫

t1

( s
∫

0

A(u, H(x)) du

)

ds

∥

∥

∥

∥

∥

∥

≤

t2
∫

t1

( s
∫

0

‖A(u, H(x))‖ du

)

ds

≤

t2
∫

t1

( s
∫

0

MA‖H(x)‖ du

)

ds (7)
=

t22 − t21
2

MA‖H(x)‖.From Lemma 5 in [11℄ and (6) there exists a positive onstant M0 suh that
h(A(u, a), A(u, b)) ≤ M0‖A(u, ·)‖‖a− b‖ ≤ M0MA‖a − b‖for u ∈ [0, T ] and a, b ∈ K. Therefore,

A(u, a) ⊂ A(u, b) + M0MA‖a − b‖Sfor u ∈ [0, T ] and a, b ∈ K.Let ε > 0 and a ∈ H(x). There exists b ∈ H(y) for whih
‖a − b‖ < d(a, H(y)) +

ε

M0MA
.This shows that for every a ∈ H(x) there exists b ∈ H(y) suh that

A(u, a) ⊂ A(u, b) + M0MAd(a, H(y))S + εS

⊂ A(u, H(y)) + M0MAh(H(x), H(y))S + εS,thus
A(u, H(x)) ⊂ A(u, H(y)) + M0MAh(H(x), H(y))S + εSfor u ∈ [0, T ]. Sine ε > 0 and x, y ∈ K are arbitrary, we obtain

h(A(u, H(x)), A(u, H(y))) ≤ M0MAh(H(x), H(y)).Hene and by properties of the Riemann integral we have
h





t
∫

0

( s
∫

0

A(u, H(x)) du

)

ds,

t
∫

0

( s
∫

0

A(u, H(y)) du

)

ds





≤

t
∫

0

( s
∫

0

h(A(u, H(x)), A(u, H(y))) du

)

ds

≤

t
∫

0

( s
∫

0

M0MAh(H(x), H(y)) du

)

ds

=
t2

2
M0MAh(H(x), H(y)).

(8)



On a multivalued seond order differential problem with Jensen multifuntion [37℄By (5), (7) and (8) we get
h(F (t1, x), F (t2, y))

≤ h(Ψ(x), Ψ(y))

+ h





t1
∫

0

( s
∫

0

A(u, H(x)) du

)

ds,

t2
∫

0

( s
∫

0

A(u, H(y)) du

)

ds





≤ h(Ψ(x), Ψ(y))

+ h





t1
∫

0

( s
∫

0

A(u, H(x)) du

)

ds,

t1
∫

0

( s
∫

0

A(u, H(y)) du

)

ds





+ h



{0},

t2
∫

t1

( s
∫

0

A(u, H(y)) du

)

ds





≤ h(Ψ(x), Ψ(y)) +
t21
2

M0MAh(H(x), H(y)) +
t22 − t21

2
MA‖H(y)‖.This shows that F is a ontinuous set-valued funtion, beause Ψ and H areontinuous.Theorem 3Let K be a losed onvex one with a nonempty interior in a Banah spae andlet H, Ψ: K → cc(K) be two ontinuous Jensen multifuntions. Then there existsexatly one solution, Jensen with respet to the seond variable, of the problem (3).Proof. Fix T > 0. Let E be the set of all ontinuous set-valued funtions

Φ: [0, T ]×K → cc(K) suh that x 7→ Φ(t, x) are Jensen. As it was shown, for Φ ∈ Ethere exist ontinuous multifuntions AΦ: [0, T ]×K → cc(K) additive with respetto the seond variable and GΦ: [0, T ] → cc(K) suh that Φ(t, x) = AΦ(t, x)+GΦ(t)for x ∈ K, t ∈ [0, T ].Let Φ, Π ∈ E be given by
Φ(t, x) = AΦ(t, x) + GΦ(t) and Π(t, x) = AΠ(t, x) + GΠ(t) (9)for (t, x) ∈ [0, T ]×K, where AΦ, AΠ: [0, T ]×K → cc(K) are additive with respetto the seond variable and GΦ(t), GΠ(t) ∈ cc(K). We de�ne a funtional ρ in

E × E as follows
ρ(Φ, Π) = sup{h(AΦ(t, B), AΠ(t, B)) + h(GΦ(t), GΠ(t)) :

0 ≤ t ≤ T, B ∈ cc(K), ‖B‖ ≤ 1}.We see that sets
Ai([0, T ], x) =

⋃

t∈[0,T ]

Ai(t, x), x ∈ K,

Gi([0, T ]) =
⋃

t∈[0,T ]

Gi(t),



[38℄ Magdalena Piszzekwhere i ∈ {Φ, Π} are ompat (see [1℄, Ch. IV, p. 110, Theorem 3), so they arebounded. By Lemma 6 there exist positive onstants MAΦ and MAΠ suh that
‖AΦ(t, x)‖ ≤ MAΦ‖x‖, ‖AΠ(t, x)‖ ≤ MAΠ‖x‖for t ∈ [0, T ] and x ∈ K. We note that

h(AΦ(t, B), AΠ(t, B)) + h(GΦ(t), GΠ(t))

≤ ‖AΦ(t, B)‖ + ‖AΠ(t, B)‖ + ‖GΦ([0, T ])‖ + ‖GΠ([0, T ])‖

≤ MAΦ + MAΠ + ‖GΦ([0, T ])‖ + ‖GΠ([0, T ])‖for t ∈ [0, T ] and B ∈ cc(K) suh that ‖B‖ ≤ 1. Thus
ρ(Φ, Π) < +∞,so the funtional ρ is �nite. It is easy to verify that ρ is a metri in E.As the spae (cc(K), h) is a omplete metri spae (see [2℄), (E, ρ) is also aomplete metri spae.We introdue the map Γ whih assoiates with every Φ ∈ E the set-valuedfuntion ΓΦ de�ned by

(ΓΦ)(t, x) := Ψ(x) +

t
∫

0

( s
∫

0

AΦ(u, H(x)) du

)

dsfor (t, x) ∈ [0, T ] × K. We see that every set (ΓΦ)(t, x) belongs to cc(K). ByLemma 7 the multifuntion ΓΦ is Jensen with respet to the seond variable andontinuous. Therefore, Γ: E → E.Now, we prove that Γ has exatly one �xed point. Aording to Lemma 1 wetake the notations Ψ(x) = AΨ(x) + GΨ and H(x) = AH(x) + GH , x ∈ K, where
AΨ, AH : K → cc(K) are additive and GΨ, GH ∈ cc(K). Let Φ, Π ∈ E be of theform (9) and let (t, x) ∈ [0, T ]× K. We observe that

(ΓΦ)(t, x) = Ψ(x) +

t
∫

0

( s
∫

0

AΦ(u, H(x)) du

)

ds

= AΨ(x) + GΨ +

t
∫

0

( s
∫

0

AΦ(u, AH(x)) du

)

ds

+

t
∫

0

( s
∫

0

AΦ(u, GH) du

)

ds,thus the additive part AΓΦ(t, x) of ΓΦ is equal to
AΨ(x) +

t
∫

0

( s
∫

0

AΦ(u, AH(x)) du

)

ds



On a multivalued seond order differential problem with Jensen multifuntion [39℄and similarly
AΓΠ(t, x) = AΨ(x) +

t
∫

0

( s
∫

0

AΠ(u, AH(x)) du

)

ds.Hene and by properties of the Hausdor� metri we have
h(AΓΦ(t, x), AΓΠ(t, x)) + h(GΓΦ(t), GΓΠ(t))

= h





t
∫

0

( s
∫

0

AΦ(u, AH(x)) du

)

ds,

t
∫

0

( s
∫

0

AΠ(u, AH(x)) du

)

ds





+ h





t
∫

0

( s
∫

0

AΦ(u, GH) du

)

ds,

t
∫

0

( s
∫

0

AΠ(u, GH) du

)

ds





≤
t2

2!
ρ(Φ, Π)‖AH(x)‖ +

t2

2!
ρ(Φ, Π)‖GH‖

≤ 2
t2

2!
ρ(Φ, Π)max{‖AH(x)‖, ‖GH‖}.Suppose that

h(AΓnΦ(t, x), AΓnΠ(t, x)) + h(GΓnΦ(t), GΓnΠ(t))

≤ 2
t2n

(2n)!
ρ(Φ, Π)max{‖AH(x)‖, ‖GH‖}n (10)for some n ∈ N. Then

h(AΓn+1Φ(t, x), AΓn+1Π(t, x)) + h(GΓn+1Φ(t), GΓn+1Π(t))

= h





t
∫

0

( s
∫

0

AΓnΦ(u, AH(x)) du

)

ds,

t
∫

0

( s
∫

0

AΓnΠ(u, AH(x)) du

)

ds





+ h





t
∫

0

( s
∫

0

AΓnΦ(u, GH) du

)

ds,

t
∫

0

( s
∫

0

AΓnΠ(u, GH) du

)

ds





≤

t
∫

0

( s
∫

0

2
u2n

(2n)!
ρ(Φ, Π)max{‖AH(x)‖, ‖GH‖}n+1 du

)

ds

= 2
t2n+2

(2n + 2)!
ρ(Φ, Π)max{‖AH(x)‖, ‖GH‖}n+1.This shows that (10) holds for all n ∈ N. Therefore,

ρ(ΓnΦ, ΓnΠ) ≤ 2
(T 2 max{‖AH‖, ‖GH‖})n

(2n)!
ρ(Φ, Π), n ∈ N.



[40℄ Magdalena PiszzekWe observe that for every T > 0 there exists n ∈ N suh that
2
(T 2 max{‖AH‖, ‖GH‖})n

(2n)!
< 1.By Banah Fixed Point Theorem we get that Γn has exatly one �xed point,whene it follows that Γ has exatly one �xed point. This means that there existsexatly one solution of the problem (3) for (t, x) ∈ [0, T ]× K.Now we give an appliation. Let K be a losed onvex one with a nonemptyinterior in a Banah spae. Suppose that {Ft : t ≥ 0} and {Gt : t ≥ 0} are regularosine families of ontinuous Jensen multifuntions Ft: K → cc(K), Gt: K → cc(K)suh that x ∈ Ft(x), x ∈ Gt(x), Ft ◦ Fs = Fs ◦ Ft, Gt ◦ Gs = Gs ◦ Gt for x ∈ K,

s, t ≥ 0 and
H(x) := D2Ft(x)|t=0 = D2Gt(x)|t=0.Then multifuntions (t, x) 7→ Ft(x) and (t, x) 7→ Gt(x) are Jensen with respet to

x and satisfy (3) with Ψ(x) = {x}. Aording to Theorem 3 we have Ft(x) = Gt(x)for (t, x) ∈ [0, +∞) × K. This means that if two regular osine family as abovehave the same seond order in�nitesimal generator, then there are equal.Referenes[1℄ C. Berge, Topologival Spaes, Oliver and Boyd, Eidenburg and London, 1963.[2℄ C. Castaing, M. Valadier, Convex Analysis and Measurable Multifuntions, Le-ture Notes in Math. 580, Springer�Verlag, Berlin�Heidelberg�New York, 1977.[3℄ M. Hukuhara, Intégration des appliation mesurables dont la valeur est un ompatonvexe, Funkial. Ekva. 10 (1967), 205�223.[4℄ K. Nikodem, K-onvex and K-onave set-valued funtions, Zeszyty Nauk. Po-liteh. �ódz. Mat. 559, Rozprawy Nauk. 144, 1989.[5℄ M. Piszzek, On a multivalued seond order di�erential problem with Hukuharaderivative, Opusula Math. 28 (2008), 151�161.[6℄ M. Piszzek, On osine families of Jensen set-valued funtions, Aeq. Math. 75(2008), 103�118.[7℄ M. Piszzek, On multivalued osine families, J. Appl. Anal. 13 (2007), 57�76.[8℄ M. Piszzek, Seond Hukuhara derivative and osine family of linear set-valuedfuntions, Ann. Aad. Paedagog. Cra. Stud. Math. 5 (2006), 87�98.[9℄ H. Rådström, An embedding theorem for spaes of onvex sets, Pro. Amer. Math.So. 3 (1952), 165�169.[10℄ A. Smajdor On a multivalued di�erential problem, Internat. J. Bifur. Chaos Appl.Si. Engrg. 13 (2003), 1877�1882.[11℄ A. Smajdor, On regular multivalued osine families, Ann. Math. Sil. 13 (1999),271�280.[12℄ W. Smajdor, Superadditive set-valued funtions and Banah-Steinhaus Theorem,Rad. Mat. 3 (1987), 203�214.
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FOLIA 70Annales Universitatis Paedagogiae CraoviensisStudia Mathematia VIII (2009)
Ján Gun£agaRegulated funtions and integrabilityAbstrat. Properties of funtions de�ned on a bounded losed interval, weakerthan ontinuity, have been onsidered by many mathematiians. Funtionshaving both sides limits at eah point are alled regulated and were on-sidered by J. Dieudonné [2℄, D. Fra¬ková [3℄ and others (see for exampleS. Banah [1℄, S. Saks [8℄). The main lass of funtions we deal with on-sists of piee-wise onstant ones. These funtions play a fundamental rolein the integration theory whih had been developed by Igor Kluvanek (see�. Tkaik [9℄). We present an outline of this theory.1. Regulated funtionsEverybody familiar with basi alulus remembers properties of ontinuousfuntions de�ned on a bounded losed interval. Some of those properties anbe extended to suitably disontinuous funtions, namely to funtions having theright and the left limits at eah point; suh funtions are alled regulated. We shalldeal with a speial lass of regulated funtions onsisting of piee-wise onstantfuntions.From now on, I will denote a losed bounded interval [a, b] of real numbers.All onsidered funtions will be bounded and de�ned in the interval I.A limit of a funtion is meant to be proper, i.e., di�erent from +∞ or −∞.Definition 1A funtion f : I → R is alled regulated on I if f has the left-sided limit at everypoint of the interval I exept the point a and f has the right-sided limit at everypoint of the interval I exept the point b.The idea of regulated funtions an be spread out to funtions de�ned in a sub-set of the interval I, namely to a set E, suh that eah point from the interval Iis left-sided and right-sided aumulation point of the set E. Nevertheless we arenot onerned to suh approah.AMS (2000) Subjet Classi�ation: 26A15, 26A39.This artile is supported by grant KEGA 3/7068/09.Volumes I-VII appeared as Annales Aademiae Paedagogiae Craoviensis Studia Mathematia.



[44℄ Ján Gun£agaIn this de�nition we do not require that the right-sided limit and the left-sidedlimit of the funtion at a point are equal. The piture below shows an example ofa regulated funtion on I.
Figure 1Important lass of regulated funtions onsists of piee-wise onstant ones.Definition 2A funtion f : I → R is said to be a step funtion on I whenever there exist:a positive integer n, a sequene of points (c1, . . . , cn) suh that

a = c0 < c1 < . . . < cj−1 < cj < . . . < cn = band the funtion f is onstant on eah interval (cj−1, cj), j = 1, 2, . . . , n.An example of a step funtion is shown in Figure 2.It follows from the de�nition that if f is regulated on an interval I, then it isalso regulated in eah subinterval J (J ⊆ I).

Figure 2Although the next theorem is known (see [2℄ for example) we shall presentan elementary proof of it.This theorem states that a regulated funtion an be aproximated with arbi-trary auray by a step funtion.



Regulated funtions and integrability [45℄Theorem 1Let f : I → R be a regulated funtion and let ε be a positive number. Then thereexists a step funtion g suh that
|f(x) − g(x)| < εin eah point x of the interval I.If the funtion f is ontinuous on the interval I, then we an hoose the funtion

g to be right-ontinuous at eah point of the interval [a, b) or to be left-ontinuousat eah point of the interval (a, b].Proof. Let Z be the set of all numbers z from the interval I = [a, b] for whihthere exists a step funtion gz suh that
|f(x) − gz(x)| < ε (1)for every x ∈ [a, z]. If the funtion f is ontinuous, then the step funtion gz isassumed to be right-ontinuous at every point of the interval [a, z). Our aim is toshow that b ∈ Z. If it is so we take gb for g.We shall do that by showing that the supremum of the set Z belongs to Zand that it is equal to b. The set Z has a supremum beause it is not empty (thenumber a surely belongs to it) and bounded from above (no element of the set Zis greater than b). Then, let s = supZ.1. We prove that s ∈ Z.If s = a, then s ∈ Z. So now assume that a < s. Then the funtion f has a leftlimit k at s and for a positive number ε there exists a number c < s suh that
|f(x) − k| < ε (2)for every x ∈ (c, s). Sine c < s, there exists a number z ∈ Z suh that c < z.Let gz be a step funtion suh that (1) holds for every x ∈ [a, z] and, if thefuntion f is ontinuous in [a, b], let gz be left-ontinuous at every point of theinterval [a, z). De�ne the funtion gs by letting gs(s) = f(s), provided s belongs tothe domain of f , further gs(x) = k for every x ∈ [z, s) and, �nally, gs(x) = gz(x) forevery x ∈ [a, z]. Then gs is a step funtion suh that (1) holds for every x ∈ [a, s]and if the funtion f happens to be ontinuous in [a, b], then gs is right-ontinuousat every point of the interval [a, s). Hene, s ∈ Z.2. We prove that s = b.Assume to the ontrary that s < b.Sine s < b, the funtion f has a right-sided limit k at s and there existsa number d > s suh that (2) holds for every x ∈ (s, d). As s ∈ Z, there existsa step funtion gs suh that (1) holds for every x ∈ [a, s] and gs is left-ontinuousat every point of the interval [a, s) in ase when f is ontinuous in [a, b]. Let zbe a number suh that s < z < d. Let gz(x) = gs(x) for every x ∈ [a, s); let

gz(s) = f(s); and let gz(x) = k for every x ∈ (s, z). Then gz is a step funtionsuh that (1) holds for every x ∈ [a, z] and gz is right-ontinuous at every point ofthe interval [a, z) if the funtion f is ontinuous in [a, b]. Hene z ∈ Z, whih isa ontradition sine s < z and s = supZ.



[46℄ Ján Gun£agaSimilar arguments an be used for the ase, when we want the funtion g to beleft-ontinuous, simply apply the previous argument to the funtion f(−x), when
x ∈ [−b,−a].2. ExamplesExample 1During the �rst 19 weeks of the �nanial year, the wage of an employee was 186Euro weekly. Than he was promoted and had 203,50 Euro weekly. A month beforethe end of the �nanial year, due to general salaries and wages inrease, his wagewas inreased to 211,30 Euro weekly. This last month represents 4,4 working weeks(four full weeks and two working days, eah representing 0,2 of a working week).Indiate how the weekly wage depends on time.If we want to introdue a funtion indiating how the weekly wage of theemployee depended on time we represent the year by the interval [0, 52], taking aweek for a unit of time. The funtion f representing the dependene of the wageon time an then be de�ned in the following manner:

f(t) =











186 for t ∈ [0, 19],

203, 50 for t ∈
(

19, 47 3
5

)

,

211, 30 for t ∈
[

47 3
5 , 52

]

.If χA(t) is a harateristi funtion of the set A, then we have
f(t) = 186 · χ[0,19](t) + 203, 50 · χ(19,47 3

5 )(t) + 211, 30 · χ[47 3
5 ,52](t)for every t ∈ [0, 52].Now we an ask what was the average (mean) wage of that employee duringthe year or what was his total inome from wages in that year? Clearly, his totalinome was

186 · 19 + 203, 50 · (47, 6 − 19) + 211, 30 · (52 − 47, 6) = 10283, 82Euro. His average wage was
10283, 82

52
= 197, 76Euro per week (rounded to whole ents). In this example it is easy to see that thefuntion f is a step funtion and it does not matter, if we use open or boundedintervals for alulating of the total inome.Here we de�ned c1 = 186; c2 = 203, 50; c3 = 211, 30; J1 = [0, 19], J2 =

[19, 47 3
5 ], J3 = [47 3

5 , 52]. If the number b − a = λ(J) is the length of the interval
J = [a, b], then the total inome has the form

c1λ(J1) + c2λ(J2) + c3λ(J3) =

3
∑

j=1

cjλ(Jj).This number is also the area of the set S = {(t, y) : t ∈ [0, 52], 0 ≤ y ≤ f(t)}.



Regulated funtions and integrability [47℄Therefore, it is possible to express the step funtion by the formula
f(x) =

n
∑

j=1

cjχJj
(x)for every x in an interval I, where n is a positive integer, cj are arbitrary numbersand Jj some bounded intervals (⋃n

j=1 Jj = I) for every j = 1, 2, 3, . . . , n. In eahase, the number
n
∑

j=1

cjλ(Jj)is alled the integral of the funtion f .Example 2Now, we try to alulate the area of the set
S = {(x, y) : x ∈ I, 0 ≤ y ≤ f(x)},where f is some ontinuous and non-negative funtion in the (ompat) interval I.If the funtion f is not a step funtion in the interval I, then the set S is notequal to the union of �nite number of retangles. Nevertheless, with the exeptionof some points on the boundary, whih may be disregarded when alulating thearea, this set an be overed by an in�nite sequene of non-overlapping retanglesas illustrated in Figure 3. The sum of the areas of these retangles is equal to thearea of S.

Figure 3That is, there exist intervals Jj ⊂ I and numbers cj , j = 1, 2, 3, . . . , suh that
f(x) =

∞
∑

j=1

cjχJj
(x) (3)for every x ∈ I and the area of set S is equal to the number

∞
∑

j=1

cjλ(Jj). (4)The lass of funtions to whih the proedure an be applied is muh larger thanin the ase when cj ≥ 0 for every j = 1, 2, 3, . . . . In partiular, we now may



[48℄ Ján Gun£agaonsider funtions with both positive and negative values. Consequently, we analso alulate the integral (4) of a funtion f when it has an interpretation di�erentfrom that of the area of a planar �gure. Of ourse, if so desired, the integral ofa funtion in an interval I an always be interpreted �geometrially� as a di�ereneof the areas of the sets
S+ = {(x, y) : x ∈ I, 0 ≤ y ≤ f(x)} and S− = {(x, y) : x ∈ I, f(x) ≤ y ≤ 0}.3. Definition of the integralTo obtain a workable de�nition of integral for a su�iently large lass of fun-tions, it su�es to require the existene of the sum (4) and to note that this sumis then independent of the partiular hoie of the numbers cj and intervals Jj ,
j = 1, 2, 3, . . . , used in the representation (3) of the funtion f .Definition 3A funtion f is said to be integrable in the interval I whenever there exist numbers
cj and bounded intervals Jj ⊂ I, j = 1, 2, 3, . . . , suh that

∞
∑

j=1

|cj |λ(Jj) < ∞ (5)and the equality
f(x) =

∞
∑

j=1

cjχJj
(x)holds for every x ∈ I suh that

∞
∑

j=1

|cj |χJj
(x) < ∞. (6)Now we shall introdue the notions of a virtually primitive funtion. We shalluse the term a ondition P is ful�lled nearly everywhere. It means that the set ofpoints for whih the ondition P is not ful�lled is at most ountable.Definition 4A funtion F is said to be virtually primitive to a funtion f in an interval I, ifthe funtion F is ontinuous in the interval I and F ′(x) = f(x) nearly everywherein I.In this de�nition we do not require I to be a ompat interval, it an be aswell an unbounded interval.We shall prove that if a funtion f is integrable in the interval I, then the sum(4) is the same for every hoie of the numbers cj and intervals Jj , j = 1, 2, 3, . . . ,satisfying the ondition (5), suh that (3) holds for every x ∈ I for whih theinequality (6) does hold.The next three theorems, whih are tehnial ones, are useful in the proof thatthe de�nition of the Kluvanek integral is orret.



Regulated funtions and integrability [49℄Theorem 2Let n be a positive integer, cj non-negative numbers, Jj bounded subintervals of
I, j = 1, 2, 3, . . . , n, dk non-negative numbers and Kk bounded intervals, k =
1, 2, 3, . . . , suh that

n
∑

j=1

cjχJj
(x) ≤

∞
∑

k=1

dkχKk
(x) (7)for every x ∈ (−∞,∞). Then

n
∑

j=1

cjλ(Jj) ≤

∞
∑

k=1

dkλ(Kk). (8)Proof. It follows from the assumptions that a is a number not greater thanthe left end-point and b is a number not less than the right end-point of eahof the intervals Jj , j = 1, 2, 3, . . . , n. Let Fj be a funtion virtually primitive in
(−∞,∞) to the funtion cjχJj

suh that Fj(a) = 0, j = 1, 2, 3, . . . , n, and Gk thefuntion virtually primitive to dkχKk
suh that Gk(a) = 0, k = 1, 2, 3, . . . . Sine

cjλ (Jj) = Fj(b), j = 1, 2, 3, . . . , n, if we prove that
n
∑

j=1

Fj(b) ≤

∞
∑

k=1

Gk(b),then (8) will follow.Suppose to the ontrary that
∞
∑

k=1

Gk(b) <
n
∑

j=1

Fj(b). (9)First note that 0 ≤ Gk(x) ≤ Gk(b) for every x ∈ [a, b] and every k = 1, 2, 3, . . . .Hene, by (9), the sequene of funtions {Gk}
∞
n=1 is uniformly onvergent in theinterval [a, b]. Let

F (x) =
n
∑

j=1

Fj(x) and G(x) =
∞
∑

k=1

Gk(x)for every x ∈ [a, b]. The funtions Fj(x), j = 1, 2, 3, . . . , n , and Gk(x), k =
1, 2, 3, . . . , are ontinuous in the interval [a, b]. Therefore, the funtions F (x) and
G(x) are also ontinuous in the interval [a, b] and, of ourse, F (a) = G(a) = 0.Let

k =
F (b) − G(b)

2(b − a)
and q =

F (b) − G(b)

2
.By (9), k > 0 and q > 0. If t ∈ (0, k), let

ht(x) = F (x) − G(x) − t(x − a) − qfor every x ∈ [a, b]. Then, for every t ∈ (0, k), ht is a funtion ontinuous in theinterval [a, b] suh that ht(a) < 0 and ht(b) > 0. Let ξ(t) be its maximal root inthe interval (a, b). That is ht(ξ(t)) = 0 and ht(y) > 0 for every y ∈ (ξ(t), b).



[50℄ Ján Gun£agaThe funtion ξ(t), t ∈ (0, k), is (stritly) inreasing, beause if 0 < t < s < k,then
hs(ξ(t)) = hs(ξ(t)) − ht(ξ(t)) = (t − s)(ξ(t) − a) < 0and, hene, the largest root, ξ(s), of the funtion hs is greater than ξ(t). So, thisfuntion is injetive. Sine its domain, (0, k), is not a ountable set, the set ofits values {ξ(t) : t ∈ (0, k)} is not ountable either. But the set of end-points ofall intervals Jj , j = 1, 2, 3, . . . , n, and Kk, k = 1, 2, 3, . . . , is ountable. So, thereis a number t ∈ (0, k) suh that ξ(t) is not an end-point of any of intervals Jj ,

j = 1, 2, 3, . . . , n, and Kk, k = 1, 2, 3, . . . . Let t be suh a number and x = ξ(t),the orresponding point of the interval (a, b). Then ht(x) = 0 and ht(y) > 0 forevery y ∈ (x, b). That is,
F (x) − G(x) = t(x − a) − q and F (y) − G(y) > t(y − a) − qfor every y ∈ (x, b). Consequently,

F (y) − F (x)

y − x
−

G(y) − G(x)

y − x
> t (10)for every y ∈ (x, b].On the other hand, sine x is not an end-point of any of the intervals Jj and

Kk, eah funtion Fj and Gk is di�erentiable at x and F ′
j(x) = cjχJj

(x) for
j = 1, 2, 3, . . . , n and G′

k(x) = dkχKk
(x) for k = 1, 2, 3, . . . . So, by (7),

F ′(x) =
n
∑

j=1

F ′
j(x) ≤

∞
∑

k=1

G′
k(x).Sine t > 0, there exists a positive integer m suh that

F ′(x) ≤
∞
∑

k=1

G′
k(x) <

m
∑

k=1

G′
k(x) + t.Therefore,

lim
y→x+

(

F (y) − F (x)

y − x
−

m
∑

k=1

Gk(y) − Gk(x)

y − x

)

< t.From the properties of limits we have, that there exists a point y in the interval
[x, b] suh that

F (y) − F (x)

y − x
−

m
∑

k=1

Gk(y) − Gk(x)

y − x
< t. (11)Now, Gk(y)−Gk(x) > 0 for every k = m+1, m+2, . . . , beause the funtions Gkare non-dereasing. Hene,

G(y) − G(x)

y − x
=

∞
∑

k=1

Gk(y) − Gk(x)

y − x
≥

m
∑

k=1

Gk(y) − Gk(x)

y − x
.So, (11) ontradits (10).



Regulated funtions and integrability [51℄Theorem 3Let cj and dj be non-negative numbers and let Jj and Kj be subintervals of I,
j = 1, 2, 3, . . . , suh that

∞
∑

j=1

cjλ(Jj) < ∞,

∞
∑

j=1

djλ(Kj) < ∞and
∞
∑

j=1

cjχJj
(x) =

∞
∑

j=1

djχKj
(x) (12)for every x for whih

∞
∑

j=1

cjχJj
(x) < ∞ and ∞

∑

j=1

djχKj
(x) < ∞.Then

∞
∑

j=1

cjλ(Jj) =

∞
∑

j=1

djλ(Kj). (13)Proof. Let ε be an arbitrary positive number. Let n be a positive integer suhthat
∞
∑

j=n+1

cjλ(Jj) <
ε

2
.Then

n
∑

j=1

cjχJj
(x) ≤

∞
∑

j=1

djχKj
(x) +

∞
∑

j=n+1

cjχJj
(x)for every x ∈ (−∞,∞) with no exeption.By Theorem 2,

n
∑

j=1

cjλ(Jj) ≤

∞
∑

j=1

djλ(Kj) +

∞
∑

j=n+1

cjλ(Jj) <

∞
∑

j=1

djλ(Kj) +
ε

2
.Hene,

∞
∑

j=1

cjλ(Jj) =

n
∑

j=1

cjλ(Jj) +

∞
∑

j=n+1

cjλ(Jj)

<

∞
∑

j=1

djλ(Kj) +
ε

2
+

∞
∑

j=n+1

cjλ(Jj)

<

∞
∑

j=1

djλ(Kj) + ε.



[52℄ Ján Gun£agaBeause the inequality between the �rst and the last term holds for everypositive ε, we have
∞
∑

j=1

cjλ(Jj) ≤

∞
∑

j=1

djλ(Kj).The reverse inequality an be proved by a symmetri argument. Hene (13) holds.Reall that nonnegative x+ and nonpositive x− parts of a number x are de�nedby
x+ =

{

x if x ≥ 0,

0 if x < 0
and x− =

{

−x if x < 0,

0 if x ≥ 0.Then: x+ ≥ 0, x− ≥ 0, x = x+ −x− and |x| = x+ +x− for any real number x.Theorem 4Let cj and dj be real numbers and let Jj and Kj , j = 1, 2, . . . , be subintervals of Isuh that
∞
∑

j=1

|cj |λ(Jj) < ∞,

∞
∑

j=1

|dj |λ(Kj) < ∞. (14)If
∞
∑

j=1

cjχJj
(x) =

∞
∑

j=1

djχKj
(x)for every x ∈ I for whih

∞
∑

j=1

|cj |χJj
(x) < ∞ and ∞

∑

j=1

|dj |χKj
(x) < ∞,then

∞
∑

j=1

cjλ(Jj) =

∞
∑

j=1

djλ(Kj).Proof. The onditions (14) imply:
∞
∑

j=1

c+
j λ(Jj) < ∞,

∞
∑

j=1

c−j λ(Jj) < ∞,

∞
∑

j=1

d+
j λ(Kj) < ∞,

∞
∑

j=1

d−j λ(Jj) < ∞.From ondition
∞
∑

j=1

cjχJj
(x) =

∞
∑

j=1

djχKj
(x)we have

∞
∑

j=1

c+
j χJj

(x) −

∞
∑

j=1

c−j χJj
(x) =

∞
∑

j=1

d+
j χKj

(x) −

∞
∑

j=1

d−j χKj
(x).



Regulated funtions and integrability [53℄That is
∞
∑

j=1

c+
j χJj

(x) +

∞
∑

j=1

d−j χKj
(x) =

∞
∑

j=1

d+
j χKj

(x) +

∞
∑

j=1

c−j χJj
(x)for every x suh that both sides represent a real number (not ∞). By Theorem 3

∞
∑

j=1

c+
j λ(Jj) +

∞
∑

j=1

d−j λ(Kj) =

∞
∑

j=1

d+
j λ(Kj) +

∞
∑

j=1

c−j λ(Jj),

∞
∑

j=1

c+
j λ(Jj) −

∞
∑

j=1

c−j λ(Jj) =
∞
∑

j=1

d+
j λ(Kj) −

∞
∑

j=1

d−j λ(Kj)and
∞
∑

j=1

cjλ(Jj) =

∞
∑

j=1

djλ(Kj).Now we are able to proeed with the de�nition of integral:Definition 5Let f be a funtion integrable in the interval I. Let cj be numbers and let Jj ⊂ Ibe intervals, j = 1, 2, 3, . . . , satisfying the ondition
∞
∑

j=1

|cj |λ(Jj) < ∞suh that the equality
f(x) =

∞
∑

j=1

cjχJj
(x)holds for every x ∈ I satisfying the ondition

∞
∑

j=1

|cj |χJj
(x) < ∞.Then the number

∞
∑

j=1

cjλ(Jj)is alled the integral of f in the interval I; it will be denoted by ∫I f(x) dx.Clearly, for every onstant funtion f(x) = β in the interval [a, b] we have
b
∫

a

f(x) dx = β(b − a).



[54℄ Ján Gun£aga4. Integration of regulated funtionsThe next theorem shows how to integrate regulated funtions.Theorem 5Let f be a regulated funtion in the interval [a, b] (a < b). Then f is integrable inthis interval and
b
∫

a

f(x) dx = F (b) − F (a),where F is any virtually primitive funtion to f in the interval [a, b].Proof. Let {fn(x)}
∞
n=1 be a uniformly onvergent sequene of step funtionsin the interval [a, b] suh that

f(x) =

∞
∑

n=1

fn(x)for every x ∈ [a, b]. This sequene exists from the theory of regulated and piee-wise onstant funtions (see [5℄). The funtions fn(x) are bounded. Let
βn = sup{|fn(x)| : x ∈ I}for every n = 1, 2, 3, . . . .It follows from the uniform onvergene of the sequene {fn(x)}

∞
n=1 that

∞
∑

n=1

βn < ∞. (15)For every n = 1, 2, 3, . . . we have
b
∫

a

|fn(x)| dx ≤

b
∫

a

βn dx = βn(b − a).From (15) we have ∑∞
n=1

∫ b

a |fn(x)| dx < ∞. The funtion f is integrable in theinterval [a, b] and
b
∫

a

f(x) dx =

∞
∑

n=1

b
∫

a

fn(x) dx. (16)Let Fn be a funtion virtually primitive to the funtion fn in the interval [a, b]suh that Fn(a) = 0 for n = 1, 2, 3, . . . . The sum
F (x) =

∞
∑

n=1

Fn(x)exists for every x ∈ [a, b] and funtion F de�ned in this way is virtually primitive



Regulated funtions and integrability [55℄to f in [a, b]. Thus
b
∫

a

fn(x) dx = Fn(b) − Fn(a)holds for every n = 1, 2, 3, . . . . Hene by (16)
b
∫

a

fn(x) dx =

∞
∑

n=1

(Fn(b) − Fn(a)) = F (b) − F (a).Sine the di�erene of any two funtions virtually primitive to f in [a, b] is onstant,the last equality holds for any funtion F virtually primitive to f in [a, b].5. ConlusionsOur aim was to provide an introdution to the theory of integral developed byProfessor Igor Kluvanek during his stay at Flinders University in Adelaide (Aus-tralia). In his approah regulated funtions play an important role (see I. Klu-vánek [4℄).The de�nition of integral given in this artile applies an idea of Arhimedes.The most e�etive method for the alulation of integrals is the one whih is basedon di�erential alulus (see V.V. Mityushev, S.V. Rogosin [6℄ and W.F. Pfe�er [7℄).As everybody knows Dirihlet funtion (harateristi funtion of the set ofrational numbers) is not integrable in Riemann sense. It is possible to show, thatthis funtion is integrable in the sense of I. Kluvanek and the value of this integralis zero. In fat, let Q ∩ [a, b] = {qj : j ∈ N}. Let further J2j = {qj} and let J2j−1be any subintervals of [0, 1]. Hene the Dirihlet funtion D: [0, 1] → R an berepresented in the form
D(x) =

∞
∑

j=1

cj · χJj
(x),where c2j = 1 and c2j−1 = 0. Hene its integral equals 0.Applying properties of this kind of integral it is possible to prove that integralof a regulated funtion f is an additive funtion of interval.Referenes[1℄ S. Banah, On measures in independent �eld, Stud. Mat. 10 (1948), 159�177.[2℄ J. Dieudonné, Foundations of Modern Analysis, Aademi Press, New York�London, 1969.[3℄ D. Fra¬ková, Regulated Funtions, Math. Bohem. 116 (1991), 20�59.[4℄ I. Kluvánek, Manusripts of the di�erential and integral alulus.[5℄ B. Königsberger, Analysis I, Springer Verlag, Berlin�Heidelberg�New York, 2001.[6℄ V.V. Mityushev, S.V. Rogosin, Construtive methods for boundary value problemsfor analyti funtions. Progress in analysis, 2, 769�777, World Si. Publ., RiverEdge, NJ, 2003.
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FOLIA 70Annales Universitatis Paedagogiae CraoviensisStudia Mathematia VIII (2009)
Paweª SolarzA note on some iterative rootsAbstrat. In this paper some orientation-preserving iterative roots of anorientation-preserving homeomorphism F :S1

→ S1 whih possess periodipoints of order n are onsidered. Namely, iterative roots with periodi pointsof order n. All orders of suh roots are determined and their general on-strution is given.Let X be a nonempty set. A funtion g: X → X is alled an iterative root ofa given funtion f : X → X if gm(x) = f(x) for x ∈ X . The number m ≥ 2 isalled the order of the iterative root and gm denotes m-th iterate of g. Moreover,we say that x ∈ X is a periodi point of f of order n ∈ N, n > 1 if
fn(x) = x and fk(x) 6= x for k ∈ {1, . . . , n − 1}.If f(x) = x, then x is said to be a �xed point of f . The set of all periodi (�xed)points of f will be denoted by Per f (Fix f).In [9℄ M.C. Zdun proved that every orientation-preserving homeomorphism

F : S1 → S1 possessing periodi points of order n is a omposition of twoorientation-preserving homeomorphisms T, G: S1 → S1. Funtion G has no pe-riodi points exept �xed points and T is suh that T n = idS1 . Using this resulthe determined all ontinuous iterative roots with periodi points for homeomor-phisms having �xed points.In the present paper we apply Zdun's theorem to the problem of �nding someontinuous iterative roots for an orientation-preserving homeomorphism F : S1 →
S1 with periodi points of order n. Namely, we shall give onditions under whihontinuous iterative roots with periodi points of order n exist and give the on-strution of these roots.Now, we reall some useful notations and de�nitions related to the mappingsof the irle. Let u, w ∈ S1 and u 6= w, then there exist t1, t2 ∈ R suh that
t1 < t2 < t1 + 1 and u = e2πit1 and w = e2πit2 . Put
−−−→
(u, w) :=

{

e2πit : t ∈ (t1, t2)
}

,
−−−→
[u, w] :=

−−−→
(u, w)∪ {u, w},

−−−→
[u, w) :=

−−−→
(u, w)∪{u}.AMS (2000) Subjet Classi�ation: 39B12, 26A18.Volumes I-VII appeared as Annales Aademiae Paedagogiae Craoviensis Studia Mathematia.



[58℄ Paweª SolarzThese sets are alled ars.For every homeomorphism F : S1 → S1 there exists a unique (up to translationby an integer) homeomorphism f : R → R suh that
F

(

e2πix
)

= e2πif(x)and
f(x + 1) = f(x) + kfor all x ∈ R, where k ∈ {−1, 1}. We all F orientation-preserving if k = 1, whihis equivalent to the fat that f is inreasing.Moreover, for every ontinuous funtion G: I → J , where I = {e2πit : t ∈ [a, b]}and J = {e2πit : t ∈ [c, d]} there exists a unique ontinuous funtion g: [a, b] →

[c, d] suh that
G

(

e2πix
)

= e2πig(x), x ∈ [a, b].In this ase we also all g the lift of G and we say that G preserves orientation if
g is stritly inreasing.For any orientation-preserving homeomorphism F : S1 → S1, the limit

α(F ) := lim
n→∞

fn(x)

n
(mod 1), x ∈ Ralways exists and does not depend on the hoie of x and f . This number isalled the rotation number of F (see [3℄). It is known that α(F ) is a rationaland positive number if and only if F has a periodi point (see for example [3℄).If F : S1 → S1 is an orientation-preserving homeomorphism suh that α(F ) = q

n ,where q, n are positive integers with q < n and gcd(q, n) = 1, then PerF ontainsonly periodi points of order n (see [7℄, [5℄). Moreover, there exists a unique number
p ∈ {1, . . . , n−1}, alled the harateristi number of F , satisfying pq = 1 (mod n).From now on put nF := n and charF := p. The following result omes from [8℄.Lemma 1If F : S1 → S1 is an orientation-preserving homeomorphism with PerF 6= ∅, thenfor every z ∈ PerF ,

Arg
F k char F (z)

z
< Arg

F (k+1) char F (z)

z
, k = 0, . . . , nF − 2.For �xed z ∈ PerF we de�ne the partition of S1 onto the following ars

Ik = Ik(z) :=
−−−−−−−−−−−−−−−−−−−−−−→[

F k char F (z), F (k+1) charF (z)
)

, k ∈ {0, . . . , nF − 1}. (1)Let us note that
F [Ik] =

−−−−−−−−−−−−−−−−−−−−−−−−−−→[

F k char F+1(z), F (k+1) char F+1(z)
)

=
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→[

F k char F+q char F (z), F (k+1) char F+q char F (z)
)

= I(k+q) (mod nF ), k ∈ {0, . . . , nF − 1},where q = nF α(F ).We shall use the following property (see [9℄).



A note on some iterative roots [59℄Remark 1Let n ∈ N and p, q ∈ {0, . . . , n − 1} satisfy pq = 1 (mod n) and gcd(q, n) = 1. Themapping {0, . . . , n − 1} ∋ d 7→ id := −dp (mod n) ∈ {0, . . . , n − 1} is a bijetion.Moreover, d + idq = 0 (modn).The next theorem also omes from [9℄ and it is a modi�ation of the fatoriza-tion theorem (see [9℄, Theorems 5 and 9).Theorem 1Let F : S1 → S1 be an orientation-preserving homeomorphism, z ∈ PerF andlet {Id}d∈{0,...,nF −1} be the family de�ned in (1). Then there exists a uniqueorientation-preserving homeomorphism T : S1 → S1 having periodi points of order
nF and suh that PerT = S1 and

F k+jnF

|Id
= T α(F )nF k ◦

{

T d ◦ (FnF )j+1 ◦ T−d
|Id

, if id ≤ k − 1,

T d ◦ (FnF )j ◦ T−d
|Id

, if id > k − 1for d, k ∈ {0, 1, . . . , nF − 1}, j ∈ N.Let us stress that T is unique up to a periodi point of F . Moreover, FnF [Id] =
Id, T [Id] = I(d+1) (mod n) for d ∈ {0, . . . , nF − 1} and T nF = idS1 . Suh a funtion
T will be alled a Babbage funtion of F (see [9℄).In view of the above theorem (see also [9℄, Corollary 6) for every orientation-preserving homeomorphism F : S1 → S1 with ∅ 6= PerF and for every z0 ∈ PerFwe have

F (z) :=

{

T q (FnF (z)) , z ∈ I0(z0),

T q(z), z ∈ S1 \ I0(z0),
(2)where q = α(F )nF and T is a Babbage funtion of F .We start with the followingRemark 2Let n, m ≥ 2 be integers and let q, q′ ∈ {1, . . . , n − 1} be suh that gcd(q, n) = 1and mq′ = q (mod n), then gcd(m, n) = 1.Proof. To obtain a ontradition suppose that m = ka and n = kb for someintegers k > 1 and a, b ≥ 1. This and the fat that mq′ = q (mod n) give kaq′ =

q + jkb for some j ∈ Z. Therefore k(aq′ − jb) = q, whih ontradits the fat that
gcd(q, n) = 1.Remark 3Let n, m ≥ 2 be relatively prime integers and let q ∈ {1, . . . , n − 1} be suh that
gcd(q, n) = 1. There is a unique q′ ∈ {1, . . . , n − 1} suh that gcd(q′, n) = 1 and
mq′ = q (mod n).Proof. The fat that gcd(m, n) = 1 implies that the equation mx + ny = qhas integer solutions x, y. In partiular, there is exatly one pair (q′, j), where
q′ ∈ {0, . . . , n − 1} and j ∈ Z suh that mq′ + jn = q. Thus mq′ = q (mod n).Moreover, q′ 6= 0 as gcd(q, n) = 1. In the same manner as in the proof of Remark 2we an see that gcd(q′, n) = 1.



[60℄ Paweª SolarzFrom Remark 2 we an onlude thatCorollary 1Let F : S1 → S1 be an orientation-preserving homeomorphism with ∅ 6= PerF andlet m ≥ 2 be an integer. If equation
Gm(z) = F (z), z ∈ S1 (3)has ontinuous and orientation-preserving solution suh that nG = nF , then

gcd(m, nF ) = 1.It appears that gcd(m, nF ) = 1 is also a su�ient ondition for the existene ofontinuous and orientation-preserving solutions of (3) with nG = nF . The proofof this property and the desription of the solution of (3) in the ase PerF = S1an be found in [6℄. Therefore, from now on assume that PerF 6= S1. Before wepresent some results let as reall that if (3) holds, then PerF = PerG.Lemma 2Let F, G: S1 → S1 be orientation-preserving homeomorphisms possessing periodipoints of order nF = nG = n and satisfying equation (3) for an m ≥ 2. Letmoreover z0 ∈ PerF = PerG and Jk :=
−−−−−−−−−−−−−−−−−−−−−−−→[

Gk char G(z0), G
(k+1) charG(z0)

), k ∈
{0, . . . , n − 1}. Then(i) Jk = Ik(z0) for k ∈ {0, . . . , n − 1}, where the ars Ik(z0) are de�ned by (1);(ii) (GnG)m = FnF ;(iii) if T and V are Babbage funtions of F and G, respetively, [x] stands foran integer part of x ∈ R and i′d := −d charG (mod n) for d ∈ {0, . . . , n− 1},then

V q
|Id

= T α(F )n ◦ T d ◦ Gnβd ◦ T−d
|Id

, (4)where
βd :=











m −
[

m
n

]

− 1, d = 0,

−
[

m
n

]

− 1, d ∈ {1, . . . , n − 1}, i′d ≤ m −
[

m
n

]

n − 1,

−
[

m
n

]

, d ∈ {1, . . . , n − 1}, i′d > m −
[

m
n

]

n − 1.

(5)Proof. Fix z0 ∈ PerF and assume that (3) holds, nF = nG = n. Put
q := α(F )n, q′ := α(G)n and b :=

[

m
n

]. From the fat that gcd(m, n) = 1(see Corollary 1), we get
m = k + bn for some k ∈ {1, . . . , n − 1}. (6)To prove (i) it su�es to show that G char G(z0) = F charF (z0). Equation (3) yields

mα(G) = α(F ) (mod 1) (see [2℄). Thus mq′ = q (mod n), hene
mq′ charF charG = q charF charG (mod n)



A note on some iterative roots [61℄and �nally, in view of the de�nition of charF ,
m charF = charG (mod n). (7)From (7), (3) and sine z0 is a periodi point of G of order n we obtain

G char G(z0) = Gm char F (z0) = F char F (z0).Note that (ii) is an immediate onsequene of equation (3) and equality nF =
nG.Now we prove (iii). From Theorem 1, (6) and (i) we get

Gm
|Id

= Gk+bn
|Id

= V q′k ◦

{

V d ◦ (Gn)b+1 ◦ V −d
|Id

, if i′d ≤ k − 1,

V d ◦ (Gn)b ◦ V −d
|Id

, if i′d > k − 1for d ∈ {0, 1, . . . , n−1}. Furthermore, observe that ondition mq′ = q (mod n) and(6) give kq′ = q (mod n), whih, in view of the fat that V is a Babbage funtionof G of order n, implies V q′k = V q. Therefore,
Gm

|Id
= V q ◦

{

V d ◦ (Gn)b+1 ◦ V −d
|Id

, if i′d ≤ k − 1,

V d ◦ (Gn)b ◦ V −d
|Id

, if i′d > k − 1
(8)for d ∈ {0, 1, . . . , n − 1}.On the other hand, we may write (5), as follows

βd =











m − b − 1, d = 0,

−b − 1, d ∈ {1, . . . , n − 1}, i′d ≤ k − 1,

−b, d ∈ {1, . . . , n − 1}, i′d > k − 1.Let d = 0, then i′0 = 0 ≤ k − 1 and b = m − β0 − 1. Combining these with (8) weobtain
Gm

|I0
= V q ◦ (Gn

|I0
)b+1 = V q ◦ (Gn

|I0
)m−β0 .Let d ∈ {1, . . . , n − 1}. Replaing b by −βd − 1 if i′d ≤ k − 1 (resp. by −βd if

i′d > k − 1) in (8) yields
Gm

|Id
= V q ◦ V d ◦ G−nβd ◦ V −d

|Id
.Finally,

Gm
|Id

= V q ◦

{

V d ◦ G−nβd+mn ◦ V −d
|Id

, d = 0,

V d ◦ G−nβd ◦ V −d
|Id

, d ∈ {1, . . . , n − 1}.
(9)Equating (9) with (2) yields for d ∈ {1, . . . , n − 1},

T q
|Id

= V q ◦ V d ◦ G−nβd ◦ V −d
|Id

. (10)While, for d = 0, we get
T q ◦ Fn

|I0
= V q ◦ G−nβ0+nm

|I0
.



[62℄ Paweª Solarzwhih, in view of (ii), gives
T q
|I0

= V q ◦ G−nβ0

|I0
. (11)From (10) and (11) we have

T q
|Id

= V q ◦ V d ◦ G−nβd ◦ V −d
|Id

, d ∈ {0, . . . , n − 1}. (12)Hene
T q
|Ip (mod n)

= V q ◦ V p (mod n) ◦ G−nβp (mod n) ◦ V
−p (mod n)
|Ip (mod n)

, p ∈ N.As V p = V p (mod n) for p ∈ N we obtain
T q
|Ip (mod n)

= V q ◦ V p ◦ G−nβp (mod n) ◦ V −p
|Ip (mod n)

, p ∈ N. (13)Now let us reall that T q[Id] = I(d+q) (mod n) for d ∈ {0, . . . , n− 1}. This, (11) and(13) imply
T lq
|I0

= (T q)
l
|I0

=
(

V q ◦ V (l−1)q ◦ G−nβq(l−1) (mod n) ◦ V −(l−1)q
)

◦
(

V q ◦ V (l−2)qG−nβq(l−2) (mod n) ◦ V −(l−2)q
)

◦ . . . ◦
(

V q ◦ V q ◦ G−nβq ◦ V −q
)

◦
(

V q ◦ G−nβ0

|I0

)

= V lq ◦ G
−n(βq(l−1) (mod n)+βq(l−2) (mod n)+...+βq+β0)
|I0

,whih gives
V lq
|I0

= T lq ◦ G
n(βq(l−1) (mod n)+βq(l−2) (mod n)+...+βq+β0)
|I0

(14)for l ∈ {1, . . . , n}. Now �x d ∈ {1, . . . , n−1}. Sine gcd(q, n) = 1 there is a unique
l ∈ {1, . . . , n} suh that lq = d (mod n). Hene by (13) we have

T q
|Id

= T q
|Ilq (mod n)

= V q ◦ V lq ◦ G−nβlq (mod n) ◦ V −lq
|Ilq (mod n)

.By substituting (14) twie to the above equation we obtain
T q
|Id

= V q ◦
(

T lq ◦ Gn(βq(l−1) (mod n)+βq(l−2) (mod n)+...+βq+β0)
)

◦ G−nβlq (mod n)

◦
(

G−n(βq(l−1) (mod n)+βq(l−2) (mod n)+...+βq+β0) ◦ T−lq
|Ilq (mod n)

)

= V q ◦ T lq ◦ G−nβlq (mod n) ◦ T−lq
|Ilq (mod n)

.This and the fat that T is a Babbage homeomorphism of F of order n, i.e.,
T lq = T lq (mod n) = T d, yield

V q
|Id

= T q ◦ T d ◦ Gnβd ◦ T−d
|Id

,whih in view of (11) ompletes the proof of (4).



A note on some iterative roots [63℄Lemma 3Let u, w ∈ S1, u 6= w and I :=
−−−→
[u, w]. For every integer m ≥ 2 and everyorientation-preserving homeomorphism F : I → I with Fix F 6= ∅ there exist in-�nitely many orientation-preserving homeomorphisms G: I → I satisfying (3) andsuh that Fix G 6= ∅.Proof. Let a, b ∈ R be suh that a < b < a + 1 and u = e2πia and w = e2πib.Then

F
(

e2πix
)

= e2πif(x), x ∈ [a, b]for a unique inreasing homeomorphism f : [a, b] → [a, b]. Clearly, f possesses �xedpoints. By Theorem 11.2.2 (see [4℄ h. 11), there exist in�nitely many stritlyinreasing ontinuous solutions of
gm(x) = f(x), x ∈ [a, b],with Fix g 6= ∅. For every suh funtion g: [a, b] → [a, b] de�ne G: I → I by

G
(

e2πix
)

:= e2πig(x), x ∈ [a, b].Then Fix G 6= ∅ and
Gm

(

e2πix
)

= e2πigm(x) = e2πif(x) = F (e2πix), x ∈ [a, b].In the proof of the next theorem we will use the following result (see for example[7℄).Lemma 4Suppose that F : S1 → S1 is an orientation-preserving homeomorphism, z ∈ PerF ,
{z, F (z), . . . , FnF −1(z)} = {z0, z1, . . . , znF −1}, where z0 = z,

Arg
zd

z0
< Arg

zd+1

z0
< 2π, d ∈ {0, . . . , nF − 2}and F (z0) = zq. Then α(F ) = q

nF
.Theorem 2Let F : S1 → S1 be an orientation-preserving homeomorphism and let m ≥ 2 be aninteger suh that gcd(m, nF ) = 1. There exists an orientation-preserving homeo-morphism G: S1 → S1 satisfying (3) and suh that nG = nF .For every suh an m and every z0 ∈ PerF , providing that Id = Id(z0) for

d ∈ {0, . . . , nF − 1} are de�ned by (1), the solution of (3) is of the form:
G(z) :=







(

Ψ char F
)q′

(H(z)) , z ∈ I0,
(

Ψ char F
)q′

(z), z ∈ S1 \ I0,
(15)where q′ ∈ {1, . . . , nF − 1} ful�ls mq′ = q (mod nF ), q := nF α(F ), H : I0 → I0 isan orientation-preserving homeomorphism suh that Fix H 6= ∅, Hm = FnF

|I0
and

Ψ(z) := T q ◦ T d ◦ Hβd ◦ T−d(z), z ∈ Id, d ∈ {0, . . . , nF − 1}, (16)



[64℄ Paweª Solarzwhere T : S1 → S1 is a Babbage funtion of F and βd for d ∈ {0, . . . , nF − 1} arede�ned by (5) with n = nF and i′d uniquely determined by (d + i′dq
′) (mod nF ) = 0for d ∈ {0, . . . , nF − 1}.Proof. Fix z0 ∈ PerF and a mapping H : I0 → I0 suh that Fix H 6= ∅ and

Hm = FnF

|I0
(by Lemma 3 there are in�nitely many suh mappings). Observe that

Ψ[Id] = T q ◦ T d ◦Hβd [I0] = T q[Id] = I(d+q) (mod n), d ∈ {0, . . . , nF − 1}. (17)Moreover, as a omposition of orientation-preserving homeomorphisms, Ψ|Id
is anorientation-preserving homeomorphism. Hene Ψ: S1 → S1 and G are orientation-preserving homeomorphisms.Now we show that nG = nF . Put zd := F d charF (z0) for d ∈ {1, . . . , nF − 1}.Thus by (1), (17) and sine Ψ preserves the orientation we get

Ψ(zd) = z(d+q) (mod nF ), d ∈ {0, . . . , nF − 1}.This, Lemma 1 and Lemma 4 yield α(Ψ) = q
nF

= α(F ) and, in onsequene,
nΨ = nF and charΨ = charF . Next note that H(z0) = z0 and H(z1) = z1.Therefore, by (15) and the de�nition of charF ,

G(zd) = Ψq′ char F (zd) = z(d+qq′ char F ) (mod nF ) = z(d+q′) (mod nF ), (18)for d ∈ {0, . . . , nF − 1}. As gcd(q′, nF ) = 1 (see Remark 3) we get nF = nG.Our next goal is to prove that ΨnF = idS1 . From (17) and (16), in view of thefat that T p = T p (mod nF ) for p ∈ N, we obtain
ΨnF

|Id
=

(

T q ◦ T d+(nF−1)q ◦ Hβ(d+(nF −1)q) (mod nF ) ◦ T−d+(nF−1)q
)

◦ . . . ◦
(

T q ◦ T d+q ◦ Hβ(d+q) (mod nF ) ◦ T−d+q
)

◦
(

T q ◦ T d ◦ Hβd ◦ T−d
|Id

)

= T q ◦ T d+(nF−1)q ◦ Hβ(d+(nF −1)q) (mod nF )+...+βd ◦ T−d
|Idfor d ∈ {0, . . . , nF − 1}. Moreover, sine gcd(q, nF ) = 1 we get

{d, (d + q) (mod nF ), . . . , (d + (nF − 1)q) (mod nF )} = {0, 1, . . . , nF − 1}.We thus get
ΨnF

|Id
= T q ◦ T d+(nF−1)q ◦ HβnF −1+...+β0 ◦ T−d

|Id
, d ∈ {0, . . . , nF − 1}. (19)Putting b :=

[

m
nF

] we have (6) with n = nF . By Remark 3 and Remark 1 itfollows that the mapping {0, . . . , nF −1} ∋ d 7→ i′d ∈ {0, . . . , nF −1} is a bijetion.Therefore, i′d ≤ m − bnF − 1 = k − 1 holds true for exatly k arguments and oneof them is 0, as i′0 = 0 ≤ k − 1. Hene in view of (5),
βnF −1 + . . . + β0 = (nF − k)(−b) + (k − 1)(−b − 1) + m − b − 1 = 0.This and (19) give ΨnF = idS1 .



A note on some iterative roots [65℄What is left is to show that (3) holds. Put Ψ char F = V . By Theorem 1homeomorphism V is a Babbage funtion of G. Sine q charF = 1 (mod nF ) and
ΨnF = idS1 we have Ψ = Ψq charF = V q. Hene by (16),

V q
|Id

= T q ◦ T d ◦ Hβd ◦ T−d
|Id

, d ∈ {0, . . . , nF − 1}. (20)Applying the similar reasoning as in the proof of (iii) of Lemma 2 we obtain
T q
|Id

= V q ◦ V d ◦ H−βd ◦ V −d
|Id

, d ∈ {0, . . . , nF − 1}. (21)Indeed, as T p = T p (mod nF ) for p ∈ N from (20) we get
V q
|Ip (mod nF )

= T q ◦ T p ◦ Hβp (mod nF ) ◦ T−p
|Ip (mod nF )

, p ∈ N. (22)Thus
V lq
|I0

= T lq ◦ H
(βq(l−1) (mod nF )+βq(l−2) (mod nF )+...+βq+β0)
|I0

,whih gives
T lq
|I0

= V lq ◦ H
−(βq(l−1) (mod nF )+βq(l−2) (mod nF )+...+βq+β0)
|I0

(23)for l ∈ {1, . . . , nF }. Now �x d ∈ {1, . . . , nF − 1}. Sine gcd(q, nF ) = 1 there isa unique l ∈ {1, . . . , nF } suh that lq = d (mod nF ). Hene by (22) we have
V q
|Id

= V q
|Ilq (mod nF )

= T q ◦ T lq ◦ Hβlq (mod nF ) ◦ T−lq
|Ilq (mod nF )

.By substituting (23) twie to the above equation we obtain
V q
|Id

= T q ◦
(

V lq ◦ H−(βq(l−1) (mod nF )+βq(l−2) (mod nF )+...+βq+β0)
)

◦ Hβlq (mod nF )

◦
(

H(βq(l−1) (mod nF )+βq(l−2) (mod nF )+...+βq+β0) ◦ V −lq
|Ilq (mod nF )

)

= T q ◦ V lq ◦ Gβlq (mod nF ) ◦ V −lq
|Ilq (mod nF )

.This and the fat that V is a Babbage homeomorphism of G of order nF , i.e.,
V lq = V lq (mod nF ) = T d, yield (21).Now observe that from (2) and (21), sine Hm = FnF

|I0
and kq′ = q (mod nF ),we get

F|Id
= V kq′

◦

{

V d ◦ H−βd+m ◦ V −d
|Id

, d = 0,

V d ◦ H−βd ◦ V −d
|Id

, d ∈ {1, . . . , nF − 1},whih in view of (15), (6) and Theorem 1 gives F = Gm.We �nish with the following observationsRemark 4If the assumptions of Theorem 2 are ful�lled, then(i) from (18), Lemma 4, Lemma 1 it follows that α(G) = q′

nF
,(ii) by Lemma 3 there are in�nitely many solutions of (3) with nG = nF ,(iii) Lemma 2 and Theorem 2 imply that every orientation-preserving ontinuoussolution of (3) with nG = nF is given by (15) and (16).
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FOLIA 70Annales Universitatis Paedagogiae CraoviensisStudia Mathematia VIII (2009)
Zah TeitlerBounding symboli powers via asymptoti multiplieridealsAbstrat. We revisit a bound on symboli powers found by Ein�Lazarsfeld�Smith and subsequently improved by Takagi�Yoshida. We show that theoriginal argument of [6℄ atually gives the same improvement. On the otherhand, we show by examples that any further improvement based on thesame tehnique appears unlikely. This is primarily an exposition; only someexamples and remarks might be new.1. Uniform bounds for symboli powersFor a radial ideal I, the symboli power I(p) is the olletion of elementsthat vanish to order at least p at eah point of Zeros(I). If I is atually prime,then I(p) is the I-assoiated primary omponent of Ip; if I is only radial, writing
I = C1 ∩ . . . ∩ Cs as an intersetion of prime ideals, I(p) = C

(p)
1 ∩ . . . ∩ C

(p)
s .The inlusion Ip ⊆ I(p) always holds, but the reverse inlusion holds only in somespeial ases, suh as when I is a omplete intersetion.Swanson [15℄ showed that for rings R satisfying a ertain hypothesis, for eahideal I, there is an integer e = e(I) suh that the symboli power I(er) ⊆ Irfor all r ≥ 0. Ein�Lazarsfeld�Smith [6℄ showed that in a regular loal ring Rin equal harateristi 0 and for I a radial ideal, one an take e(I) = bight(I),the big height of I, whih is the maximum of the odimensions of the irreduibleomponents of the losed subset of zeros of I. In partiular, bight(I) is at mostthe dimension of the ambient spae, so e = dimR is a single value that works forall ideals. More generally, for any k ≥ 0, I(er+kr) ⊆ (I(k+1))r for all r ≥ 1. Veryshortly thereafter, Hohster�Huneke [9℄ generalized this result by harateristi pmethods.It is natural to regard these results in the form I(m) ⊆ Ir for m ≥ f(r) = er,

e = bight(I). Replaing f(r) = er with a smaller funtion would give a strongerbound on symboli powers (ontainment in Ir would begin sooner). So it is naturalto ask, how far an one redue the bounding funtion f(r) = er?AMS (2000) Subjet Classi�ation: 14B05.Volumes I-VII appeared as Annales Aademiae Paedagogiae Craoviensis Studia Mathematia.



[68℄ Zah TeitlerBoi�Harbourne [3℄ introdued the resurgene of I, ρ(I)= sup{m
r : I(m) 6⊆ Ir}.Thus if m > ρ(I)r, I(m) ⊆ Ir. The Ein�Lazarsfeld�Smith and Hohster�Hunekeresults show ρ(I) ≤ bight(I) ≤ dim R. It an be smaller. For example, if I issmooth or a redued omplete intersetion, ρ(I) = 1. More interestingly, Boi�Harbourne [3℄ show that if I is an ideal of n redued points in general positionin P2, ρ(I) = ρn ≤ 3

2 . On the other hand, Boi�Harbourne show for eah n,
1 ≤ e ≤ n, and ǫ > 0 there are ideals I on Pn with bight(I) = e suh that
ρ(I) > e − ǫ. This suggests that one annot expet improvement in the slope ofthe linear bound m ≥ er, at least not in very general terms. So one naturallyturns toward the possibility of subtrating a onstant term.Huneke raised the question of whether, for I an ideal of redued points in P2,
I(3) ⊆ I2. Boi�Harbourne's result ρ ≤ 3

2 gives an a�rmative answer to Huneke'squestion, and muh more, for points in general position. Some other ases havebeen treated, e.g., points on a oni, but the general ase, i.e., points in arbitraryposition, remains open.A onjeture of Harbourne (Conjeture 8.4.3 in [1℄) states that for a homoge-neous ideal I on Pn, I(m) ⊆ Ir for all m ≥ nr − (n − 1), and even stronger, thatthe ontainment holds for all m ≥ er − (e − 1), where e = bight(I). Huneke'squestion would follow at one as the ase n = e = r = 2.Some results in this diretion have been obtained by various authors. Hunekehas observed that Harbourne's onjeture holds in harateristi p for values
r = pk, k ≥ 1, see Example IV.5.3 of [8℄ or Example 8.4.4 of [1℄. Takagi�Yoshida [17℄ and Hohster�Huneke independently showed by harateristi p meth-ods that I(er+kr−1) ⊆ (I(k+1))r for all k ≥ 0 and r ≥ 1 when I is F -pure (seebelow). More generally, Takagi�Yoshida show a harateristi p version of thefollowing:Theorem 1.1 ([17℄)Let R be a regular loal ring of equal harateristi 0, I ⊆ R a redued ideal,
e = bight(I) the greatest height of an assoiated prime of I, and ℓ an integer,
0 ≤ ℓ < lct(I(•)), where lct(I(•)) is the log anonial threshold of the graded systemof symboli powers of I, see below. Then I(m) ⊆ Ir whenever m ≥ er − ℓ. Moregenerally, for any k ≥ 0, I(m) ⊆ (I(k+1))r whenever m ≥ er + kr − ℓ.This statement is a slight modi�ation of Remark 3.4 of [17℄.The Ein�Lazarsfeld�Smith uniform bounds on symboli powers desribed aboveare the ase ℓ = 0. The F -pure ase implies lct(I(•)) > 1, so we may take ℓ = 1.(More preisely, F -pure means lct(I) > 1, and we will see lct(I(•)) ≥ lct(I).)The idea of the proof is to produe an ideal J with I(m) ⊆ J and J ⊆ (I(k+1))r.Ein�Lazarsfeld�Smith introdued asymptoti multiplier ideals in [6℄ and, amongother results, proved the uniform bounds desribed above by taking J to bean asymptoti multiplier ideal. For Takagi�Yoshida the ideal J is a generalized testideal, a harateristi p analogue of the asymptoti multiplier ideals introdued byHara�Yoshida [11℄.In this note, J will be an asymptoti multiplier ideal. We will review multiplierideals in �2 and disuss some examples in �3: the asymptoti multiplier idealsof monomial ideals and hyperplane arrangements. We will revisit the argument



Bounding symboli powers via asymptoti multiplier ideals [69℄given by Ein�Lazarsfeld�Smith in the ase ℓ = 0 to show that it atually givesTheorem 1.1 in �4.In �5 we onsider two ways in whih the argument of �4 falls short of theimproved bounds we hope for. First, the ondition 0 ≤ ℓ < lct(I(•)), while gen-eralizing the result of [6℄, is nevertheless quite restritive. Seond, the argumentof [6℄ atually produes two ideals, I(m) ⊆ J1 ⊆ J2 ⊆ (I(k+1))r. We will onsideras an example the ideal I = (xy, xz, yz) of the union of the three oordinate axesin C3. We will show that in this example the �rst and last inlusions are atuallyequalities, while the middle inlusion J1 ⊆ J2 is very far. So if any improvementremains to be found, one must onsider the middle inlusion.2. Multiplier idealsHeneforth we �x X = C
n and onsider ideals in the ring R = C[x1, . . . , xn].Note that for a prime homogeneous ideal I, a homogeneous form F vanishes toorder p along the projetive variety de�ned by I in Pn−1 if and ony if it vanishes toorder p on the a�ne variety de�ned by I in C

n. In this way the Boi�Harbourneresults and Huneke question for points in P2 translate to questions about symbolipowers of (homogeneous) ideals in the a�ne setting.2.1. Ordinary multiplier idealsTo an ideal I ⊆ C[x1, . . . , xn], regarded as a sheaf of ideals on X = Cn,and a real parameter t ≥ 0 one may assoiate the multiplier ideal J (It) ⊆
C[x1, . . . , xn]. The multiplier ideals are de�ned in terms of a resolution of sin-gularities of I. For details, see [4℄, [12℄.Note, in the notation J (It) the t indiates dependane on the parameter t,rather than a power of I. In partiular, J (It) is de�ned for all real t ≥ 0, whereas
It on its own only makes sense for integer t ≥ 0. See, however, Property 2.2.Rather than present the somewhat involved de�nition here, we give a shortlist of properties of multiplier ideals whih are all that we will use. (The readermay take these as axioms, although the properties listed here do not haraterizemultiplier ideals.)Property 2.1For any nonzero ideal I, J (I0) = (1), the unit ideal. As the parameter t inreases,the multiplier ideals get smaller: if t1 < t2, then J (It1) ⊇ J (It2).On the other hand, if I1 ⊆ I2, then J (It

1) ⊆ J (It
2).Thus multiplier ideals, as funtions of two arguments, are �order-preserving� inthe ideal and �order-reversing� in the real parameter.Property 2.2For any real number t ≥ 0 and integer k > 0, J (Ikt) = J ((Ik)t).Property 2.3For any t ≥ 0 and integer p ≥ 0, IpJ (It) ⊆ J (Ip+t). See Proposition 9.2.32 (iv)of [12℄.



[70℄ Zah TeitlerProperty 2.4When Zeros(I) is smooth and irreduible with odimension codim(Zeros(I)) = e =

bight(I), J (It) = I⌊t⌋−e+1. In partiular, J (It) ⊆ I for t ≥ e. More generally, if
I is redued and Zeros(I) = V1 ∪ . . . ∪ Vs, then restriting to a neighborhood ofa general point on eah Vi, we see J (It) vanishes on Vi for t ≥ codim Vi, hene
J (It) ⊆ I for t ≥ max codim Vi = bight(I).The above list is a small seletion of the many interesting properties of multi-plier ideals. See [4℄, [12℄ for more, inluding exellent expositions of the de�nition(from whih all the above properties follow immediately). Among these manyother properties we single out one whih we will use here, due to Demailly�Ein�Lazarsfeld [5℄.Subadditivity Theorem
J (It1+t2) ⊆ J (It1)J (It2). In partiular for any integer r ≥ 0, J (Irt) ⊆ J (It)r.2.2. Asymptoti multiplier idealsA graded system of ideals a• = {an}

∞
n=1 is a olletion of ideals satisfying apaq ⊆

ap+q, and (to avoid trivialities) at most �nitely many of the an may be zero. Notethat ap, ap+1 are not required to satisfy any partiular relation, but (ap)
k ⊆ akp.By onvention, a0 = C[x1, . . . , xn], so that ⊕∞

n=0 an is a C[x1, . . . , xn]-algebra.A trivial graded system is one of the form an = a
n
1 . Our main interest will be inthe graded system of symboli powers of a (redued) ideal I, I(•) = {I(n)}n≥0.To a graded system a• and real parameter t ≥ 0 one an assoiate an asymptotimultiplier ideal J (at

•), or J (t · I(•)), de�ned by
J (at

•) = max
p≥1

J
(

a

t
p
p

)

.This de�nition was given in [6℄. We must justify the existene and well-de�nednessof this maximum; we repeat the argument of [6℄. Note that sine (ap)
q ⊆ aqp, bythe properties of multiplier ideals we have

J
(

a

t
p

p

)

= J
(

(aq
p)

t
pq

)

⊆ J
(

a

t
pq

pq

)

.The Noetherian property assures that among the ideals J (

a

t
p
p

), one is a (relative)maximum. If J (

a

t
p
p

) is a maximum, then by the above, J (

a

t
p
p

)

= J
(

a

t
pq
pq

). Heneif J (

a

t
p
p

) and J
(

a

t
q
q

) both are maxima, then they oinide with eah other. Thusthere is a unique maximum of this olletion of ideals.In partiular, J (at
•) = J

(

a

t
p
p

) for p ≫ 0 and su�iently divisible, i.e., forall su�iently large multiples of some p0. We say that suh a p omputes theasymptoti multiplier ideal.Example 2.5In the trivial ase an = a
n
1 , the asymptoti multiplier ideals redue to the ordinarymultiplier ideals: J (at

•) = J (at
1). This has the following onsequene: If I is a



Bounding symboli powers via asymptoti multiplier ideals [71℄redued ideal de�ning a smooth and irreduible variety of odimension e, then
J (t · I(•)) = J (It) = I⌊t⌋+1−e.As before, if I is only redued, then by restriting to a neighborhood of a smoothpoint on eah irreduible omponent of Zeros(I), we see that J (t · I(•)) ⊆ I for

t ≥ e = bight(I). And, more generally, J ((e + k) · I(•)) ⊆ I(k+1) for any k ≥ 0and any redued ideal I.Remark 2.6Conversely, an ⊆ J (an
• ). In fat, for every n, t, an · J (at

•) ⊆ J (at+n
• ) (Theo-rem 11.1.19 (iii) of [12℄). This is exatly the extra piee we will add to the argumentof [6℄ to dedue Theorem 1.1.As before, J (a0

•) = (1) and if t1 < t2, then J (at1
• ) ⊇ J (at2

• ). The asymptotimultiplier ideals satisfy subadditivity: J (at1+t2
• ) ⊆ J (at1

• )J (at2
• ), so J (art

• ) ⊆
J (at

•)
r [12, 11.2.3℄. This follows immediately from the subadditivity theoremfor ordinary multiplier ideals. (Let p large and divisible enough ompute all theasymptoti multiplier ideals appearing in the equation, then apply the ordinarysubadditivity theorem for ap.)2.3. Log anonial thresholdsFor an ideal I 6= (0), (1), we de�ne lct(I) = sup{t | J (It) = (1)}. This isa positive rational number. It turns out that J (I lct(I)) 6= (1). (See [7℄ or [12℄.)Let I be a radial ideal and let e′ be the minimum of the odimensions of theirreduible omponents of Zeros(I). Then lct(I) satis�es

0 < lct(I) ≤ e′.(Restriting to a neighborhood of a general point on a odimension e′ omponentof Zeros(I), J (Ie′

) vanishes on the omponent by Property 2.4.)For a graded system of ideals a•, we de�ne lct(a•) = sup{t | J (at
•) = (1)}.This may be in�nite or irrational. However for the graded system of symbolipowers of a radial ideal I, we have lct(I(•)) ≤ e′ as above.As shown in [13, Remark 3.3℄,

lct(a•) = sup p lct(ap) = lim p lct(ap).Taking p = 1, this shows lct(I(•)) ≥ lct(I) for a radial ideal I.3. ExamplesIn this setion we give the asymptoti multiplier ideals of graded systems ofmonomial ideals, espeially for the symboli powers of a radial (i.e., squarefree)monomial ideal, and the asymptoti multiplier ideals of graded systems of divisorand hyperplane arrangements.



[72℄ Zah Teitler3.1. Monomial idealsThe following theorem gives the ordinary multiplier ideals of a monomial ideal.Theorem 3.1 ([10℄)Let I be a monomial ideal with Newton polyhedron N = Newt(I). Then J (It) isthe monomial ideal ontaining xv if and only if v + (1, . . . , 1) ∈ Int(t · N).Here Int( ) denotes topologial interior. In partiular, lct(I) = 1
t , where

t · (1, . . . , 1) is in the boundary of Newt(I).Let I• = {Ip} be a graded system of monomial ideals. Let Np = Newt(Ip).Then Ik
p ⊆ Ipk, so k ·Np ⊆ Npk, whih means 1

pNp ⊆ 1
pkNpk. Let N(I•) =

⋃

1
pNp.Sine this is an asending union of onvex sets, it is onvex.Theorem 3.2 ([13℄)

J (It
•) is the monomial ideal ontaining xv if and only if v + (1, . . . , 1) ∈

Int(t · N(I•)).Proof. If p omputes J (It
•) and xv ∈ J (It

•) = J
(

I
t
p
p

), then v + (1, . . . , 1) ∈
Int( t

pNp) ⊆ Int(t · N(I•)). Conversely if v + (1, . . . , 1) ∈ Int(t · N(I•)), then
v + (1, . . . , 1) ∈ Int( t

pNp) for some p, whene xv ∈ J
(

I
t
p

p

)

⊆ J (It
•).For a graded system of monomial ideals, lct(I•) = 1

t , where t · (1, . . . , 1) is inthe boundary of N(I•).More an be said in a speial situation:Proposition 3.3If a graded system is given by Ip = Cp
1 ∩ . . . ∩ Cp

r for �xed monomial ideals
C1, . . . , Cr, then in the above notation, N(I•) =

⋂

Newt(Ci).Proof. For a monomial ideal a, let monom(a) denote the set of exponent ve-tors of monomials in a, so that Newt(a) is the onvex hull conv(monom(a)). For
p ≥ 1 we have monom(Ip) =

⋂

monom(Cp
i ), so

Newt(Ip) ⊆
⋂

Newt(Cp
i ) = p ·

⋂

Newt(Ci).This shows N(I•) ⊆
⋂

Newt(Ci).For the reverse inlusion, note ⋂

Newt(Ci) is a rational polyhedron. For psu�iently divisible, p ·
⋂

Newt(Ci) is a lattie polyhedron; in partiular all itsextremal points (verties) have integer oordinates, and p·
⋂

Newt(Ci) is the onvexhull of the integer (lattie) points it ontains. So let v be an integer point in
p ·

⋂

Newt(Ci) =
⋂

Newt(Cp
i ). Then xv ∈ Cp

i for eah i, so xv ∈
⋂

Cp
i = Ip. Thisshows p ·

⋂

Newt(Ci) ⊆ conv(monom(Ip)). Therefore ⋂

Newt(Ci) ⊆
1
pNewt(Ip) ⊆

N(I•).One an hek that in the situation of the above proposition, lct(I•) =
min lct(Ci).



Bounding symboli powers via asymptoti multiplier ideals [73℄Proposition 3.4Let I = I1 be a redued monomial ideal and Ip = I(p). Suppose I is not the maximalideal. Let N be the onvex region de�ned by the linear inequalities that orrespondto unbounded faets of Newt(I). Then N = N(I(•)); in partiular J (t · I(•)) is themonomial ideal ontaining xv if and only if v + (1, . . . , 1) ∈ Int(t · N).Proof. Let I = C1 ∩ . . . ∩ Cr, the Ci minimal primes of I. Then I(p) =
Cp

1 ∩ . . .∩Cp
r . As long as I is non-maximal, equivalently eah Ci is non-maximal,the Newt(Ci), together with the faets of the positive orthant, orrespond pre-isely to the unbounded faets of Newt(I). The result follows by the previouspropositions.In partiular, eah lct(Ci) = htCi, so lct(I(•)) = min htCi = e′, where e′ isthe minimum odimension of any irreduible omponent of the variety V (I).3.2. Hyperplane arrangementsLet D be a divisor with real (or rational or integer) oe�ients. The multiplierideals J (t · D) are de�ned similarly to the multiplier ideals of ideals. All theproperties desribed above hold for multiplier ideals of divisors. In fat, when D isa divisor with integer oe�ients with de�ning ideal I, J (t ·D) = J (It). See [12℄for details.The multiplier ideals of hyperplane arrangements were omputed in [14℄, withthe following result.Theorem 3.5Let D = b1H1 + . . . + brHr be a weighted entral arrangement, where the Hi arehyperplanes in Cn ontaining the origin and the bi are nonnegative real numbers,the weights. Let L(D) be the intersetion lattie of the arrangement D, the setof proper subspaes of Cn whih are intersetions of the Hi. For W ∈ L(D),let r(W ) = codim(W ) and s(W ) =

∑

{bi | W ⊆ Hi} = ordW (D). Then themultiplier ideals of D are given by
J (t · D) =

⋂

W∈L(D)

I
⌊t·s(W )⌋+1−r(W )
W ,where IW is the ideal of W .In fat, the intersetion over W ∈ L(D) an be redued to an intersetionover W ∈ G for ertain subsets G ⊆ L(D) alled building sets; see [16℄. The loganonial threshold is given by lct(D) = minW∈L(D)

r(W )
s(W ) ; this may be redued toa minimum over W ∈ G.With this in hand it is easy to desribe a similar result for graded systems ofhyperplane arrangements.We will say a graded system of divisors is a sequene D• = {Dp}p≥1 suhthat Dp + Dq ≥ Dp+q. Equivalently, for eah omponent E, the ordE(Dp) satisfy

ordE(Dp) + ordE(Dq) ≥ ordE(Dp+q). If the Dp have integer weights, then theondition of the Dp forming a graded system of divisors is equivalent to requiring



[74℄ Zah Teitlerthe ideals Ip = I(Dp) to form a graded system of ideals. De�ne the asymptotimultiplier ideal J (t · D•) = maxp J ( t
pDp), as for graded systems of ideals.The following lemma will be helpful:Lemma 3.6 ([13℄, Lemma 1.4)Let {ap} be a sequene of non-negative real numbers suh that ap + aq ≥ ap+q forall p, q. Then 1

pap onverges to a �nite limit; in fat 1
pap → inf 1

pap.For a graded system D• of divisors, let
D∞ =

∑

aEE, where aE = lim
p→∞

1

p
ordE(Dp).Proposition 3.7Let D• be a graded system of divisors. Then J (t · D•) = J (t · D∞).This follows from onsidering a ommon resolution of singularities of all the

Dp and D∞. The following is an immediate onsequene.Proposition 3.8Let D• be a graded system of divisors, where eah Dp is a entral hyperplanearrangement. Let the hyperplanes be H1, . . . , Hr. Let Dp = b1,pH1 + . . . + br,pHr,and let bi,∞ = lim
bi,p

p . Let L(D0) be the intersetion lattie of the (redued)arrangement D0 = H1 ∪ . . . ∪ Hr, and for W ∈ L(D0) let s∞(W ) =
∑

{bi,∞ :
W ⊆ Hi}, r(W ) = codim(W ). Then

J (t · D•) =
⋂

W∈L(D0)

I
⌊t·s∞(W )⌋+1−r(W )
W = J (t · D∞),where D∞ is de�ned as above.Again the intersetion an be redued to W ∈ G for a building set G ⊆ L(D0).The log anonial threshold is given by lct(D•) = lct(D∞) = minW

r(W )
s∞(W ) .4. Proof of TheoremAt this point the theorem is easy to prove. The real work was to develop thede�nition of multiplier ideals and show they have the properties desribed in �2.We have J (Ie) ⊆ I. Together with the subadditivity theorem this gives thefollowing hain of inlusions:

J (Ier) ⊆ J (Ie)r ⊆ Ir.Unfortunately I(er) is not neessarily ontained in J (Ier). We must enlarge thesemultiplier ideals enough to ontain I(er) but not too muh to destroy the ontain-ment in Ir. First rewrite the above as
J ((Ip)

er
p ) ⊆ J ((Ip)

e
p )r ⊆ Ir.



Bounding symboli powers via asymptoti multiplier ideals [75℄These are the same ideals by Property 2.2. Now let p be su�iently large anddivisible and enlarge Ip to I(p). The multiplier ideals beome asymptoti multiplierideals, and we will see in a moment that the inlusions above still hold:
J (er · I(•)) ⊆ J (e · I(•))r ⊆ Ir.By Remark 2.6 we have I(er) ⊆ J (er ·I(•)). So this shows I(er) ⊆ Ir. This explainswhy we use asymptoti multiplier ideals rather than ordinary multiplier ideals inthis proof. We arrive at the following proof of Theorem 1.1.Proof. We have the following hain of inlusions:

I(er+kr−ℓ) = I(er+kr−ℓ)J (ℓ · I(•))

⊆ J ((er + kr) · I(•)) ⊆ J ((e + k) · I(•))r

⊆ (I(k+1))r

(⋆)whih is justi�ed as follows. For ℓ < lct(I(•)), J (ℓ · I(•)) = (1). The �rst inlusionis Remark 2.6. The seond inlusion holds by the subadditivity theorem. The lastinlusion is Example 2.5.Theorem 2.2 of [6℄ is shown by exatly the above argument with ℓ = 0.5. Non-improvementUsing �lassial� methods, Boi�Harbourne have given some improvementsin speial ases to the Ein�Lazarsfeld�Smith theorem that I(er) ⊆ Ir for everyredued ideal I with bight(I) = e. For example [3℄ shows the resurgene of anideal I of general points in P2 is at most 3
2 , so I(m) ⊆ Ir for m ≥ 3r

2 . However,the argument given above for the proof of Theorem 1.1, either via asymptotimultiplier ideals or via harateristi p methods, is the only way I am aware of toshow for every redued ideal I of height e that I(er) ⊆ Ir (i.e., the resurgene isat most e) or even that the resurgene is �nite for every redued ideal.One may ask, how far an the same multiplier ideal methods be pushed toimprove the bounds in the Ein�Lazarsfeld�Smith theorem?5.1. Restrition of log anonial thresholdThe value ℓ in Theorem 1.1 is severely restrited. Let e′ be the minimum of theodimensions of the irreduible omponents of Zeros(I). We saw 0 < lct(I) ≤ e′,but it often happens that lct(I) is muh smaller than e′. For I a homogeneousideal in C[x1, . . . , xn], we have
1

mult0(I)
≤ lct(I) ≤

n

mult0(I)([12, 9.3.2-3℄), where mult0(I) is the multipliity of I at the origin, equivalently,the least degree of a nonzero form in I. So if lct(I) > 1, then I must ontain aform of degree stritly less than n.



[76℄ Zah TeitlerFor ideals of redued sets of points in P
2 one an show the onverse, so lct(I) > 1if and only if the points lie on a oni (whih may be reduible). So Theorem 1.1implies Harbourne's onjeture and answers Huneke's question only for points ona oni, whih (for smooth onis at least) had already been treated by Boi�Harbourne [2℄.We only need ℓ < lct(I(•)), whih is a priori less restritive than ℓ < lct(I),but still restrits us to ℓ ≤ e′ − 1. Indeed, there are radial ideals I with lct(I) <

lct(I(•)). However I do not know of an ideal I suh that there is an integer ℓ,
lct(I) ≤ ℓ < lct(I(•)).For a radial homogeneous ideal I,

lct(I(•)) ≤
n

lim
p→∞

1
p mult0(I(p))

,where the limit exists beause mult0(I
(p)) + mult0(I

(q)) ≥ mult0(I
(p+q)). If

lct(I(•)) > 1, then for some p there must be a homogeneous form F vanishingto order p along the variety de�ned by I, of degree stritly less than pn. Thisis weaker than the requirement that if lct(I) > 1, then I must ontain a form ofdegree less than n, whih is the same statement with the added ondition p = 1;but it does not seem very muh weaker.5.2. The seond inlusionLet I = (xy, xz, yz) ⊆ C[x, y, z] be the ideal of the union of the three oordinateaxes. Using Howald's theorem and its asymptoti version one an ompute all theideals appearing in (⋆). Sine they are all integrally losed monomial ideals, wegive them by giving their Newton polyhedra. Here e = 2; we take k = 0. First,
N• = {(a, b, c) | a + b, a + c, b + c ≥ 1} ∋

(1

2
,
1

2
,
1

2

)

.We have lct(I) = 3
2 and lct(I(•)) = 2, so we take ℓ = 1. Now,

Newt[I(2r−1)] = {(a, b, c) | a + b, a + c, b + c ≥ 2r − 1, a + b + c ≥ 3r − 1},

Newt[J (2r · I(•))] = {(a, b, c) | a + b, a + c, b + c ≥ 2r − 1, a + b + c ≥ 3r − 1},

Newt[(J (2 · I(•)))r] = {(a, b, c) | a + b, a + c, b + c ≥ r, a + b + c ≥ 2r},

Newt[Ir] = {(a, b, c) | a + b, a + c, b + c ≥ r, a + b + c ≥ 2r}.This example shows that the plae where improvements are needed is the se-ond inlusion in (⋆), whih relies on the subadditivity theorem.AknowledgementI am grateful to Brian Harbourne for inviting me to write this material (origi-nally as an appendix to leture notes [8℄ for a ourse he gave at a summer shoolin Craow in Marh, 2009) and for numerous helpful onversations.
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FOLIA 70Annales Universitatis Paedagogiae CraoviensisStudia Mathematia VIII (2009)
Marin DumnikiA ombinatorial proof of non-speiality of systemswith at most 9 imposed base pointsAbstrat. It is known that the Segre�Gimigliano�Harbourne�HirshowitzConjeture holds for linear systems of urves with at most 9 imposed basefat points. We give a nie proof based on a ombinatorial method of showingnon-speiality of suh systems. We will also prove, by the same method, thatsystems L(km;m×k

2

) and L(km + 1; m×k
2

) are non-speial.1. IntrodutionLet p1, . . . , pr ∈ P2 = P2(K) be distint points, where K is a �eld of harater-isti 0. The points p1, . . . , pr will be alled imposed base points. Let m1, . . . , mrbe nonnegative integers. By L(d; m1p1, . . . , mrpr) we denote the linear systemof plane urves of degree d with multipliity at least mj at pj , j = 1, . . . , r.The dimension of L(d; m1p1, . . . , mrpr) is upper semiontinuous in the position ofimposed base points and reahes minimum for points in general position. Thisminimum will be denoted by
dimL(d; m1, . . . , mr).We will also write L(d; m1, . . . , mr) for a system with imposed base points ingeneral position, and L(d; m×s1

1 , . . . , m×sr
r ) for repeated multipliities. De�ne thevirtual dimension of L(d; m1, . . . , mr)

vdimL(d; m1, . . . , mr) =
d(d + 3)

2
−

r
∑

j=1

(

mj + 1

2

)and the expeted dimension of L(d; m1, . . . , mr)

edimL(d; m1, . . . , mr) = max{vdimL(d; m1, . . . , mr),−1}.By linear algebra one has
dimL(d; m1, . . . , mr) ≥ edimL(d; m1, . . . , mr)AMS (2000) Subjet Classi�ation: 14H50, 13P10.Volumes I-VII appeared as Annales Aademiae Paedagogiae Craoviensis Studia Mathematia.



[80℄ Marin Dumnikiand L(d; m1, . . . , mr) is said to be speial if strit inequality holds for points ingeneral position, non-speial otherwise.For systems L = L(d; m1, . . . , mr), L′ = L(d′; m′
1, . . . , m

′
r) we have the inter-setion number denoted by L · L′,

L · L′ = dd′ −

r
∑

j=1

mjm
′
j .Definition 1The system L = L(d; m1, . . . , mr) satisfying

• dimL = edimL = 0,
• self-intersetion L2 = L · L = −1,
• the only urve in L is irreduible,will be alled a −1-system.A urve C ⊂ P2 is said to be in the base lous of L(d; m1, . . . , mr) if C is theomponent of eah urve in L(d; m1, . . . , mr). Observe that, by Bézout Theorem,if L is nonempty and L ·L′ = −t < 0 for −1-system L′, then the urve C ∈ L′ is inthe base lous of L at least t times, i.e., the equation of eah urve in L is divisibleby f t, where f is the equation of C. Suh C is said to be a multiple −1-urve inthe base lous, and it fores the system to be speial:

dimL
(by Lemma 2)

= dim(L− tL′) ≥ vdim(L− tL′)
(by Lemma 2)

> vdimL,thus, by nonemptiness of L, we have also
dimL > edim L.Lemma 2Let L = L(d; m1, . . . , mr), let L′ = L(d′; m′

1, . . . , m
′
r) be a −1-system, let L−tL′ =

L(d− d′; m1 −m′
1, . . . , mr −m′

r). If L · L′ = −t < 0, then
dim(L − tL′) = dimL,

vdim(L − tL′) = vdimL +
t2 − t

2
.The proof of the Lemma is postponed to the next setion. The system withmultiple −1-urve in the base lous will be alled −1-speial. We have seen thatevery −1-speial system is speial. The following onjeture due to Harbourne[13℄, Gimigliano [10℄ and Hirshowitz [15℄ states the following.Conjeture 3A system L(d; m1, . . . , mr) with imposed base points in general position is speialif and only if it is −1-speial.In [5℄ it is shown that the above Conjeture is equivalent to the onjetureposed by Segre [18℄.



A ombinatorial proof of non-speiality of systems [81℄Conjeture 4If a system L = L(d; m1, . . . , mr) with imposed base points in general position isspeial, then every urve in L is non-redued.We will refer to either one of the above onjetures as to Segre�Harbourne�Gimigliano�Hirshowitz (SHGH for short) Conjeture. From now on we will as-sume that imposed base points are always in general position.The SHGH Conjeture an be reformulated using standard systems. A system
L(d; m1, . . . , mr) is alled standard if m1 ≥ m2 ≥ . . . ≥ mr and

d ≥ m1 + m2 + m3.Theorem 5In order to show that the SHGH Conjeture holds for at most r points it su�esto show that eah standard system for at most r points is non-speial.For ompleteness, we will give a proof of this well-known Theorem in the nextsetion.The fat that the SHGH Conjeture holds for r ≤ 9 points has been shown byvarious methods in [16℄, [10℄ and [12℄, but the �rst results appeared already in [2℄.A nie idea is to use the following well-known fat.Proposition 6Let d, m1, m2, m3 be nonnegative integers. If d ≥ m1 + m2 + m3, m1 ≥ m2 ≥

m3 and the system L(d; m1, m
×3
2 , m×5

3 ) is non-speial, then any standard system
L(d; m1, m2, m3, m4, . . . , m9) is non-speial.For ompleteness, we will give a proof of this proposition in the next setion.In the paper we will prove that SHGH holds for r ≤ 9 points using onlyelementary fats based on linear algebra. In fat we must prove the following.Theorem 7Let d, m1, m2, m3 be nonnegative integers. If d ≥ m1 +m2 +m3 and m1 ≥ m2 ≥

m3, then the system L(d; m1, m
×3
2 , m×5

3 ) is non-speial.One of the main ingredients is the utting diagram algorithm from [7℄. Brie�y,it is proved that in order to show non-speiality of a given system it su�es to �ndan appropriate �nite set of points in N2 enjoying some ombinatorial properties.To be preise, we must �rst de�ne, for any �nite D ⊂ N2, the system
L(D; m1, . . . , mr)of polynomials with support in D and with multipliity at least mj at pj , j =

1, . . . , r. Formally, we identify N2 with monomials in K[X, Y ]

N
2 ∋ (x, y) 7→ XxY y ∈ K[X, Y ]and put

L(d; m1, . . . , mr) = {f ∈ K[X, Y ] : supp(f) ∈ D, multpj
(f) ≥ mj , j = 1, . . . , k}.



[82℄ Marin DumnikiThe set L(D; m1, . . . , mr) is a K-linear subspae of K[X, Y ]. We say that onditionsin L(D; m1, . . . , mr) are independent if
dimK L(D; m1, . . . , mr) = #D −

r
∑

j=1

(

mj + 1

2

)

.The system L(D; m1, . . . , mr) is alled empty if
dimK L(D; m1, . . . , mr) = 0.Observe that, by dehomogenizing and generality assumption, if onditions in

L(D; m1, . . . , mr) are independent for D = {(x, y) : x + y ≤ d}, then
L(d; m1, . . . , mr) is non-speial, similarly L(D; m1, . . . , mr) is empty if and only if
L(d; m1, . . . , mr) is empty.The utting diagram algorithm is based on the following two theorems.Theorem 8 ([7℄, Theorem 14)Let D, D′ ⊂ N2 be �nite, let m1, . . . , mr, m

′
1, . . . , m

′
s be nonnegative integers. If

• D ∩D′ = ∅,
• onditions in L(D; m1, . . . , mr) are independent (resp. L(D; m1, . . . , mr) isempty),
• onditions in L(D′; m′

1, . . . , m
′
s) are independent (resp. L(D′; m′

1, . . . , m
′
s) isempty),

• there exists an a�ne funtion N2: f ∋ (a, b) 7→ q1a+q2b+q3 ∈ Q, q1, q2, q3 ∈
Q suh that f has stritly negative values on D and nonnegative values on
D′,then onditions in

L = L(D ∪D′; m1, . . . , mr, m
′
1, . . . , m

′
s)are independent (resp. L is empty).Theorem 9 ([7℄, Proposition 13)Let D ⊂ N2 be �nite, let m1 be a nonnegative integer. Then onditions in L(D; m1)are independent if and only if D, onsidered as a set of points in Q

2, does not lieon a urve of degree m1 − 1. If #D =
(

mj+1
2

) and onditions in L(D; m1) areindependent, then L(D; m1) is empty.The proofs are tehnial but use only simple linear algebra.Theorem 10Let k, m be nonnegative integers. Then systems L(km; m×k2

) and L(km+1; m×k2

)are non-speial.



A ombinatorial proof of non-speiality of systems [83℄It is known that the above theorem holds. More generally, homogeneous sys-tems with the square number of imposed base points are always non-speial, see[8℄. Suh systems, i.e., homogeneous with the number of imposed base pointssatisfying some property have been widely studied. For example, systems of theform L(d; m×4h

) have been onsidered in [9℄; this onsideration has been extendedto systems of the form L(d; m×4h9k

) in [1℄; systems with the number of imposedbase points being nearly a square have been onsidered in [4℄; systems of the form
L(d; m×9

1 , m2, . . . , mr) for m1 ≥ m2 ≥ . . . ≥ mr (so alled quasiuniform) in [14℄,and systems of the form L(d; m×r) for r ≥ 4m2 in [17℄.The proof of Theorem 10 using tori degenerations an be found in [3℄. We willgive a simple ombinatorial proof in a sequene of lemmas. Both proofs exploitthe natural dissetion of a two-dimensional simplex into k2 simplexes:
but the idea behind is slightly di�erent. In the degeneration approah one ontrolsthe behaviour of the system �along� the intersetion of two meeting regions (givenalways by weak inequalities). In our approah it is better to ompletely separateregions by de�ning them with strit inequalities.Lemma 11Conditions in the system L(D; m×16) are independent for

D = {(x, y) ∈ N
2 : x + y ≤ 4m + 1};onditions in the system L(D; m×25) are independent for

D = {(x, y) ∈ N
2 : x + y ≤ 5m + 1};thus systems L(4m + 1; m×16) and L(5m + 1; m×25) are non-speial.Lemma 12Systems L(4m; m×16), L(5m; m×25), L(6m; m×36) and L(6m+1; m×36) are empty.Lemma 13Systems L(km; m×k2

) and L(km + 1; m×k2

) are empty for k ≥ 7.Proofs of lemmas are postponed to the next setion.



[84℄ Marin Dumniki2. ProofsProof of Lemma 2. To prove that dim(L − tL′) = dimL observe that multi-pliation by the equation of C ∈ L′ in tth power indues an isomorphism between
L− tL′ and L. By a straightforward alulation one shows that

vdim(L− tL′) = vdimL− tL · L′ +
t2L′2

2
+

t(−3d′ +
∑r

j=1 m′
j)

2
.Moreover,

L′2 − 2vdimL′ = −3d′ +

r
∑

j=1

m′
j ,whih ompletes the proof.Proof of Theorem 5. Let L = L(d; m1, . . . , mr). Consider the following pro-edure:Step 1. Sort multipliities in non-inreasing order.Step 2. If k = d−m1−m2 < 0, then take d←− d+k, m1 ←− m1+k, m2 ←− m2+kand go bak to Step 1.Step 3. If k = d −m1 −m2 −m3 < 0, then take d←− d + k, mj ←− mj + k for

j = 1, 2, 3 and go bak to Step 1.We �nish with a system L′. We will show that in eah step the dimensiondoes not hange. Indeed, if k = d − m1 − m2 is negative, then eah urve in
L(d; m1, m2, m3, . . .) is reduible and ontains the line passing through p1, p2 atleast −k times. In other words, we have the isomorphism

ϕ:L(d− k; m1 − k, m2 − k, m3, . . .)→ L(d; m1, m2, m3, . . .)given by multipliation by the equation of the line in kth power. In Step 3 theresult follows from applying the Cremona transformation based on p1, p2, p3 toour system (see eg. [11, Setion 3℄). This transformation indues the isomorphism
ϕ:L(d− k; m1 − k, m2 − k, m3 − k, m4, . . .)→ L(d; m1, m2, m3, m4, . . .)(the proof of this fat using only linear algebra an be found in [6, proof of The-orem 3℄; we use the fat that the system passed Step 2, so d − m1 − m2 ≥ 0).By an easy omputation one an show that the virtual dimension does not hangein Step 3, while in Step 2 it inreases by k2+k

2 . Thus for k ≤ −2 we obtain Lto be either empty or speial. In the seond ase, we know that after some Cre-mona transformations there exists a multiple line in the base lous. Again, byeasy omputations we an show that Cremona transformation preserves the inter-setion number, hene the multiple line from the base lous will be mapped, bythe reversed proess, into a multiple −1-urve in the base lous of L. Therefore Lis either −1-speial or enjoys the same properties (dimension, virtual dimension,emptiness, speiality. . . ) as L′, whih is standard.



A ombinatorial proof of non-speiality of systems [85℄Proof of Proposition 6. Assume, by hypothesis, that L2 = L(d; m1, . . . , m9)is speial. We will show that L1 = L(d; m1, m
×3
2 , m×5

3 ) is speial. Let c be thedi�erene between the number of onditions in L1 and the number of onditionsin L2,
c =

(

m1 + 1

2

)

+ 3

(

m2 + 1

2

)

+ 5

(

m3 + 1

2

)

−
9

∑

j=1

(

mj + 1

2

)

.Sine eah ondition an lower the dimension by at most one, we have
dim L1 ≥ dimL2 − c > edim L2 − c ≥ vdimL2 − c = vdimL1.Sine for d ≥ m1 + m2 + m3, the virtual dimension
vdimL1 ≥

(m1 + m2 + m3)(m1 + m2 + m3 + 3)

2

−
m1(m1 + 1) + 3m2(m2 + 1) + 5m3(m3 + 1)

2
= (m1 −m3) + m2(m1 −m2) + m3(m1 + m2 − 2m3)

≥ 0,we have vdimL1 = edimL1 and onsequently
dimL1 > edim L1.Before proving Theorem 7 we must prepare some helpful systems with inde-pendent onditions.Definition 14Let m be a positive integer. De�ne an m-retangle to be the set

{

(x, y) ∈ N
2 : a−

1

2
< x < a + m +

1

2
, b−

1

2
< y < b + m−

1

2

}or the set
{

(x, y) ∈ N
2 : a−

1

2
< x < a + m−

1

2
, b−

1

2
< y < b + m +

1

2

}for some nonnegative integers a, b. De�ne an m-triangle to be the set
{

(x, y) ∈ N
2 : x > a−

1

2
, y > a−

1

2
, x + y < 2a + m−

1

2

}for some nonnegative integer a. The examples are shown on Figure 1.
Figure 1. Example of 4-retangles and 4-triangleLemma 15Let T be an m-triangle, let R be an m-retangle. Then onditions in the systems

L(T ; m) and L(R; m×2) are independent and these systems are empty.



[86℄ Marin DumnikiProof. Observe that there exists parallel lines ℓ1, . . . , ℓm suh that #(T ∩ℓj) =
j. The proof for L(T ; m) is ompleted by Theorem 9 and Bézout Theorem.To deal with L(R; m×2) observe that R an be divided into two piees R1, R2,suh that R1 is an m-triangle, while R2 is a rotated m-triangle. By Theorem 8the proof is ompleted.Proof of Theorem 7. Let D = {(x, y) ∈ N2 : x+y ≤ d}. We want to show thatonditions in L(D; m1, m

×3
2 , m×5

3 ) are independent. Take the following utting of
D into three piees:
D1 =

{

(x, y) ∈ D : y > m2 + m3 +
1

2

}

,

D2 =
{

(x, y) ∈ D : y < m2 + m3 +
1

2
and (m3 + 2)y + x > m2

3 + 3m3 −
1

2

}

,

D3 =
{

(x, y) ∈ D : (m3 + 2)y + x < m2
3 + 3m3 −

1

2

}

.By Theorem 8 it is enough to show that onditions in systems L(D1; m1),
L(D2; m

×3
2 ), L(D3; m

×5
3 ) are independent. Observe that, by easy omputations,an m1-triangle with verties (0, m2 + m3 +1), (m1− 1, m2 + m3 +1) and (0, m1 +

m2 + m3) is ontained in D1. Similarly, observe that an m2-retangle with ver-ties (0, m3 + 1), (m2, m3 + 1), (m2, m3 + m2), (0, m3 + m2) and an m2-trianglewith verties (m2 + 1, m3), (2m2, m3), (m2 + 1, m3 + m2 − 1) are ontainedin D2. Moreover, these two shapes an be separated from eah other by ana�ne line. For D3, we take three shapes � an m3-retangle with verties (0, 0),
(m3 − 1, 0), (m3 − 1, m3), (0, m3), another m3-retangle with verties (m3, 0),
(2m3, 0), (2m3, m3 − 1), (m3, m3 − 1) and �nally an m3-triangle with verties
(2m3 + 1, 0), (3m3, 0), (2m3 + 1, m3− 1). By Theorem 8 and Lemma 15 the proofis ompleted.

y = m2 + m3 + 1
2

(m3 + 2)y + x = m2
3 + 3m3 − 1

2Figure 2. Example of divisions for m1 = 6, m2 = 5, m3 = 4



A ombinatorial proof of non-speiality of systems [87℄Proof of Lemma 11. The proofs an be easily read o� from Figures 3 and 4.The pitures are drawn for m = 3, but an be easily resaled. Less obvious uttingsare presented, the details are left to the reader. By ε we denote a su�iently smallpositive rational number.
y = m + 1

2

the same uttingas for L(3m; m×9)

Figure 3. Divisions for L(4m + 1; m×16)

y + εx = ε(2m − 1) + m

x
=

ε
y
−

ε
(2

m
+

2
)
+

m

x
=

ε
y
−

ε
(2

m
−

1
)
+

2
m

+
1

Figure 4. Divisions for L(5m + 1; m×25)Proof of Lemma 12. Emptiness of L(6m; m×36) would follow from emptinessof L(6m+1; m×36). Again, the proofs an be easily read o� from Figures 5, 6 and7. Observe that if R ⊂ N2 is ontained in some m-retangle, then L(R; m×2) isempty.



[88℄ Marin Dumniki
y + εx = ε(2m − 1) + m

x
=

m
+

1 2

Figure 5. Divisions for L(4m; m×16)

y = m − 1
2

the same uttingas for L(4m; m×16)Figure 6. Divisions for L(5m; m×25)

y = 2m + 1
2

y + εx = ε(3m − 1) + m

the same uttingas for L(4m; m×16)

Figure 7. Divisions for L(6m + 1; m×36)Proof of Lemma 13. Emptiness of L(km; m×k2

) would follow from emptinessof L(km + 1; m×k2

). The �rst utting, into upper and bottom part, is given bythe line y = m− 1
2 . Sine k − 1 ≥ 6, we use indution to the upper part, uttingit exatly as L((k − 1)m + 1; m×(k−1)2). The bottom part
B = {(x, y) ∈ N

2 : x + y ≤ km + 1, y ≤ m}



A ombinatorial proof of non-speiality of systems [89℄gives the system L(B; m×(2k−1)). We will over B from right to left with one
m-triangle and (k− 1) m-retangles of hight m. This allows to over (k − 1)(m +
1) + m = km + k − 1 lattie points (x, 0) ∈ B, while #{(x, 0) ∈ B} = km + 2.Thus we an entirely over B and the proof is ompleted.Remark 16There is no theoretial obstrution to make similar proofs for systems of the form
L(km+k0; m

×k2

) for �xed k0. In fat, for k satisfying k ≥ k0+2 the indution step(emptiness of L(km + k0; m
×k2

) implies emptiness of L((k + 1)m + k0; m
×(k+1)2))will work. One an even hope that for k's satisfying k ≤ K + 1,

K = max{k : vdimL(km + k0; m
×k2

) ≥ 0 for some m},it is always possible to prove non-speiality by the presented method.Referenes[1℄ A. Bukley, M. Zompatori, Linear systems of plane urves with a omposite num-ber of base points of equal multipliity, Trans. Amer. Math. So. 355 (2003), no. 2,539�549.[2℄ G. Castelnuovo, Rierhe generali sopra i sistemi lineari di urve piane, Mem.Aad. Si Torino, II 42 (1891).[3℄ C. Ciliberto, O. Dumitresu, R. Miranda, Degenerations of the Veronese and appli-ations, preprint, http://www.math.olostate.edu/�miranda/artiles.html (2009).[4℄ C. Ciliberto, R. Miranda, Nagata's onjeture for a square or nearly-square numberof points, Ri. Mat. 55 (2006), no. 1, 71�78.[5℄ C. Ciliberto, R. Miranda, The Segre and Harbourne-Hirshowitz Conjetures, in:Appliations of algebrai geometry to oding theory, physis and omputation(Eilat 2001), NATO Si. Ser. II Math. Phys. Chem. 36, Kluwer Aad. Publ.,Dordreht, 37�78 (2001).[6℄ M. Dumniki, An algorithm to bound the regularity and nonemptiness of linear sys-tems in P
n, J. Symb. Comp. 44 (2009), 1448�1462, arXiv:math.AG/0802.0925v1.[7℄ M. Dumniki, Cutting diagram method for systems of plane urves with basepoints, Ann. Polon. Math. 90 (2007), 131�143.[8℄ L. Evain, Computing limit linear series with in�nitesimal methods, Ann. Inst.Fourier (Grenoble) 57 (2007), no. 6, 1947-1974.[9℄ L. Evain, La fontion de Hilbert de la réunion de 4h gros points génériques de P 2de meme multipliité, J. Algebrai Geom. 8 (1999), no. 4, 787�796.[10℄ A. Gimigliano, On linear systems of plane urves, Thesis, Queen's University,Kingston (1987).[11℄ A. Gimigliano, Our thin knowledge of fat points, Queen's Papers in Pure andAppl. Math. 83, Queen's Univ., Kingston, ON, (1989).[12℄ B. Harbourne, Antianonial rational surfaes, Trans. Amer. Math. 349 (1997),1191�1208.
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FOLIA 70Annales Universitatis Paedagogiae CraoviensisStudia Mathematia VIII (2009)
R. WojnarKineti equation for a gas with attrative fores asa funtional equationAbstrat. Di�usion problems studied in the time sale omparable with timeof partiles ollision lead to kineti equations whih for step-wise potentialsare funtional equations in the veloity spae. After a survey of derivation ofkineti equations by projetive operator method, an attention is paid to theLorentz gas with step potential. The gas is omposed of N partiles: N−1 ofwhih are immovable; between those N −1 immovable partiles � satterers,partile number 1 is moving, and we desribe its movement by means ofone-partile distribution funtion satisfying a kineti equation. Solutions ofthe kineti equation for some simple potentials are given. We derive alsoa kineti equation for one-dimensional Lorentz gas, whih is a funtionalequation.1. IntrodutionGeneral kineti equations with onvolution time integral (hene nonloal intime and non-markovian) were �rst derived and disussed by the Brussels group,headed by Ilya Prigogine, [1℄. Di�erent orrelation funtions used to desribenon-equilibrium proesses satisfy suh equations, [2℄ � [7℄.A omparison of the theory of the Brussels group, with the Bogolyubov theory,then being developed by the Uhlenbek group was given in a paper by Steki andTaylor, [8℄. These results were next extended and ordered by the Brussels group,[9℄. Robert Zwanzig, [4, 10℄ desribed a new method of derivation of kineti equa-tions. The main tool of this derivation is the use of projetion operators in theHilbert spae of Gibbsian ensemble densities. It was noted by Nelkin and Ghatakthat the Van Hove self-orrelation funtion Gs(r, t) for a dilute �uid is determinedby a linearized Boltzmann equation idential to that ouring in the theory ofneutron di�usion, [11℄.The kineti equation (KE) desribing di�usion in time sale omparable withtime of the partiles ollision, is also a time onvolution kineti equation, whih forAMS (2000) Subjet Classi�ation: 82C41, 82C70, 92B05.Volumes I-VII appeared as Annales Aademiae Paedagogiae Craoviensis Studia Mathematia.



[92℄ R. Wojnara step-wise interation potential takes form of a funtional equation in the veloityspae.We work in the framework of kineti theory of a Boltzmann gas, with useof statistial mehanis methods. The gas is omposed of N partiles, and theproblem disussed onerns the di�usion of a marked partile (number 1) amid
(N − 1) other lassial dilute gas partiles.Applying to the Liouville equation the proper projetion operator, a kinetiequation for one-partile distribution funtion f(k,v1, t) is derived. Here k denotesthe Fourier vetor variable (wave vetor) after transformation of spaial oordinate
r1, whih denotes the position of partile number 1. The vetor v1 is the veloityof this partile, while t is a time. Funtion f(k,v1, t) is Fourier transform ofone-partile distribution funtion fs(r,v1, t), whih represents the probability of�nding a partile at time t at r with veloity v1, if the same partile was at time
t = 0 at r = 0 with the given distribution of veloity v1, e.g. the Maxwellian.Right-hand side of KE has a form of time onvolution of a sattering operator
G = G(k, t) and funtion f = f(k,v1, t). It is valid not only for long times (inomparison with time of ollision, as it is in ase of the Boltzmann equation andin Brownian movement theory) but also for short times.KE onsidered here was found previously by Jan Steki, [12℄, f. also [13, 14℄.This is a time onvolution equation for a gas whih partiles interat by attrative-repelling potential with step dependene on distane. In suh a ase the phasespae onsists of distinly separated regions and the kineti equations is trans-formed from a onvolutive one into a funtional equation.1.1. NotationThe gas oupies volume V and onsists ofN partiles, numbered by indies i =
1, . . . , N , and mi, vi and ri are the mass, veloity and position of partile number
i, respetively. Cartesian oordinates of vetor vi are denoted by vix, viy, viz andthose of ri by xi, yi, zi.The Maxwell distribution funtion of the veloity is denoted by

ϕM (vi) =

√

(

β
m

2π

)3

exp
(

− βm
v2

i

2

)

.Here the veloity modulus vi = |vi| is used and v2
i = v2

ix + v2
iy + v2

iz , while β−1 =
kBT with the Boltzmann onstant kB and absolute temperature T .The temperature of an ideal gas is related to its average kineti energy perpartile by the relation

Ēkin =
3

2
kBT =

3

2β
.The seond law of thermodynamis states that any two interating systems willreah the same average energy per partile and hene the same temperature.In equilibrium, the probability of �nding a partile with veloity vi in the in-�nitesimal element dvi = [dvix, dviy, dviz ] about veloity vi = [vix, viy , viz] is

ϕM (vi)dvixdviydviz or ϕM (vi)dvi.



Kineti equation for a gas with attrative fores as a funtional equation [93℄The interation potential uij between partiles number i and number j dependson distane between these partiles only:
uij = uij(|ri − rj |).Hene the total potential energy of the system

U =

N
∑

i<j

u(|ri − rj |) =

N−1
∑

i=1

N
∑

j=i+1

uij(rij) =
∑

i<j

uij ,where rij = |rij | = |ri − rj |.1.2. Physial meaningThe funtion f = f(k,v1, t) is related to sattering phenomena. Essential forinterpretation of inoherent sattering experiments is the Van Hove funtion
Gs(|r − r0|, t) =

〈V

N

N
∑

i=1

δ(ri(0) − r0)δ(ri(t) − r)
〉 (1)where

〈(. . .)〉 =

∫

1

ZN
e−βH(. . .) dvNdrN with ZN =

∫

e−βH dvNdrNdenotes the anonial average.The funtion Gs(r, t) represents the probability of �nding a partile at r attime t if the same partile was at r = 0 at time t = 0.Van Hove law for inoherent sattering reads
Ss(k, ω) =

1

2π

∫

exp[i(kr − ωt)]Gs(r, t) drdt =
1

2π

∫

exp(−iωt)Is(k, t) dt,where
Is(k, t) =

∫

exp(ikr)Gs(r, t) drf. [15℄ � [19℄. On the other hand, we have
Is(k, t) =

∫

f(k,v1, t) dv1and Is(k, t) is the Fourier transform of Gs(r, t) and funtion f(k,v1, t) an befound by kineti theory. Namely, it satis�es the following linear KE
( ∂

∂t
+ ikv1

)

f(k,v1, t) =

t
∫

0

G(k, τ)f(k,v1 , t− τ) dτ (2)where
f(k,v1, t) =

∫

dr1 e−ikr1

∫

dvN−1 FN (t)



[94℄ R. Wojnarand
FN (t) = e−tKNFN (0)with

FN (0) = eikr1ϕM (v1) · . . . · ϕM (vN )
e−βU

Q
(3)Here U =

∑

i<j uij and
KN =

N
∑

i=1

vi
∂

∂ri
−

∑

i<j

∂U

∂ri

1

mi

∂

∂vi
(4)is the N -partile Liouville operator.Normalization fator in (3)

Q =

∫

V

e−βU drN , where drN = dr1dr2 . . . drNis known as the partition funtion or sum-over-states.The partition funtion Q is related to thermodynamial properties of the sys-tem, f. [20℄, [21℄, [22℄. With a model of the mirosopi onstituents of a system,one an alulate the mirostate energies, and thus the partition funtion, whihwill then allow us to alulate all the other thermodynamial properties of thesystem.Researh in the predition of binding a�nities has been a ontinuing e�ort formore than half a entury, [23, 24℄. An important appliation of the on�gurationintegral lies in the development of omputational models for the ligand-reeptorbinding a�nities. Their study onstitutes the most important problem in ompu-tational biohemistry. Espeialy, the predition of absolute ligand-reeptor bindinga�nities is essential in a wide range of biophysial questions, from the study ofprotein-protein interations to struture-based drug design.In a ligand-reeptor binding, a ligand is in general any moleule that binds toanother moleule; the reeiving moleule is alled a reeptor, whih is a protein onthe ell membrane or within the ell ytoplasm. Suh binding an be represented bythe hemial reation desribing nonovalent moleular assoiation A+B ↔ AB,where A represents the protein (reeptor), B the ligand moleule, and AB theprotein-ligand omplex. The hange in the Gibbs free energy an be expressed asa ratio of on�guration integrals, [25℄.An alternative form of the kineti equation (2) is
(−iz + ikv1)f(k,v1, z) − f(k,v1, t = 0) = G(k, z)f(k,v1, z) (5)where f(k,v1, z) is the Laplae transform of f(k,v1, t) de�ned as f(z) =

∫ ∞

0 eiztf(t) dt. We use the same letter for a funtion and its Laplae transform,but it does not lead to onfusion, beause all arguments are expliitly written.If m1 ≫ mi, i = 2, 3, . . . , N we have the Brownian di�usion of partile num-ber 1. If m1 ≪ mi, i = 2, 3, . . . , N - the Lorentz gas is dealt with, f. also[26, 27℄.



Kineti equation for a gas with attrative fores as a funtional equation [95℄1.3. Diffusion in biologyFor big times and for isotropi medium the Van Hove funtion Gs = Gs(r, t)is given by a solution of the lassial Fik's equation, namely,
Gs(r, t)t→∞ =

1

8(πDt)
3
2

e
−r2

4Dt ,where D denotes the (marosopi) di�usion oe�ient. After tranformations weget Is(k, t)t→∞ = exp(−k2Dt) and
Ss(k, ω) =

1

π

Dk2

ω2 + (Dk2)2
.Hene

D = lim
ω→0

lim
k→0

π
ω2Ss(k, ω)

k2
.We have also

D = − lim
t→∞

1

6t

∂2Is(k, t)

∂k2
.In spite of passing to the limit, residual information about the dynamis of systemis still ontained in the di�usion oe�ient D. For example, in the random walkdi�usion the oe�ient D = h2

2τ , with h and τ being the length and duration ofone step in the walk, respetively.The laws of di�usion (in whih oe�ient D is used) were disovered in 1855by physiian and physiologist Adolf Eugen Fik, [28℄ � [30℄.At the beginning of the 20th entury, Einstein and Smoluhowski, indepen-dently, have found relation between marosopi di�usion oe�ient D and theBrownian movement phenomenon, explaining it in mirosopi, moleular terms,f. [31, 32℄. The phenomenon was �rst expliitly desribed in 1828 by the physi-ian and botanist Robert Brown, who observed in aqueous suspensions of pollengrains from Clarkia pulhella a rapid, ontinuous, short-range motion of small in-luded partiles that �arose neither from urrents in the �uid nor from its gradualevaporation, but belonged to the partile itself�, [33, 34℄.After disovery of Fik's laws, in physiology dominated the opinion that dif-fusion laws should explain all problems of metabolism. It was widely believedin XIX entury that di�usion is responsible for suh organi proesses as gas ex-hange in the leaves of plants, gas exhange in the lungs of animals, the uptake ofthe produts of digestion from the gut.However, the development of knowledge on the ell struture has permitted togather an abundant evidene on inadequay of di�usion theory for explaining muhof the movements of substanes in organisms, studied in biology and mediine. TheFik di�usion alone ould desribed physiologial proesses only in dead tissues.In 1912 medial dotor and physiologist, Otto Heinrih Warburg publisheda disovery: oxygen utilization requires strutural elements in the ell � a solidphase. These strutures, now reognized as mitohondria, had been desribed bylight mirosopists two deades before Warburg's publiation, and 80 years laterwere found to be plaes where Brownian motors work, [35℄.



[96℄ R. WojnarThe assumptions of the Einstein�Smoluhowski model are not even approxi-mately met in vivo. The ell ontains a highly onentrated and heterogeneousassembly of deformable, interating and inelastially olliding partiles; muh ofthe solvent (water) is bound to solid strutures whih, although not neessarilylong-living, have huge surfae areas; and in any ase the onditions only tendto thermodynami equilibrium after death. The model representing the �miro-sopi� aspet of di�usion theory assumes a dilute, homogeneous suspension ofrigid, non-interating and elastially olliding partiles, a monophasi system withthe solvent (largely) unbound, and a tendeny towards equilibrium. Also, themodel assumes that there are no net solvent movements, and this is undoubtedlyrelevant in intraellular transport, [36, 37℄, also [38℄.After the idea arose that the ell internum does, at least in part, behave as a gel,the di�usion through gels beame an important subjet of study. Investigationsof di�usion in gels put a question on appliability of Fik's laws in the �eld.Bigwood has shown in 1930 that not only is di�usion in gels highly dependenton the absolute onentration of di�using substane (in ontrast to the lassiallinear Fik's theory that di�usion rates depend only on onentration gradients),but that it is both slow and unpreditable, partiularly when the gel is made ofprotein, as the gel state of the ell internum should be, f. [39, 40℄. It beamelear then that in desription of biologial ell extreme order has to be reoniledwith a �uid anatomy. Two kinds of intraellular transport are possible: one, whihaounts for the movements of maromoleules and assemblies; and seond, whihwill aount for the movements of small moleules and ions, [41℄.In 1949 Hans Ussing onduted investigations with use of radioative traersand gave the systemati moleular level aount of a �seretion� proess in biology,as an opposite to the �di�usion� desription. Ussing de�ned the term �ativetransport�, whih means the reation of a genuinely �uphill� onentration gradient,f. [42, 43℄. Ative transport is now an aepted part of biologial knowledge, andindividual ative transport mehanisms are frequently objets of researh.In 1950 BBC leture J.Z. Young onluded: the more we ome to know ofthe �ux of hemial hanges in the body, the more one great weakness of themahine analogy stands out. The onept of a dynami organization, suh as thatof a whirlpool, demands a onsideration of time � of before and after and of gradualdevelopment and hange of pattern, but the mahine models of physiology allowno plae for this element. In the tissue spaes, as well as inside the ell, there is�uid irulation among solid-state elements, [44℄.The di�usion onepts persisted for a long time in desription of respiratoryproesses. Until now, the method of �di�usion apaity� is pratiised as a mea-surement of the lungs ability to transfer gases. Oxygen absorption may be limitedby di�usion in irumstanes of low ambient oxygen or high pulmonary blood�ow. Carbon dioxide is not limited by di�usion under most irumstanes. The�di�usion apaity� is part of omprehensive test series of lung funtion alled pul-monary funtion testing. It is known, however, di�usivity estimates are seriouslyproblemati even with modern equipment. Longmuir wrote: �If simple di�usionis the sole mehanism of tissue oxygen transport as proposed by Krogh (1919),it is di�ult to see how alimatization ould our without a redution in the



Kineti equation for a gas with attrative fores as a funtional equation [97℄di�usion oe�ient. The kinetis of oxygen transport annot be explained by pas-sive di�usion alone; the searh for other mehanisms led to the observation thatall kineti data ould be explained by hannels in ells along whih the oxygendi�uses faster than in water, [45, 46℄.�The ell internum is far more omplex organised right down to the moleularlevel than was hitherto appreiated, to the point where ideas of a relatively solid-state hemistry model have ooured. The �ow theory of enzyme kinetis � a roleof solid geometry in the ontrol reation veloity in live animals. This ontrastssharply with the former onept that di�usion is the way by whih moleulesinterat within an aqueous solution of the ell internum, [47℄ � [52℄.In living systems, most moleules do not generally move, but are moved, whenwe onsider what would happen if everything depended upon Brownian motionand the law of mass ation. R.P.C. Johnson in 1983 reognised a grey area at themoleular level when onsidering the movement of moleules within living ells:�This is the region of sale where �ow and di�usion are not learly separated;where the onepts of temperature and moleular movement overlap; where it isnot lear whether moleules move or are moved; where the ideas of ative andpassive lose their meaning�, [53, 48℄, also [54℄ and [55℄.Until now, biologists use the term �di�usion� in a twofold meaning. One isFik's di�usion, and the seond one is vernaular, for spreading proess, when�di�usion� is not adhered to a spei�, de�ned sienti� term. For an ativetransport the term ative di�usion is sometimes used, as an opposite to passive(i.e. Fikian) di�usion.The ompliation in the desription of biologial proesses may be found inappliation of the Smoluhowski di�usion with drift equation. In this equation analeatory aspet is oupled with deterministi. The drift fore ontrols di�usionand di�usion re�ets the in�uene of thermal vibrations of the evironment on theproess.All phenomena, biologial also, are developing in given thermal onditions,and the appliation of thermodynamis is inevitable. The �mirosopi� aspetof di�usion theory, is that random thermal motions of moleules in liquids areresponsible for return of di�usion, partiularly Brownian movement theories, intoontemporary biophysis.Brownian or moleular motors are biologial �nanomahinees� and are the es-sential agents of movement in living organisms. A motor is regarded as a deviethat onsumes energy and onverts it into motion or mehanial power. Adenosinetriphosphate (ATP) is the fuel for the moleular motors ation. Many protein-based moleular motors onvert the hemial energy present in ATP into me-hanial energy. The ATPase moleular motors are found in the membranes ofmitohondria, the mirosopi bodies in the ells of nearly all living organisms, aswell as in hloroplasts of plant ells, where the enzyme is responsible for onvertingfood to usable energy, [56℄ and [57℄.It was shown by Streater that the Smoluhowski equation for a Brownian par-tile potentially an be supplemented by an equation for the dynamis of the tem-perature, so that the �rst and the seond laws of thermodynamis are obeyed. Heonsidered also a model studied by David Smith, known as the dumbbell model,



[98℄ R. Wojnarin whih the Brownian partile is a two-level atom, and had shown that underisothermal onditions, the free energy an be given a natural de�nition out ofequilibrium, and is a dereasing funtion of time, [58℄, also [59℄. Smith has appliedhis model to desribe a myosin moleule, [60, 61℄, also [62℄ and [63℄.Maromoleular partiles playing a role in protein motors are heavy (Brown-ian) in omparison with solvent (water) moleules, but are light (Lorentzian) inomparison with mass of substratum (mitohondrium).Another biologial example in whih the passive di�usion plays a role is pro-vided by alimentation proesses in artilage, tissue whih supplies smooth surfaesfor the movement of artiulating bones. The artilage is built of ells, alled hon-droytes, produing a large amount of extraellular matrix omposed of ollagen�bers, abundant ground substane rih in proteoglyan, and elastin �bers. Unlikeother onnetive tissues, artilage does not ontain blood vessels. The hondro-ytes are fed by di�usion, helped by the pumping ation generated by ompressionof the artiular artilage or �exion of the elasti artilage. Thus, ompared to otheronnetive tissues, artilage grows and repairs more slowly, [64℄.The di�usion proess appears in biology also as the property of homeostasis inorganisms.Homeostasis (from Greek: hómos, �equal�; and istemi, �to stand� lit. �to standequally�; oined by Walter Bradford Cannon) is the property of either an opensystem or a losed system, espeially a living organism, that regulates its internalenvironment so as to maintain a stable, onstant ondition. Multiple dynami equi-librium adjustment and regulation mehanisms make homeostasis possible. Theonept ame from that of milieu interieur that was reated by Claude Bernard,often onsidered as the father of physiology, and published in 1865.With respet to any given life system parameter, an organism may be a on-former or a regulator. Regulators try to maintain the parameter at a onstantlevel over possibly wide ambient environmental variations. On the other hand,onformers allow the environment to determine the parameter. For instane, en-dothermi animals maintain a onstant body temperature, while exothermi ani-mals exhibit wide body temperature variation. Examples of endothermi animalsinlude mammals and birds, examples of exothermi animals inlude reptiles andsome sea animals.Most homeostati regulation is ontrolled by the release of hormones into thebloodstream. However other regulatory proesses rely on simple di�usion to main-tain a balane.Homeostati regulation extends far beyond the ontrol of temperature. Allanimals also regulate their blood gluose, as well as the onentration of theirblood. Mammals regulate their blood gluose with insulin and gluagon. Thesehormones are released by the panreas, the inadequate prodution of the two forany reason, would result in diabetes. The kidneys are used to remove exess waterand ions from the blood. These are then expelled as urine. The kidneys performa vital role in homeostati regulation in mammals, removing exess water, salt,and urea from the blood. These are the body's main waste produts, [65℄.



Kineti equation for a gas with attrative fores as a funtional equation [99℄2. Projetive operator methodThe projetion operator is introdued, [66℄,
P = eikr1

f0
N

ϕM (v1)

∫

dvN−1drN e−ikr1 ,where
f0

N =

N
∏

i=1

ϕM (vi)
1

Q
e−βUis the equilibrium distribution funtion. We observe

PFN (t) = eikr1
f0

N

ϕM (v1)
f(k,v1, t).In partiular

PFN(0) = eikr1
f0

N

ϕM (v1)
f(k,v1, 0) = eikr1f0

N = FN (0)and
(1 − P)FN (0) = 0.Also

∫

dvN−1drN e−ikr1PFN (t) = f(k,v1, t).The Liouville equation
∂

∂t
FN (t) = −KNFN (t)with KN given by (4), is now rewritten in the form

∂

∂t
[PFN (t)] = −PKNPFN (t) − PKN(1 − P)FN (t)and

∂

∂t
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t
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e−τ(1−P)KN (1 − P)KNPFN (t− τ) dτ



[100℄ R. Wojnarand �nally
( ∂

∂t
+ ikv1

)

f(k,v1, t)

=

∫

dvN−1drN e−ikr1PKN

t
∫

0

e−τ(1−P)KN eikr1
f0

N

ϕM (v1)
f(k,v1, t− τ) dτit is a general form of KE, orret also for small times, ompared to the time ofollision.3. Density expansionAn alternative form of the kineti equation (2) is

(−iz + ikv1)f(k, v1, z) = G(k, z)f(k,v1, z) + f(k,v1, t = 0),where
f(t = 0) = ϕM (v1) =

( 2π

βm

)− 3
2

e−
1
2 βv2

1with f(k,v1, z) being Laplae transform of f(k,v1, t)

f(z) =

∞
∫

0

eiztf(t) dt.The sattering operator in (2)
G(τ) =

∫

drNdvN−1 e−ikr1KNe−τ(1−P)KN (1 − P)KNeikr1f0
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ϕM (v1)
.After Laplae transformation we get the equation
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∫
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f(k,v1, z)whih right-hand side an be written as
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Kineti equation for a gas with attrative fores as a funtional equation [101℄The �rst terms of the expansion are
G(k, z) =

∫

dvN−1drN e−ikr1

[ 1

iz
(KNKN −KNPKN)

+
( 1

iz

)2

(KNKNKN −KNKNPKN −KNPKNKN +KNPKNPKN)

+
( 1

iz

)3

(. . .) + . . .
]

eikr1
f0

N

ϕM (v1)
.In the dilute gas approximation only linear terms with respet to ρ = N

V arekept, and the following form of binary sattering operator is obtained
G12(k, z) =

N − 1

V 2

∫∫∫

dr1dr2dv2 (−iz + ikv1)e
−ikr1

×

∞
∫

0

dt eizt
(

e−tK2 − e−tK0
2
)

(−iz + ikv1)e
ikr1e−βuϕM (v2).For k = 0 and z = 0 the sattering operator redues to the Boltzmann satteringoperator. It also takes the Boltzmann form for k = 0, arbitrary z and su�ientlyhigh veloity v1.4. Lorentz gasThe Lorentz gas orresponds to the asem2 → ∞, v2 → 0 and ϕM (v2) → δ(v2).Only the veloity of partile 1 remains and is denoted by v1 = v. The Lorentzmodel is widely studied as a simple model of a rystal, f. for example [67℄ � [78℄.
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Figure 1. Spherial potential: hard ore of radius b (blak irle) and well (whitering) with internal radius b and external radius aThe Lorentz gas was examined in [66℄ for the following ase of repulsive � attrativepotential, see Figure 1,
u(r) = ∞ if r < b, u(r) = −u0 < 0 if b < r < a, u(r) = 0 if r > a,where r is the radius in polar oordinates. Thus, the potential possesses spherialrigid repulsive ore of radius b surrounded by a well (b < r < a) of depth −u0,



[102℄ R. Wojnar
u0 > 0. Sattering operator for this potential, for the dilute Lorentz gas has thefollowing form

G12f(k, z,v) = i(−z + kv)
N

V

∫

dr e−βuϕM (v)e−ikr

×

∞
∫

t1

dt eizt
(

e−tK2 − e−tK0
2
)

eikri(−z + kv)
f(k, z,v)

ϕM (v)
.The KE for three-dimensional Lorentz gas of N − 1 �xed rigid spheres with thesquare-well attrative potential was given also in [66℄. It is an integral (in on-�gurational spae) and funtional (in veloity spae) equation for the unknowndistribution funtion ψ(v) whih links the values of ψ(v) at 8 di�erent values ofargument v.5. Lorentz gas of rigid spheres with finite time of ollision τ ∗The potential of rigid sphere with retangular well hanges the time of intera-tion of the light partile with satterer, is ontrast to the zero time of interationwith the rigid sphere potential alone. To avoid additional onsideration of satter-ing trajetory we aept the rigid sphere potential (R1 = R2), in whih, however,the interating partiles remain onneted for a ertain time τ∗. This time ofollision is negative in ase of the potential well. In this ase
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− Ψ(k, z,v) + 1 − eizτ∗]

,where integration is performed over the full solid angle and
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.We introdue the following notation
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dΩ = P̂ .Kineti equation takes the form
(−iz + ikv + ε−1
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.Here h = δ(v − v′) is the initial ondition. Hene
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−iz + ikv + ε−1
0

.



Kineti equation for a gas with attrative fores as a funtional equation [103℄For the hydrodynami pole we have
−iz = ε−1

0 + kv cot[(cos zτ∗ − i sin zτ∗)kvε0].If the time of ollision τ∗ = 0, KE equation beomes
(−iz + ikv + ε−1

0 )Ψ − h = vϕM (v)
N

V

a2

4

∫

dΩ.This is the lassial Boltzmann equation for the Lorentz gas. Its solution has theform disussed by Hauge in [78℄.6. One-dimensional KEThe 3 dimensional dynamis, even for the Lorentz gas, is still too ompliatedto be e�etively solved and for this reason we limit ourselves to 1-dimensionalmodel. It posseses some important features of 3-dimensional ase, but mehanisof the light partile motion is more simple. It may be expeted that the obtainedresults will have a more general meaning. Suh proedure is often used, see [79℄ �[82℄.The one-dimensional onsiderations permitted Fermi, Pasta, Ulam and MaryTsingou to �nd that the behaviour of a 32-atom hain is quite di�erent fromintuitive expetation. Instead of thermalisation, a ompliated quasi-periodi be-haviour of the system was observed, [83℄, also [84℄.Morita and Fukui onsidered the heat transfer in one-dimensional gas, [85℄,while Ka [86℄ � [89℄ and MKean [90℄ onsidered one-dimensional analogues ofthe linear Boltzmann equation.

-x
6

potential
- b r0

u1
-u0 b- a a

-light partileV IV III II I
Figure 2. Con�gurational spae of one-dimensional model. Light partile movesin potential of a well of depth −u0 < 0 and a repulsive ore of hight u1 > 0



[104℄ R. WojnarThe Lorentz gas is examined here in one dimension, for the ase of attrative� repulsive potential
u(x) =











u1, |x| < b,

−u0 < 0, b < |x| < a,

0, |x| > a.The quantity −u0, with u0 > 0 is the depth of the potential well, while u1 > 0denotes the height of the potential barrier, see Figure 2.6.1. Kineti equation in 1 dimensionThe KE has still struture of (5) but vetors are now one-dimensional
(−iz + ikv)f(k, v, z) − f(k, v, t = 0) = G(k, z)f(k, v, z).Sattering operator for the dilute Lorentz gas of N partiles in one-dimensionalsegment L, (−L

2 < x < L
2 ), has the following form

G(k, z)f(k, v, z) = i(−z + kv)
N

L

∫

dx e−βuϕM (v)e−ikx

×

∞
∫

t1

dt eizt
(

e−tK2 − e−tK0
2
)

eikxi(−z + kv)
f(k, z, v)

ϕM (v)

(6)Here K2 is the two partile Liouville operator, see (4), for N = 2. In alulations
L → ∞ but N

L is kept onstant. Suh proedure is known as the thermodynamilimit (one inreases the volume together with the partile number so that theaverage partile number density remains onstant). Thus, integration with respetto x extends from minus to plus in�nity. Below we put
Ψ(v) =

f(k, z, v)

ϕM (v)
.The phase spae is now two-dimensional only: one-dimension for positions andanother for veloities of the light partile. The position spae is divided into 5regions, from I to V, see Figure 2, while the veloity spae in eah of these regionsis divided, in dependene of kineti energy of the partile (whether it permits forbounded or unbounded motion of the partile).6.2. Bounded motionsThe bounded motion of partile ours in regions of the potential well, II andIV, only, if simultaneously the partile kineti energy is less than the depth of thewell u0.



Kineti equation for a gas with attrative fores as a funtional equation [105℄Regions b ≤ x ≤ a and −a ≤ x ≤ −bLet us onsider bounded motion of our partile in segment b ≤ x ≤ a withveloity v <
√

2
mu0. The position of partile along its trajetory is given byrelation

e−tK2x = x(−t)

= x− vtη(t1 − t) − [vt1 + v′(t− t1)]η(t− t1)η(t2 − t)

− [vt1 + v′(t2 − t1) + v′′(t− t2)]η(t− t2)η(t3 − t)

− [vt1 + v′(t2 − t1) + v′′(t3 − t2) + v′′′(t− t3)]η(t− τ3)η(t4 − t)

− . . .− [vt1 + v′(t2 − t1) + v′′(t3 − t2) + v′′′(t4 − t3) + v′′′′(t5 − t4)

+ . . .+ v(2n)(t2n+1 − t2n) + v(2n+1)(t− t2n+1)]η(t − τ2n+1).Similarly, the veloity is given by
e−tK2v = v(−t)

= vη(t1 − t) + v′(t− t1)η(t2 − t) + v′(t− t1)η(t2 − t)

+ v′′η(t− t2)η(t3 − t) + v′′′η(t− t3)η(t4 − t)

+ . . .+ v(2n−1)η(t− t2n−1)η(t2n − t)

+ v(2n)η(t− t2n)η(t2n+1 − t) + v(2n+1)η(t− t2n+1).In the equation above we have
v′ = −v, v′′ = v, . . . , v(2n−1) = −v, v(2n) = vand 2n denotes the number of full periods performed by the partile in the time

t. Moreover, tm, m = 1, 2, . . . denotes the moment of bouning from the wall ofthe well. The instant of the �rst ollision of the partile with wall is given by
t1 =

x− b

|v|
(7)and the next instants satisfy relations

t2 − t1 = t3 − t2 = . . . = tm − tm−1 = τ =
a− b

|v|
.Di�erenes between the subsequent moments are idential and equal τ . Thereforethe period of bouning is 2τ .For the time being we replae the in�nity in the upper limit of time integral in(6) by T , and next extend T → ∞ and n→ ∞.

(G(k, z)f(k, v, z))IIA

= i(−z + kv)
N

L
eβu0ϕM (v)

a
∫

b

dx e−ikx

{ t2
∫

t1

dt ei(z+kv)te−ik2vt1 i(−z − kv)tΨ(−v)



[106℄ R. Wojnar
+

t3
∫

t2

dt ei(z−kv)te−ik[vt1−v(t2−t1)−vt2]i(−z + kv)tΨ(v)

+

t4
∫

t3

dt ei(z+kv)te−ik[vt1+vt3]i(−z − kv)tΨ(−v)

+

t5
∫

t4

dt ei(z−kv)te−ik[vt1−v(t4−t3)−vt4]i(−z + kv)tΨ(v)

+ . . .+

t2n
∫

t2n−1

dt ei(z+kv)te−ik[vt1+vt2n−1]i(−z − kv)tΨ(−v)

+

t2n+1
∫

t2n

dt ei(z−kv)te−ik[vt1−v(t2n−t2n−1)−vt2n]i(−z + kv)tΨ(v)

+

T
∫

t2n+1

dt ei(z+kv)te−ik[vt1+vt2n+1]i(−z − kv)tΨ(−v)

−

T
∫

t1

dt ei(z−kv)ti(−z + kv)tΨ(v)

}

.We take n so large that
T − t2n+1 < τ.We integrate at �rst with respet to t, and next with respet to x. Variable x isfound only in time of the �rst ollision t1 = x−b

v , f. (7). After integration andpassing with n to in�nity, there appear series ot type
1 + eiz2τ + eiz4τ + . . .+ eiz2nτ + . . . =

1

1 − eiz2τ
for n→ ∞.Finally we �nd the following KE

(−iz + ikv)Ψ(v) − h(v) = C[Ψ(−v) − Ψ(v)]with
h(v) =

f(k, v, t = 0)

ϕM (v)
and C =

N

L
|v|

1 − 2eizτ cos(kvτ) + eizτ

1 − eizτ
eβu0 .Remark that C is even in v. The solution of KE reads

Ψ(v) =
(−iz − ikv + C)h(v) + Ch(−v)

−z2 − 2izC + k2v2
.Idential relation desribes the bound motion in segment −a ≤ x ≤ −b, withveloity v < √

2
mu0.



Kineti equation for a gas with attrative fores as a funtional equation [107℄6.3. Unbounded motionsThe phase subspaes of bounded and unbounded one-dimensional motions ofthe partile are separated by the value of its kineti energy, in the dilute gasapproximation. The partile one trapped in bounded motion, persists in it forever,and a partile in the phase subspae where unbounded motion ours an neverbeome bounded.6.3.1. Region I: (a < x < ∞)The partile whih is at the time t = 0 in this region is subjet to 3 aelerationsif its kineti energy is less then the height of the potential barrier u1 (Case IA) or4 aelerations if it is higher (Case IB).Case IA: if 0 < v <
√

2
mu1 we have

x(−t) = x− vtη(t1 − t) − [vt1 + v′(t− t1)]η(t− t1)η(t2 − t)

− [vt1 + v′(t2 − t1) + v′′(t− t2)]η(t− t2)η(t3 − t)

− [vt1 + v′(t2 − t1) + v′′(t3 − t2) + v′′′(t− t3)]η(t− t3)and
v(−t) = vη(t1 − t) + v′η(t2 − t)η(t− t1) + v′′η(t3 − t)η(t− t2) + v′′′η(t− t3)with

v′ =
v

|v|

√

v2 +
2

m
u0, v′′ = −v′, v′′′ = −v (8)and

t1 =
x− a

|v|
, t2 = t1 +

a− b

|v′|
, t3 = t2 +

a− b

|v′|
= t1 + 2

a− b

|v′|denote the moments of subsequent ollisions. As before (Setion 6.2), the positionvariable x is hidden in t1.After straightforward alulations we get the part of right hand side of (6)linked to this subregion
Gf(IA) =

N

L
|v|ϕM (v)

{[

1 − e
i(z−kv′) a−b

|v′
|

]

Ψ(v′)

+
[

1 − e
i(z+kv′) a−b

|v′
|

]

e
i(z−kv′) a−b

|v′
| Ψ(−v′) + e

iz2 a−b

|v′
| Ψ(−v) − Ψ(v)

}Case IB: if v > √

2
mu1 we have

x(−t) = x− vtη(t1 − t) − [vt1 + v′(t− t1)]η(t− t1)η(t2 − t)

− [vt1 + v′(t2 − t1) + v′′(t− t2)]η(t− t2)η(t3 − t)

− [vt1 + v′(t2 − t1) + v′′(t3 − t2) + v′′′(t− t3)]η(t− τ3)η(t4 − t)

− [vt1 + v′(t2 − t1) + v′′(t3 − t2) + v′′′(t4 − t3) + v′′′′(t− t4)]η(t− t4)



[108℄ R. Wojnarand
v(−t) = vη(t1 − t) + v′η(t2 − t)η(t− t1) + v′′η(t3 − t)η(t− t2)

+ v′′′η(t4 − t)η(t− t3) + v′′′′η(t− t4)with
v′ =

v

|v|

√

v2 +
2

m
u0, v′′ =

v

|v|

√

v2 −
2

m
u1, v′′′ = v′, v′′′′ = v (9)and

t1 =
x− a

v
, t2 = t1 +

a− b

v′
, t3 = t2 +

2b

v′′
t4 = t3 +

a− b

v′
.In this subregion

Gf(IB) =
N

L
|v|ϕM (v)

{[

1 − e
i(z−kv′) a−b

|v′
|

][

1 + e
i(z−kv′′) 2b

|v′′
| e

i(z−kv′) a−b

|v′
|

]

Ψ(v′)

+
[

1 − e
i(z+kv′′) 2b

|v′′|

]

e
i(z−kv′) a−b

|v′
| Ψ(v′′)

−
[

1 − e
i(z−kv′)2 a−b

|v′
| e

i(z−kv′′) 2b

|v′′
|

]

Ψ(v)
}

.6.3.2. Region II: b < x < aThe bounded motion in this region was desribed in Setion 6.2.The partile whih is at the time t = 0 in this region and has kineti energyhigher than the depth of the well u0, is in an unbounded motion and has undergone2 aelerations if its kineti energy is lower than the hight of potential barrier u1(Case IIA) or 3 aelerations if its kineti energy is higher than the barrier (CaseIIB).Case IIA: if √

2
mu1 > v >

√

2
mu0 we have

x(−t) = x− vtη(t1 − t) − [vt1 + v′(t− t1)]η(t− t1)η(t2 − t)

− [vt1 + v′(t2 − t1) + v′′(t− t2)]η(t− t2)and
v(−t) = vη(t1 − t) + v′η(t2 − t)η(t− t1) + v′′η(t− t2)with

v′ = −v, v′′ = −
v

|v|

√

v2 −
2

m
u0 and t1 =

x− b

|v|
, t2 = t1 +

a− b

|v|
.Now

Gf(IIA) =
N

L
|v|eβu0ϕM (v)

[

1 − e−i(z+kv) a−b

|v|

]

{[

1 − ei(z+kv) a−b
|v|

]

Ψ(−v) + ei(z+kv) a−b
|v| Ψ(v′′)) − Ψ(v)

}

.



Kineti equation for a gas with attrative fores as a funtional equation [109℄Case IIB: if v > √

2
mu1 we have

x(−t) = x− vtη(t1 − t) − [vt1 + v′(t− t1)]η(t− t1)η(t2 − t)

− [vt1 + v′(t2 − t1) + v′′(t− t2)]η(t− t2)η(t3 − t)

− [vt1 + v′(t2 − t1) + v′′(t3 − t2) + v′′′(t− t3)]η(t− τ3)and
v(−t) = vη(t1 − t) + v′η(t2 − t)η(t− t1) + v′′η(t− t2)η(t3 − t) + v′′′η(t− t3)with

v′ =
v

|v|

√

v2 −
2

m
(u0 + u1), v′′ = v, v′′′ =

v

|v|

√

v2 −
2

m
u0 (10)and

t1 =
x− b

v
, t2 = t1 +

2b

|v′|
t3 = t2 +

a− b

|v|
.Now

Gf(IIB) =
N

L
|v| eβu0ϕM (v)

[

1 − ei(z−kv) a−b
|v|

]

×
{[

1 − e
i(z−kv′) 2b

|v′
|

]

Ψ(v′) + e
i(z−kv′) 2b

|v′
| ei(z−kv) a−b

|v| Ψ(v′′′)

+
([

1 − ei(z−kv) a−b

|v|

]

e
i(z−kv′) 2b

|v′
| − 1

)

Ψ(v)
}

.6.3.3. Region III: −b < x < bThe partile being at t = 0 in this region, has undergone 2 aelerations. Thetime dependene of its position and veloity is the following
x(−t) = x− vtη(t1 − t) − [vt1 + v′(t− t1)]η(t− t1)η(t2 − t)

− [vt1 + v′(t2 − t1) + v′′(t− t2)]η(t− t2)and
v(−t) = vη(t1 − t) + v′η(t2 − t)η(t− t1) + v′′η(t− t2)with
v′ =

v

|v|

√

v2 +
2

m
(u0 + u1), v′′ =

v

|v|

√

v2 +
2

m
u1 (11)and

t1 =
x+ b

|v|
, t2 = t1 +

a− b

|v′|
.Now

Gf(III) =
N

L
e−βu1 |v|ϕM (v)

[

1 − ei(z−kv) 2b
|v|

]

×
{

e
i(z−kv′) a−b

|v′
| Ψ(v′′) +

[

1 − ei(z−kv′) a−b
|v′|

]

Ψ(v′) − Ψ(v)
}

.



[110℄ R. Wojnar6.3.4. Region IV: −a < x < −bThe partile whih is at the time t = 0 in this region and has kineti energyless than the depth of the well, is in the bounded motion (see setion 6.2). In theopposite ase, the partile has undergone 1 aeleration.If v > √

2
mu0 we have
x(−t) = x− vtη(t1 − t) − [vt1 + v′(t− t1)]η(t− t1)and

v(−t) = vη(t1 − t) + v′η(t− t1)with
v′ =

v

|v|

√

v2 −
2

m
u0 and t1 =

x+ a

|v|
.Then

Gf(IV ) =
N

L
eβu0 |v|ϕM (v)

[

1 − ei(z−kv) a−b
v

]

[Ψ(v′) − Ψ(v)].6.3.5. Region V: −∞ < x < −aIn this region the potential vanishes and operators exp(−tK2) and exp(−tK2)are idential, and ontribution of this region to the integral operator G is zero.7. Kineti equation in 1 dimensionWe gather all ontributions to the sattering operator found in the previoussetion to get KE for unbounded motions (v2 > 2
mu0). At �rst we introdueommon de�nitions of veloities appearing in the equation. These are

v1 =
v

|v|

√

v2 −
2

m
(u0 + u1) for v2 ≥

2

m
(u0 + u1) cf. (10)1

v2 =
v

|v|

√

v2 −
2

m
u1 for v2 ≥

2

m
u1 cf. (9)2

v3 =
v

|v|

√

v2 −
2

m
u0 for v2 ≥

2

m
u0 cf. (10)3

v4 =
v

|v|

√

v2 +
2

m
u0 cf. (8)1

v5 =
v

|v|

√

v2 +
2

m
u1 cf. (11)2

v6 =
v

|v|

√

v2 +
2

m
(u0 + u1) cf. (11)1in the form

(−iz + ikv)Ψ(v) − h(v) = GΨ(v)



Kineti equation for a gas with attrative fores as a funtional equation [111℄with
h(v) =

f(k, v, t = 0)

ϕM (v)and
GΨ(v)

=
N

L
|v|

1

ϕM (v)

[

Gf(III) +Gf(IV )

+ η(v2 <
2

m
u1)

(

Gf(IA) +Gf(IIA)

)

+ η
(

v2 >
2

m
u1

) (

Gf(IB) +Gf(IIB)

)

]or
GΨ(v)

=
N

L
|v|

[

e−βu1
(

1 − ei(z−kv) 2b
|v|

)

{

e
i(z−kv6) a−b

|v6| Ψ(v5)

+
[

1 − e
i(z−kv6) a−b

|v6|

]

Ψ(v6) − Ψ(v)
}

+ eβu0

[

1 − ei(z−kv) a−b
v

]

[Ψ(v3) − Ψ(v)]

+ η
( 2

m
u1 − v2

)

{[

1 − e
i(z−kv4) a−b

|v4|

]

Ψ(v4)

+
[

1 − e
i(z+kv4) a−b

|v4|

]

e
i(z−kv4) a−b

|v4| Ψ(−v4) + e
iz2 a−b

|v4| Ψ(−v) − Ψ(v)
}

+ eβu0

[

1 − e−i(z+kv) a−b

|v|

]

×
{[

1 − ei(z+kv) a−b
|v|

]

Ψ(−v) + ei(z+kv) a−b
|v| Ψ(−v3) − Ψ(v)

}

+ η
(

v2 −
2

m
u1

)

{[

1 − e
i(z−kv4) a−b

|v4|

][

1 + e
i(z−kv2) 2b

|v2| e
i(z−kv4) a−b

|v4|

]

Ψ(v4)

+
[

1 − e
i(z+kv2) 2b

|v2|

]

e
i(z−kv4) a−b

|v4| Ψ(v4)

−
[

1 − e
i(z−kv4)2 a−b

|v4| e
i(z−kv2) 2b

|v2
|
]

Ψ(v)
}

+ eβu0

[

1 − ei(z−kv) a−b

|v|

]{[

1 − e
i(z−kv1) 2b

|v1|

]

Ψ(v1)

+ e
i(z−kv1) 2b

|v1| ei(z−kv) a−b

|v| Ψ(v3)

+
([

1 − ei(z−kv) a−b
|v|

]

e
i(z−kv1) 2b

|v1| − 1
)

Ψ(v)
} ]For k, z → 0, it is for the long waves and low frequenies, the sattering operatorof our KE hanges to the Boltzmann operator

GΨ((v) =
N

L
|v| [Ψ(−v) − Ψ(v)] . (12)Our sattering operator takes also the form of the Boltzmann operator for su�-iently high veloity v, if the time of ollision of light partile with heavy partileof rystal an be negleted.From mathematial point of view, we see that our KE generates an in�nitesequene of funtional equations. Its solution is a problem for the next publiation.



[112℄ R. Wojnar8. ConlusionsWe have analyzed KE valid for a dilute Lorentz gas with short range attrationpotential and have given the expliit forms of the sattering operator for di�erentforms of potential, for whih some exat solutions an be found. For k = 0 and
z = 0 operator redues to the Boltzmann sattering operator. Thus our approahenlarges the possibility of desription of di�usion for the ase when time of partileollisions is not negligeable. The KE for light partile di�usion in one-dimensionalLorentz gas was also derived. The solution of this KE will be disussed later.The ommon feature of the obtained kineti equations is that they link thevalues of the probability density Fourier-Laplae transform in di�erent points ofthe veloity axis. Therefore these equations are the funtional equations, [91, 92℄.Referenes[1℄ I. Prigogine, Non-equilibrium statistial mehanis, Intersiene, New York, 1964.[2℄ S. Nakajima, On quantum theory of transport phenomena: steady di�usion, Progr.Theoret. Phys. 20 (1958), 948�959.[3℄ R. Zwanzig, Statistial mehanis of irreversibility, New York, 1961.[4℄ R. Zwanzig, Ensemble method in the theory of irreversibility, J. Chem. Phys. 33(1960), 1338�1341.[5℄ R. Zwanzig, Method for �nding the density expansion of transport oe�ients ofgases, Phys. Rev. 129 (1963), 486�494.[6℄ L.P. Kadano�, P.C. Martin, Hydrodynami equations and orrelation funtions,Ann. Physis 24 (1963), 419�469.[7℄ H. Mori, Transport, olletive motion, and Brownian motion, Progr. Theoret.Phys. 33 (1965), 423�455.[8℄ J. Steki, H.S. Taylor, On the areas of equivalene of the Bogoliubov theory andthe Prigogine theory of irreversible proesses in lassial gases, Rev. Modern Phys.37 (1965), 762�773.[9℄ P. Résibois, M. De Leener, Classial kineti theory of �uids, John Wiley&Sons,New York, London, Sydney, Toronto, 1977.[10℄ R. Zwanzig, Approximate eigenfuntions of the Liouville operator in lassialmany-body systems, Phys. Rev. 144 (1966), 170�177.[11℄ M. Nelkin, A. Ghatak, Simple binary ollision model for Van Hove's Gs(r, t),Phys. Rev. (2) 135 (1964), A4�A9.[12℄ J. Steki, On the kineti equation nonloal in time for the generalized self-di�usionproess, J. Computational Phys. 7 (1971), 547�553.[13℄ J. Steki, R. Wojnar, Kineti equation for the self-orrelation funtion G(r, t) inthe dilute Boltzmann gas, Chem. Phys. Letters 2 (1968), 343�345.[14℄ Ch.D. Boley, Projetion-operator approah to a renormalized kineti theory, Phys.Rev. A 11 (1975), 328�339.[15℄ L. Van Hove, Temperature variation of the magneti inelasti sattering of slowneutrons, Phys. Rev. 93 (1954), 268�269.
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FOLIA 70Annales Universitatis Paedagogiae CraoviensisStudia Mathematia VIII (2009)
Report of Meeting13th International Conferene on Funtional Equationsand Inequalities,Maªe Cihe, September 13-19, 2009ContentsAbstrats of Talks 118Problems and Remarks 144List of Partiipants 150The Thirteenth International Conferene on Funtional Equations and Inequal-ities was held from September 13 to 19, 2009 at the Hotel Tatry in Maªe Cihe,Poland.The series of ICFEI meetings has been organized by the Institute of Mathemat-is of the Pedagogial University of Craow sine 1984. This year the OrganizingCommittee onsisted of Janusz Brzd�k as Chairman, Paweª Solarz, Janina Wier-ioh, Wªadysªaw Wilk, and Krzysztof Ciepli«ski, who also ated as Sienti�Seretary. The help of Jaek Chmieli«ski, Marek Czerni, Zbigniew Le±niak andJolanta Olko is aknowledged with thanks.The Sienti� Committee onsisted of Professors Dobiesªaw Brydak as Hon-orary Chairman, Janusz Brzd�k as Chairman, Niole Brillouët-Belluot, JaekChmieli«ski, Bogdan Chozewski, Roman Ger, Hans-Heinrih Kairies, LászlóLosonzi, Zsolt Páles and Marek Cezary Zdun.As usual, the onferene was devoted mainly to various aspets of funtionalequations and inequalities. A speial emphasis was given to the stability of fun-tional equations. A Speial Session in honor of the 100th anniversary of thebirthday of Stanisªaw M. Ulam, devoted to this topi and haired by ProfessorThemistoles M. Rassias, was held on Tuesday, September 15.The 76 partiipants ame from 10 ountries: Austria, Frane, Germany, Greee,Hungary, Israel, Italy, Romania, Russia and Poland.The onferene was opened on Monday, September 14 by Professor JanuszBrzd�k � Chairman of the Sienti� and Organizing Committees, who welomedthe partiipants in the name of the Organizing Committee and read a letter to



[118℄ Report of Meetingthem from Professor Wªadysªaw Bªasiak, the Dean of the Faulty of Mathematis,Physis and Tehnial Siene of the Pedagogial University. Opening address wasgiven by Professor Jaek Chmieli«ski, the Diretor of the Institute of Mathematis.Professor Bogdan Chozewski onveyed best regards for the partiipants from theHonorary Chairman of the ICFEI, Professor Dobiesªaw Brydak. The openingeremony was followed by the �rst sienti� session haired by Professor RomanGer and the �rst leture was given by Professor Gian Luigi Forti. Altogether,during 26 sienti� sessions 3 letures and 67 talks were delivered. They fousedon funtional equations in a single variable and in several variables, funtionalinequalities, stability theory, onvexity, multifuntions, iteration theory, means,dynamial systems and other topis. Several ontributions have been made duringspeial Problems and Remarks sessions.On Tuesday, September 15, a pini was organized. On the next day afternoonpartiipants visited Zakopane, the �Winter Capital� of Poland. The exursioninluded a walking tour to Str¡»yska Valley, Sarnia Skaªa and Biaªego Valley inthe Tatra Mountains. In the evening the piano reital was performed by MarekCzerni and Hans-Heinrih Kairies. On Thursday, September 17, a banquet washeld. On the following day a Flameno Evening was hosted by Maªgorzata Drzaª(dane & voal), Grzegorz Guzik (guitar) and Jagoda Romanowska (dane).The onferene was losed on Friday, September 18 by Professor Bogdan Cho-zewski. The 14th ICFEI will be organized in 2011.The following part of the report ontains abstrats of the talks (in alphabetialorder of the authors' names), problems and remarks (in hronologial order ofpresentation) and a list of partiipants (with addresses).Abstrats of TalksRoman Badora Stability of some funtional equationsLet X be a group and let Λ be a �nite subgroup of the automorphism groupof X (N = cardΛ and the ation of λ ∈ Λ on x ∈ X is denoted by λx). We studythe stability of the following funtional equations
1

N

∑

λ∈Λ

f(x+ λy) = f(x)g(y) + h(y), x, y ∈ X,

1

N

∑

λ∈Λ

f(x+ λy) = f(y)g(x) + h(x), x, y ∈ X(f, g, h:X → K ∈ {R,C}), whih over Jensen's funtional equation, Cauhy'sfuntional equation, the exponential funtional equation, the funtional equationof the square of the norm and d'Alembert's funtional equation.Anna Bahyryz On systems of equations with unknown multifuntionsLet (G,+) be a grupoid, T be a nonempty set. Inspired by problem posed byZ. Moszner in [1℄ we investigate for whih additional assumptions putting on the



13th International Conferene on Funtional Equations and Inequalities [119℄multifuntions Z(t):T → 2G whih satisfy ondition
⋃

t∈T

Z(t) = Gand system of onditions
(∃t∈T i(t)j(t) 6= 0) =⇒

(

⋂

t∈T

Z(t)i(t) +
⋂

t∈T

Z(t)j(t) ⊂
⋂

t∈T

Z(t)i(t)j(t)

)

, (1)where Z(t)1 := Z(t), Z(t)0 := G \ Z(t) and i(t), j(t):T → {0, 1} are the arbitraryfuntions not identially equal to zero, the inlusion in the above onditions (1)may be replaed by equality, obtaining the system of equations with unknownmultifuntions.[1℄ Z. Moszner, Sur la fontion de hoix et la fontion d'indie, Ann. Aad. Pedagog.Cra. Stud. Math. 4 (2004), 143�169.Szabols Baják Invariane equations for Gini and Stolarsky means(joint work with Zs. Páles)Given three strit meansM,N,K: R2
+ → R+, we say that the triple (M,N,K)satis�es the invariane equation if

K
(

M(x, y), N(x, y)
)

= K(x, y), x, y ∈ R+holds. It is well known that K is uniquely determined by M and N , and it isalled the Gauss omposition K = M ⊗N of M and N .Our aim is to solve the invariane equation when eah of the means M,N,Kis either a Gini or a Solarsky mean with di�erent parameters, thus we have toonsider four di�erent equations. With the help of the omputer algebra systemMaple V Release 9, we give the general solutions of these equations.Karol Baron On Baire measurable solutions of some funtional equationsWe establish onditions under whih Baire measurable solutions f of
Γ(x, y, |f(x) − f(y)|) = Φ(x, y, f(x+ ϕ1(y)), . . . , f(x+ ϕN (y)))de�ned on a metrizable topologial group are ontinuous at zero.Svetlana S. Belmesova On the unbounded invariant urves of some polynomialmaps(joint work with L.S. Efremova)The unbounded trajetories of the quadrati mapping F2(x, y) = (xy, (x−2)2)in the plane R2 has been studied in [1℄.In this work we deal with the one-parameter family of the quadrati mappings

Fµ(x, y) = (xy, (x− µ)2), (1)where (x, y) ∈ R2, µ ∈ (0, 1]. It is proved the existene of the unbounded invarianturves for the mappings (1) for every µ ∈ (0, 1].[1℄ S.S. Belmesova, L.S. Efremova, On unbounded trajetories of a ertain quadrati map-ping of the plane, J. Math. Si. (N. Y.) 157 (2009), 433�441.



[120℄ Report of MeetingMihály Bessenyei On a lass of single variable funtional equationsIn the last few years, funtional equations have had a growing importanein ompetitions for seondary shool students in Hungary (browse the issues ofMathematial and Physial Journal for Seondary Shools). A typial exerise isof the form
α1f ◦ g1 + . . .+ αnf ◦ gn = h,where gk, αk, h, f are given funtions (with appropriate domain and range) underthe assumption that g1, . . . , gn generate a group under the operation of omposi-tion. The main results of the present talk guarantee that, under some reasonableassumptions, the funtional equation above (and also its nonlinear orrespondene)has a unique solution. The proofs are based on Cramer's rule and the inverse-funtion theorem.[1℄ Mathematial and Physial Journal for Seondary Shools (KöMal)(http://www.komal.hu).[2℄ V.S. Brodskii, A.K. Slipenko, Funtional equations, Visa Skola, Kiev, 1986 (in Rus-sian).[3℄ K. Lajkó, Funtional equations in exerises, University Press of Debreen, 2005 (inHungarian).Zoltán Boros Inequalities for pairs of additive funtionsRepresentation theorems are presented for pairs of additive funtions, underthe assumption that a related expression is loally bounded. Let us assume that

f and g are real additive funtions. If
1

x
f(x) + xg

(1

x

)is bounded on a non-void open interval or
xf(x) +

√

1 − x2g
(

√

1 − x2
)is bounded on every ompat subinterval of the open interval (0, 1), then thereexists a real derivation d suh that

f(x) = d(x) + f(1)x and g(x) = d(x) + g(1)xfor every real number x. However, if, for instane,
√

1 − x2f(x) − xg
(

√

1 − x2
)is bounded on every ompat subinterval of the open interval (0, 1), then f and gare linear.Niole Brillouët-Belluot Some further results onerning a onditional Goª¡b�Shinzel equation(joint work with J. Chudziak and J. Brzd�k)Let X be a real linear spae and letM : R → R be a ontinuous and multiplia-tive funtion. We determine the solutions f :X → R of the funtional equation

f(x+M(f(x))y)f(x)f(y)[f(x +M(f(x))y) − f(x)f(y)] = 0



13th International Conferene on Funtional Equations and Inequalities [121℄whih are ontinuous on rays, i.e., whih are suh that, for every x ∈ X \ {0},
fx: R → R de�ned by fx(t) = f(tx) is ontinuous.In the partiular ases where M ≡ 1 and M(x) ≡ x, we obtain the ontinuouson rays solutions of a onditional exponential equation and those of a onditionalGoª¡b�Shinzel equation.These results extend those given by the authors at the 47th ISFE in Gargnano.Janusz Brzd�k On nonstability of the linear reurrene of order one(joint work with D. Popa and B. Xu)Let K be either the �eld of reals or the �eld of omplex numbers, X be aBanah spae over K, (an)n≥0 a sequene in K \ {0}, and (bn)n≥0 a sequene in
X . We present a result onerning nonstability of the linear reurrene

yn+1 = anyn + bn, n ≥ 0.This orresponds to the ontents, e.g., of reent papers [1�5℄.[1℄ J. Brzd�k, D. Popa, B. Xu, Note on nonstability of the linear reurrene, Abh. Math.Sem. Univ. Hamburg 76 (2006), 183�189.[2℄ J. Brzd�k, D. Popa, B. Xu, The Hyers�Ulam stability of nonlinear reurrenes, J.Math. Anal. Appl. 335 (2007), 443�449.[3℄ J. Brzd�k, D. Popa, B. Xu, Hyers�Ulam stability for linear equations of higher orders,Ata Math. Hungar. 120 (2008), 1�8.[4℄ D. Popa, Hyers�Ulam�Rassias stability of a linear reurrene, J. Math. Anal. Appl.309 (2005), 591�597.[5℄ T. Trif, On the stability of a general gamma-type funtional equation, Publ. Math.Debreen 60 (2002), 47�61.Pál Burai Some results on Orliz-onvex funtions(joint work with A. Házy)Let X be a linear spae over the real �eld R, and C ⊂ X be an open, nonemptyone. A funtion f : C → R is alled s-onvex (Orliz-onvex) if
f (λsx+ (1 − λ)sy) ≤ λf(x) + (1 − λ)f(y)for all x, y ∈ C, λ ∈ (0, 1], where s ∈ [1,∞) is a �xed number. In this talk we makesome examination in this lass of funtions.Liviu C dariu Remarks on the �xed point method for Ulam�Hyers stabilityIn [1℄ and [2℄ some generalized Ulam�Hyers stability results for Cauhy fun-tional equation have been proved. One of the results reads as follows:Let us onsider a real linear spae E, a omplete p-normed spae F and a sub-homogenous funtional of order α ||(·, ·)||α:E × E → [0,∞), with α 6= p. Inthese onditions, the following stability property holds: For eah ε > 0 there exists

δ(ε) > 0 suh that for every mapping f :E → F whih satis�es
||f(x) + f(y) − f(x+ y)||p ≤ δ(ε) · ||(x, y)||α, x, y ∈ E,



[122℄ Report of Meetingthere exists a unique additive mapping a:E → F suh that
||f(x) − a(x)||p ≤ ε · ||(x, x)||α, x ∈ E.We intend to outline the results onerning the generalized Ulam�Hyers stabil-ity for di�erent other kinds of funtional equations. Both the Hyers diret methodand the �xed point method will be emphasized and we shall onsider funtionsde�ned on linear spaes and taking values in p-normed spaes or random normedspaes.[1℄ L. C dariu, A general theorem of stability for the Cauhy's equation, Bull. �tiinµ.Univ. Politeh. Timi³. Ser. Mat. Fiz. 47(61) (2002), 14�28.[2℄ L. C dariu, V. Radu, On the stability of the Cauhy funtional equation: a �xedpoints approah, Iteration theory (ECIT'02), 43�52, Grazer Math. Ber. 346, Karl�Franzens�Univ. Graz, Graz, 2004.[3℄ D.H. Hyers, G. Isa, Th.M. Rassias, Stability of funtional equations in severalvariables, Progress in Nonlinear Di�erential Equations and their Appliations 34,Birkhäuser Boston, In., Boston, MA, 1998.[4℄ V. Radu, The �xed point alternative and the stability of funtional equations, FixedPoint Theory 4 (2003), 91�96.Jaek Chmieli«ski Stability of linear isometries and orthogonality preservingmappingsIn referene to a question posed by the author during the 12th ICFEI, a shortsurvey on linear approximate isometries in normed spaes and respetive stabilityproblems will be given.Next, an appliation to the problem of stability of orthogonality preservingmappings in normed spaes will be shown. Results from a joint work with P. Wój-ik will be presented.Jaek Chudziak Stability of a omposite funtional equationAt the 47th International Symposium on Funtional Equations (Gargnano,Italy) J. Brzd�k has posed several questions onerning a quotient stability of thefollowing generalization of the Goª¡b�Shinzel funtional equation

f(x+M(f(x))y) = f(x)f(y).In our talk we present the answers for some of them.Krzysztof Ciepli«ski Stability of the multi-Jensen equationAssume that V is a normed spae, W is a Banah spae and m ≥ 2 is aninteger. A funtion f :V m →W is alled multi-Jensen (we also say that f satis�esmulti-Jensen equation) if it is a Jensen mapping in eah variable, that is
f(x1, . . . , xi−1,

1

2
(xi + yi), xi+1, . . . , xm)

=
1

2
f(x1, . . . , xi−1, xi, xi+1, . . . , xm) +

1

2
f(x1, . . . , xi−1, yi, xi+1, . . . , xm),

i ∈ {1, . . . ,m}, x1, . . . , xi, yi, . . . , xm ∈ V.



13th International Conferene on Funtional Equations and Inequalities [123℄This notion was introdued by W. Prager and J. Shwaiger in 2005 with theonnetion with generalized polynomials (see [1℄).In this talk the stability of multi-Jensen equation is disussed.[1℄ W. Prager, J. Shwaiger,Multi-a�ne and multi-Jensen funtions and their onnetionwith generalized polynomials, Aequationes Math. 69 (2005), 41�57.Stefan Czerwik S.M. Ulam � his life and results in mathematis, physis andbiologyWe shall present the information about the life of S.M. Ulam and his resultsin di�erent areas of siene: mathematis, physis and biology; partiularly instability of funtional equations and H-bomb.Zoltán Darózy On an elementary inequality and onjugate means(joint work with Zs. Páles)Let n ≥ 2, k ≥ 1. In this talk we give the neessary and su�ient onditionfor the real numbers p1, p2, . . . , pn, q1, q2, . . . , qk to ful�ll the following property:If
min{xi} ≤Ml ≤ max{xi}, l = 1, 2, . . . , kholds for all real numbers x1, x2, . . . , xn and M1,M2, . . . ,Mk, then
min{xi} ≤

n
∑

i=1

pixi +

k
∑

l=1

qlMl ≤ max{xi}.Let I be a nonvoid open interval and let Ml: I
n → I (l = 1, 2, . . . , k) be means.If there exist p1, p2, . . . , pn, q1, q2, . . . , qk with the property above and a stritlymonotone, ontinuous funtion ϕ on I, then

M(x1, x2, . . . , xn)

= ϕ−1

( n
∑

i=1

piϕ(xi) +

k
∑

l=1

qlϕ(Ml(x1, x2, . . . , xn))

)

, x1, x2, . . . , xn ∈ Iis a mean value and we all it the onjugate mean generated by the means M1,
M2, . . . ,Mk.We deal with several problems on onjugate means.Judita Das l On onjugate means(joint work with Z. Darózy)Let I ⊂ R be a nonvoid open interval.A funtion M : I2 → I is said to be a onjugate mean on I if there exist realnumbers p, q ∈ [0, 1] and a ontinuous, stritly monotone real valued funtion ϕde�ned on I suh that

M(x, y) = ϕ−1
(

pϕ(x) + qϕ(y) + (1 − p− q)ϕ
(x+ y

2

))

, x, y ∈ I.We deal with the equality problem in the lass of onjugate means.



[124℄ Report of MeetingJoahim Domsta A omparison of quantum dynamial semigroups obtainable bymixing or partial traingSome simple examples of quantum systems are olleted to illustrate require-ments su�ient for the evolution of a subsystem aording to a quantum dynamialsemigroup. For this, a lass of quantum dynamis of a system S oupled to a reser-voir R is analyzed in the Hilbert spae HSR = HS ⊗HR, where HR = L2(R) and
HS = l2I , with I standing for a omplete at most ountable set of pure orthogonalstates of S. The Hamiltonian of SR is built of tensor produts of multipliers atingon HS and HR. The hosen linear oupling implies the exponential deohereneof the redued evolution of S if and only if the oupation density in R is of theCauhy type. Then the system indiates the exponential deoherene. On theother hand, sine the oupation density in S is disrete, the redued evolution of
R is never governed by a semigroup (unless there is no oupling).In the onsidered ase, the redued evolution of the subsystem S as well asof the reservoir R an be equivalently obtained by taking the expetation (i.e.by averaging) of the unitary dynamis of the alone standing system S or R withsuitably hosen random Hamiltonians. Thus again, the probability distributionof the random perturbation for S must be of the Cauhy type if the exponentialdeoherene should follow.In the models of the third lass the phase of the quantum system S varies a-ording to a stohasti proess with independent stationary inrements. In otherwords, this is an example of a random dynamial system. Then the exponentialdeoherene of the evolution of the averaged state follows, independently of thedistribution of the proess. In suh ases the It�-Shrödinger equation for the ran-dom unitary dynamis and the master equation for the averaged density matriesare obtained in the dependene on the probability distribution of the proess. Forpresenting the Cauhy distribution in a di�erent ontext, a relation to the expo-nential deay of the autoorrelation of autonomous systems is disussed brie�y.Andrey S. Filhenkov On the simplest topologially transitive skew produts inthe plane(joint work with L.S. Efremova)Let F (x, y) = (f(x), gx(y)) : I → I be a skew produt of interval maps, I is aretangle in the plane, I = I1 × I2 (I1, I2 are losed intervals). Let T 1(I) be thespae of C1(I)-smooth skew produts of interval maps.In this talk we present onditions of the density of the set of periodi points inthe phase spae of the skew produt.Theorem.Let F ∈ T 1(I) satisfy the following onditions:1) F (x, y) is a topologially transitive skew produt of interval maps,2) the partial derivative ∂gx(y)

∂y monotonially dereases with respet to y ∈ I2for any x ∈ I1,3) gx(∂I2) = ∂I2 for any x ∈ I1, where ∂I2 is the boundary of I2.



13th International Conferene on Funtional Equations and Inequalities [125℄Then the set of periodi points of the skew produt of interval maps is dense in I.In this talk we also onstrut the topologially transitive skew produt whihsatis�es all onditions of the above theorem. We use here the unimodal mapstheory (see [2℄). For the omparison in [3℄ it is proved the existene of the topolog-ially transitive ylindrial asade (the skew produt over the irrational rotationof the irle) without periodi points. In [1℄ it is onstruted an example of on-tinuous but not smooth topologially transitive skew produt in the unit squarewhih has the dense set of periodi points in horizontal �bers y = 0 and y = 1.[1℄ Ll. Alseda, S. Kolyada, J. Llibre, L. Snoha, Entropy and periodi points for transitivemaps, Trans. Amer. Math. So. 351 (1999), 1551�1573.[2℄ L.S. Efremova, A.S. Filhenkov, About one example of the topologially transitive skewprodut of interval maps in the plane, Math problems, M.:MPhTI 2009, 61�68.[3℄ E.A. Sidorov, Topologially transitive ylindrial asades (Russian), Mat. Zametki14 (1973), 441�452.Gian Luigi Forti Symboli dynamis generated by graphsIn many natural phenomena strings onsisting of sequenes of symbols playa entral role. Also the evolution of large lasses of dynamial systems an bedesribed, under ertain onditions, as a sequene of symbols. In this ontext,a entral question is how to enumerate and to haraterize the full set of possiblesequenes generated by a dynamial system.At �rst, the properties of the symboli dynamis generated by a graph onan alphabet are presented and it is shown that the number of sequenes of length
n is either exponential or polynomial with respet to n.Then by a ombination of several graphs we obtain di�erent laws. In parti-ular we an obtain laws observed in omplex systems and onjetured in 1992 byEbeling and Niolis.We �nish by presenting a probabilisti approah to the problem.[1℄ V. Basios, G.-L. Forti, G. Niolis, Symboli dynamis generated by a ombination ofgraphs, Internat. J. Bifur. Chaos Appl. Si. Engrg. 18 (2008), 2265�2274.Roman Ger On a problem of CuulièreIn the February 2008 issue of The Amerian Mathematial Monthly (Problemsand Solutions, p.166) the following question was proposed by R. Cuulière:Find all nondereasing funtions f from R to R suh that

f(x+ f(y)) = f(f(x)) + f(y) for all real x and y(Problem 11345).We shall present:� the general Lebesgue measurable solution,� monotoni solutions,� a desription of the general solutionof the funtional equation in question.



[126℄ Report of MeetingAttila Gilányi Conditional stability of monomial funtional equationsDuring the 42nd International Symposium on Funtional Equations in Opava,Czeh Republi, 2004, J. Azél announed the program of the investigation ofonditional funtional equations (.f. [1℄). Conneted to this program, we presentsome onditional stability results for monomial funtional equations.More preisely, in the ase of various sets D ⊆ R×R and H ⊆ R, and assumingthat Y is a Banah spae, n is a positive integer, α is an arbitrary, ε and δ arenonnegative real numbers, we examine whether the validity of the inequality
∥

∥∆n
yf(x) − n!f(y)

∥

∥ ≤ ε|x|α + δ|y|α, (x, y) ∈ Dimplies the existene of nonnegative onstants c and d and a monomial funtion
g: R → Y of degree n (i.e. a solution of the funtional equation ∆n

y g(x)−n!g(y) =
0, x, y ∈ R) for whih

‖f(x) − g(x)‖ ≤ (cε+ dδ)|x|α, x ∈ Hholds.[1℄ J. Azél, 5. Remark, Report of Meeting, Aequationes Math. 69 (2005), 183.Dorota Gªazowska An invariane of the geometri mean with respet to theCauhy mean-type mappings(joint work with J. Matkowski)We onsider the problem of invariane of the geometri mean with respet tothe Cauhy mean-type mappings (

Df,g, Dh,k
), i.e., the funtional equation

G ◦
(

Df,g, Dh,k
)

= G.Assuming that the generators g and k are power funtions we show that thefuntions f and h have to be of high lass of regularity. This fat allows toredue the problem to di�erential equations and �nd some neessary onditionsfor generators f and h.Eszter Gselmann On the stability of derivationsIn this talk we investigate the stability of a system of funtional equationsthat de�nes real derivations. More preisely, the problem of Ulam is onsidered inonnetion with the following system of equations
f(x+ y) = f(x) + f(y), x ∈ Rand
f(xn) = cxkf(xm), x ∈ R \ {0} ,where f : R → R is the unknown funtion, c ∈ R and n,m, k ∈ R are arbitrarily�xed. Using a preliminary lemma that is also presented, it is proved that theabove system of funtional equations is stable in the sense of Hyers and Ulam,under some onditions on the parameters c, n,m and k.



13th International Conferene on Funtional Equations and Inequalities [127℄Grzegorz Guzik On some disjoint iteration semigroups on the torusGeneral onstrution of measurable (ontinuous) disjoint iteration semigroupsof triangular mappings on the torus is given.Attila Házy Bernstein�Doetsh type results for h-onvex funtionsThe onept of h-onvexity was introdued by S. Varo²ane in [1℄. In our talkwe introdue a more general onept of the h-onvexity, and the onept of the soalled (H,h)-onvexity.A h-onvex (or (H,h)-onvex) funtion is de�ned as a funtion f :D → R(where D is a nonempty, open, onvex subset of a real (or omplex) linear spae)whih satis�es
f(λx + (1 − λ)y) ≤ h(λ)f(x) + h(1 − λ)f(y),for all x, y ∈ D and λ ∈ [0, 1] (resp. λ ∈ H), where h is a given real funtion.The main goal of our talk is to prove some regularity and Bernstein�Doetshtype result for h-onvex and (H,h)-onvex funtions. We also ollet some fatson suh funtions. Finally, we ollet some interesting, easily-proved properties of

h-onvex funtions.[1℄ S. Varo²ane, On h-onvexity, J. Math. Anal. Appl. 326 (2007), 303�311.Eliza Jabªo«ska About solutions of a generalized Goª¡b�Shinzel equationLet n ∈ N and let X be a metrizable linear spae over K ∈ {R,C}. We onsidersolutions f :X → K of the funtional equation
f(x+ f(x)ny) = f(x)f(y) for x, y ∈ Xsuh that either f is bounded on a set of seond ategory with the Baire propertyor f is Baire measurable. Our result generalizes a result of J. Brzd�k.Hans-Heinrih Kairies A sum type operatorOur sum type operator F :D → F [D] is given by

F [ϕ](x) :=

∞
∑

k=0

2−kϕ(2kx),where D = {ϕ: R → R :
∑∞

k=0 2−kϕ(2kx) onverges for every x ∈ R}.We treat the following aspets:1. Historial bakground.2. Basi properties of F and its restritions Frg:Drg → F [Drg] to sixteen sub-spaes Drg of D, whih are all vetor spaes and in part Banah spaes.3. Funtional equations for F [ϕ] and haraterizations.4. Some Fourier analysis for F [ϕ].



[128℄ Report of Meeting5. Images F [S] and F−1[S].6. Eigenvalues and eigenspaes for all the sixteen Frg.7. Continuous and residual spetra.8. Extensions.Barbara Kol�ga-Kulpa On a lass of equations stemming from various quadra-ture rules(joint work with T. Szostok)We deal with a funtional equation of the form
F (y) − F (x) = (y − x)

n
∑

k=1

akf(λkx+ (1 − λk)y), x, y ∈ R (1)motivated by quadrature rules of approximate integration. In previous results thesolutions of this equation were found only in some partiular ases. For example,oe�ients λk were supposed to be rational or the equation in question was solvedonly for n = 2.We prove that every funtion f : R → R satysfying equation (1) with somefuntion F : R → R, where ∑n
k=1 ak 6= 0, is a polynomial of degree at most 2n− 1.In our results we do not assume any spei� form of oe�ients ouring at theright-hand side of (1) and we allow n to be any positive integer. Moreover, weobtain solutions of our equation without any regularity assumptions onerningfuntions f and F.Zygfryd Kominek On a Jensen�Hosszú equation(joint work with J. Sikorska)It is known that in the lass of funtions ating the interval I = [0, 1] (I = (0, 1))into a real Banah spae the Jensen funtional equation is stable and the Hosszúfuntional equation has not this property. So, we have a nontrivial pair of theequivalent equations suh that one of them is stable and the other is not. Fromthis point of view it seems interesting to onsider the funtional equation of theform

f(x+ y − xy) + f(xy) = 2f
(x+ y

2

)

, x, y ∈ I. (1)The left-hand-side of equation (1) is the same as the left-hand-side of the Hosszúfuntional equation, and the right-hand-side of our equation oinides with theleft-hand side of the Jensen equation. We will prove that equation (1) is alsoequivalent to the Jensen (and in the same reason to the Hosszú) equation and,moreover, that equation (1) is stable in the sense of Hyers and Ulam.Dorota Krassowska On iteration semigroups ontaining generalized onvex andonave funtionsLet I ⊂ R be an open interval and let M,N : I2 → I be ontinuous funtions.A funtion f : I → I is said to be (M,N)-onvex ((M,N)-onave) if
f(M(x, y)) ≤ (≥)N(f(x), f(y)), x, y ∈ I.



13th International Conferene on Funtional Equations and Inequalities [129℄A funtion f : I → I simulteneously (M,N)-onvex and (M,N)-onave isalled (M,N)-a�ne (see [1℄).We prove that if in a ontinuous iteration semigroup {f t, t ≥ 0} every element
f t is (M,N)-onvex or (M,N)-onave and there exist r > s > 0 suh that f r and
fs are (M,N)-a�ne, then M = N and every element of a semigroup is (M,M)-a�ne. We also onsider the ase whereM = N and we show that if in a ontinuousiteration semigroup {f t, t ≥ 0} there exist f r < id and fs < id suh that r

s 6∈ Qand f r is (M,M)-onvex and fs is (M,M)-onave, then every element of thesemigroup is (M,M)-a�ne.[1℄ J. Matkowski, Iteration groups with generalized onvex and onave elements, Iter-ation theory (ECIT 94) (Opava), 199�216, Grazer Math. Ber. 334, Karl-Franzens-Univ. Graz, Graz, 1997.Zbigniew Le±niak On onjugay of Brouwer homeomorphismsWe onsider Brouwer homeomorphisms of the plane for whih the osillatingset is empty. The main result says that if the sets of indies of overings of theplane onsisting of maximal parallelizable regions for two Brouwer homeomor-phisms are isomorphi and if for eah of these regions there exists a one-to-oneorrespondene between the set of singular lines ontained in the boundary of theregion and the set of singular lines ontained in the interior of the region, thenthese Brouwer homeomorphisms are onjugated. This theorem holds for Brouwerhomeomorphisms that are embeddable in a �ow as well as for Brouwer homeo-morphisms for whih there exists a foliation of the plane onsisting of invarianttopologial lines.Andrzej Mah Stability of some funtional equations and open problems(joint work with Z. Moszner)Some results on stability of ertain equations and systems of equations aregiven. A number of open problems of stability, raised by Z. Moszner, is presented.The answer for one of them is given.[1℄ D.H. Hyers, On the stability of the linear funtional equation, Pro. Nat. Aad. Si.U.S.A 27 (1941), 222�224.[2℄ A. Mah, On some funtional equations involving Babbage equation, Results Math.51 (2007), 97�106.[3℄ A. Mah, Z. Moszner, On stability of the translation equation in some lasses offuntions. Aequationes Math. 72 (2006), 191�197.[4℄ A. Mah, Z. Moszner, On some funtional equations involving involutions, Österreih.Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 216 (2007), 3�13 (2008).[5℄ Z. Moszner, On the stability of funtional equations, Aequationes Math. 77 (2009),33�88.Ewelina Mainka On uniformly ontinuous Nemytskii operators generated by set-valued funtionsLet I = [0, 1], let Y be a real normed linear spae, C a onvex one in Y and
Z a Banah spae. Denote by clb(Z) the set of all nonempty losed and boundedsubsets of Z.



[130℄ Report of MeetingIf a superposition operator N generated by a set-valued funtion F : I × C →
clb(Z) maps the set Hα(I, C) of all funtions ϕ: I → C satisfying the Hölder on-dition into the set Hβ(I, clb(Z)) of all set-valued funtions φ: I → clb(Z) satisfyingthe Hölder ondition and is uniformly ontinuous, then

F (x, y) = A(x, y)
∗
+ B(x), x ∈ I, y ∈ Cfor some set-valued funtions A,B suh that A(·, y), B ∈ Hβ(I, clb(Z)), y ∈ C and

A(x, ·) ∈ L(C, clb(Z)), x ∈ I.Using Jensen funtional equation is essential in the proof. A onverse result isalso onsidered.Judit Makó On ϕ-onvexity(joint work with Zs. Páles)In this talk a new onept of approximate onvexity is de�nied, termed ϕ-onvexity. The funtion ϕ is hosen in a partiular way. Assume that I isa nonempty open real interval of R and denote I∗ := (I − I) ∩ R+, where R+stands for the set of nonnegative real numbers. Let ϕ: I∗ → R+ be a given fun-tion. A real valued funtion f : I → R is alled ϕ-onvex if
f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)+ tϕ

(

(1− t)|x− y|
)

+ (1− t)ϕ
(

t|x− y|
) (1)for all t ∈ [0, 1] and for all x, y ∈ I. If (1) holds for t = 1

2 , then we say that f is
ϕ-midonvex.In this talk we give some equivalent onditions for ϕ-onvexity. Furthermore,we searh relations between the loal upper-bounded ϕ-midonvex funtions and
ϕ-onvex funtions.Gyula Maksa Nonnegative information funtions revisited(joint work with E. Gselmann)Motivated by the known result that there are nonnegative information fun-tions di�erent from the Shannon information funtion, in this talk, we present someproperties of the set on whih every nonnegative information funtion oinideswith the Shannon's one.Fruzsina Mészáros Density funtion solutions of a funtional equation(joint work with K. Lajkó)The funtional equation

fU (u) fV (v) = fX

( 1 − v

1 − uv

)

fY (1 − uv)
v

1 − uvis investigated for almost all (u, v) ∈ (0, 1)2. Suppose only that the unknownfuntions fX , fY , fU , fV : (0, 1) → R are density funtions of some random variables(i.e. nonnegative and Lebegue integrable with integral 1). Does it follow that theyare positive almost everywhere on (0, 1)?Using a method of A. Járai in onnetion with the haraterization of theDirihlet distribution, we give an a�rmative answer to this question.The obtained result is related to an independene property for beta dist-ributions.



13th International Conferene on Funtional Equations and Inequalities [131℄Bartosz Miherda On the properties of four elements in funtion spaesLet Xρ be a modular spae whih is a lattie with respet to the ordering ≥given by some pointed onvex one K ⊂ Xρ. For x, y ∈ Xρ denote x∧y = inf(x, y)and x ∨ y = sup(x, y).Then we say that ρ satis�es the lower property of four elements (LPFE) if forany x, y, w, z ∈ Xρ suh that x ≥ y, we have
ρ(x− w) + ρ(y − z) ≥ ρ(x− w ∨ z) + ρ(y − w ∧ z),and it satis�es the upper property of four elements (UPFE) if for any x, y, w, z ∈

Xρ suh that x ≥ y, we have
ρ(x− w) + ρ(y − z) ≤ ρ(x− w ∧ z) + ρ(y − w ∨ z).These inequalities are useful for the study of projetion and antiprojetionoperators in modular spaes (see [1℄ and [2℄).In our talk we present a lass of funtion modulars whih satisfy both (LPFE)and (UPFE). We also give some other examples and ounterexamples.[1℄ G. Isa, G. Lewiki, On the property of four elements in modular spaes, Ata Math.Hungar. 83 (1999), 293�301.[2℄ B. Miherda, The properties of four elements in Orliz-Musielak spaes, Math. In-equal. Appl. 4 (2001), 599�608.Vladimir Mityushev Appliation of funtional equations to determination of thee�etive ondutivity of omposites with elliptial inlusionsAnalysis onerning the transport properties of inhomogeneous materials is offundamental theoretial interest. Analytial formulae for the marosopi proper-ties with physial and geometrial parameters in symboli form is useful to preditthe behavior of omposites. The method of funtional equations is one of the on-strutive methods to derive suh analytial exat and approximate formulae. Thepresent talk is devoted to appliation of the method to two�dimensional ompos-ites with elliptial inlusions. The sizes, the loations and the orientations of theellipses an be arbitrary. The analytial formulae ontains all above geometrialparameters in symboli form.Lajos Molnár Charaterizing some spei� elements in spaes of operators andfuntions and its useWe haraterize ertain spei� elements in spaes of funtions or Hilbert spaeoperators and use those haraterizations to determine the strutures of di�erentkinds of automorphisms and isometries of the underlying spaes.Janusz Morawie Re�nement equations and Markov operators(joint work with R. Kapia)Let (Ω,A, P ) be a omplete probability spae, let L: Ω → R

n be a randomvetor and let K: Ω → Rn×n be a random matrix. We disuss the lose onnetionbetween the problem of the existene of non-trivial L1-solutions f : Rn → R of the



[132℄ Report of Meetingre�nement equation
f(x) =

∫

Ω

| detK(ω)|f(K(ω)x− L(ω)) dP (ω)and the problem of the existene of invariant probability Borel measures of a veryspeial Markov operator de�ned (on the spae of all �nite Borel measures on Rn)by
Mµ(A) =

∫

Ω

∫

Rp

χA(K(ω)−1(x+ L(ω)))dµ(x) dP (ω).Jaek Mrowie On stability of some funtional equationReently, Soon�Mo Jung has proved the Hyers�Ulam stability of the Fibonaifuntional equation
f(x) = f(x− 1) + f(x− 2)in the lass of funtions f : R → X , where X is a real Banah spae. The samemethod with little modi�ations may be applied to prove stability of the moregeneral funtional equation
f(x) = af(x− 1) + bf(x− 2),where a, b ∈ R, in the same lass of funtions. However, for some values of a and

b this equation is not stable.Anna Mure«ko A generalization of Bernstein�Doetsh theoremLet V be an open onvex subset of a nontrivial real normed spae X . We givea partial generalization of Bernstein�Doetsh theorem. Namely, if there exist abase B of X and a point x ∈ V suh that a midonvex funtion f :X → R is loallybounded above on b-ray at x for eah b ∈ B, then f is onvex. Moreover, underthe above assumption, f is also ontinuous in ase X = RN , but not in general.Adam Najdeki On stability of some funtional equationLet S be a nonempty set, k, n ∈ N and gj:S × S → S for j ∈ {1, . . . , k}. Weare going to disuss the stability of the funtional equation
k

∑

j=1

f(gj(s, t)) = f(s)f(t), s, t ∈ Sin the lass of funtions f from S to the normed algebraMn(C) of omplex n× nmatries.Kazimierz Nikodem Remarks on strongly onvex funtionsLet D be a onvex subset of a normed spae and c > 0. A funtion f :D → Ris alled strongly onvex with modulus c if
f(tx+ (1 − t)y) ≤ tf(x) + (1 − t)f(y) − ct(1 − t)‖x− y‖2for all x, y ∈ D and t ∈ [0, 1]. We say that f is midpoint strongly onvex with
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f
(x+ y

2

)

≤
f(x) + f(y)

2
−
c

4
‖x− y‖2, x, y ∈ D.Some properties of midpoint strongly onvex funtions (orresponding to thelassial results of Jensen onvex funtions) are presented. A relationship betweenstrong onvexity and generalized onvexity in the sense of Bekenbah is also given.Andrey A. Nuyatov Representation of spae of entire funtions of Fisher'spairsIn [2℄ resolvability of the equation

ψ1(z)MF1 [f ] + . . .+ ψm(z)MFm
[f ] = g(z) (1)is proved, −→ψ = (ψ1(z), . . . , ψm(z)) ∈ Hm

Cn , MFj
[f ] ≡ (Fj , f(z+w)) � the operatorof onvolution in the spae H(Cn), whih harateristi funtion is equal to ϕj(z),

j = 1, . . . ,m. Resolvability of this equation is onneted by onept of Fisher'spairs (see [1℄):A pair of polynomials (P (z), Q(D)), D = (D1, . . . , Dn), Dj = ∂/∂zj forms aFisher pair if
H(Cn) = (P (z)) ⊕ KerQ(D).In this onnetion, equation (1) an be written down in the following way
Σ0

k=mPk(z)MP∗
k
[f ] = g(z), (2)where degPk = degP ∗

k = k, k = 0, . . . ,m. Equation (2) will beome
Σ0

k=m

(

Σ0
|α|=ka

k
αz

α
)(

Σ0
|α|=ka

k
αD

αf
)

= g(z). (3)We will show under what onditions the di�erential equation with variable fators
Σ0

|β|=m

[(

Σ0
|α|=mbαβz

α
)

Dβf
]

= g(z) (4)is led to equation (3), i.e., the fators of equation (3) are expressed through thefators of equation (4). Let B = ||bαβ|| be matrix of fators of equation (4).Theorem.If the transposed matrix to B an be represented in the form of BT = Σ0
k=mBk,where Bk = ||bkαβ || ( k = m,m − 1, . . . , 0) - Hermitean onjugate matrixes of arank 1, thus the only elements of the last of 1

(n−1)!

∑k
i=0

∏n−1
j=1 (i+ j), n ≥ 2 rowsand 1

(n−1)!

∑k
i=0

∏n−1
j=1 (i+ j), n ≥ 2 olumns are nonzero, then equation (4) is ledto equation (3).The program whih heks onditions of redution of the given equation toequation (3) and if it is possible is written and expresses the fators of equation(3) through the fators of equation (4) and writes down equation (3).[1℄ H.S. Shapiro, An algebrai theorem of E. Fisher, and the holomorphi Goursat prob-lem, Bull. London Math. So. 21 (1989), 513�537.



[134℄ Report of Meeting[2℄ V.V. Napalkov, On the theory of linear di�erential equations with variable oe�ients(Russian), Dokl. Akad. Nauk 397 (2004), 748�750.Andrzej Olbry± On some inequality onneted with Wright onvexityWe onsider the funtional inequality
f(λx+ (1− λ)y) ≤ G(x, y, λ)f(x) + [1−G(x, y, λ)]f(y), x, y ∈ (a, b), λ ∈ (0, 1),where f : (a, b) → R and G: (a, b) × (a, b) × (0, 1) → R is a funtion symetri withrespet to x and y.Jolanta Olko On a family of multifuntionsLet {f t, t ∈ R}, {gt, t ∈ R} be groups of inreasing selfmappings of an interval
I suh that f t ≤ gt, t ∈ R. We study properties of the family {Ht, t ∈ R} ofmultifuntions de�ned as follows

Ht(x) = [f t(x), gt(x)], x ∈ I, t ∈ R.Zsolt Páles An appliation of Blumberg's theorem in the omparison of weightedquasi-arithmeti meansWe present omparison theorems for the weighted quasi-arithmeti means andfor weighted Bajraktarevi¢ means without supposing in advane that the weightsare the same. The results have been obtained jointly with Gyula Maksa underdi�erentiability assumptions. Using Blumberg's theorem (stating, for every realfuntion, the existene of a ountable dense set suh that the restrition of thefuntion to this set is ontinuous), these regularity assumptions are ompletelyremoved.Boris Paneah Several remarks on approximate solvability of the linear funtionalequationsWe onsider the general linear funtional operator
PF (x) :=

N
∑

j=1

cj(x)F ◦ aj(x), x ∈ D ⊂ R
p.Here F ∈ C(I, B) (the spae of all B-valued ontinuous funtions on I) with I =

(−1, 1), B a Banah spae, oe�ients cj and arguments aj of P are ontinuousfuntions D → R and D → I, respetively, D is a domain with a ompat losure.Reently a deep onnetion between this operator and di�erent problems fromanalysis, geometry and even gas dynami has been disovered. In a series of workssome existing and uniqueness problems have been studied as well as the overde-terminedness for some types of the operators P has been established. Beauseof the linearity of P studying homogeneous equation PF ≈ 0 and, in partiular,searhing an approximate solution to this equation provokes the speial interest(from both theoretial and pratial points of view). It worth noting that eventhe notion of the approximate solution by itself needs to be de�ned aurately.



13th International Conferene on Funtional Equations and Inequalities [135℄At the �rst part of the talk I formulate and disuss the new notions identifyingproblem and approximate solution related to linear funtional operator P . Inpartiular, it will be lari�ed the interrelation of the identifying and well-knownUlam problems. It will be explained also that the latter problem bears a diretrelation to the approximate solvability rather then to some mythi stability.At the seond part of the talk the set of linear funtional operators for whih Isueeded in proving the solvability of the identifying problem and the approximatesolvability of the equation PF ≈ 0 will be desribed and disussed.In onlusion a list of the most interesting unsolved problems will be demon-strated.Boris Paneah On approximate solvability of the Cauhy equation of arbitrarydegreeThe talk is devoted to the well-known but not well studied funtional operator
CnF := F (0) +

n
∑

k=1

(−1)k
∑

1≤j1<...<jk≤n

F (xj1 + . . .+ xjk
),where x = (x1, . . . , xn) is a point of a bounded domain in Rn and F is a funtion:

I → B with B a Banah spae and I = {t : 0 ≤ t ≤ 1}. We show at �rst wherefrom this operator arises in di�erent �elds of mathematis and physis, and thenwe formulate the problem of approximate solvability of the equation CnF ≈ 0. Inthe seond part of the talk we solve this problem.Magdalena Piszzek On multivalued iteration semigroupsLet K be a losed onvex one with a nonempty interior in a Banah spaeand let G:K → cc(K) be a ontinuous additive multifuntion. The equality
Ft ◦G = G ◦ Ft, t ≥ 0is a neessary and su�ient ondition under whih the family {Ft, t ≥ 0} ofmultifuntions

Ft(x) =

∞
∑

i=0

ti

i!
Gi(x), x ∈ K, t ≥ 0is an iteration semigroup.Dorian Popa A property of a funtional inlusion onneted with Hyers-UlamstabilityWe prove that a set-valued map F :X → P0(Y ) satisfying the funtional inlu-sion F (x)♦F (y) ⊆ F (x ∗ y) admits, in appropriate onditions, a unique seletion

f :X → Y satisfying the funtional equation f(x) ⋄ f(y) = f(x ∗ y), where (X, ∗),
(Y, ⋄) are square-symmetri grupoids and ♦ is the extension of ⋄ to the olletion
P0(Y ) of all nonempty parts of Y .[1℄ J. Azél, Letures on funtional equations and their appliations, Mathematis inSiene and Engineering 19, Aademi Press, New York�London, 1966.



[136℄ Report of Meeting[2℄ J. Brzd�k, A. Pietrzyk, A note on stability of the general linear equation, AequationesMath. 75 (2008), 267�270.[3℄ Z. Gajda, R. Ger, Subadditive multifuntions and Hyers�Ulam stability, General in-equalities 5 (Oberwolfah, 1986), 281�291, Internat. Shriftenreihe Numer. Math. 80Birkhäuser, Basel, 1987.[4℄ D.H. Hyers, G. Isa, Th.M. Rassias, Stability of funtional equations in severalvariables, Progress in Nonlinear Di�erential Equations and their Appliations 34,Birkhäuser Boston, In., Boston, MA, 1998.[5℄ Zs. Páles, Hyers�Ulam stability of the Cauhy funtional equation on square-symmetri grupoids, Publ. Math. Debreen 58 (2001), 651�666.[6℄ D. Popa, A stability result for a general linear inlusion, Nonlinear Funt. Anal. Appl.9 (2004), 405�414.[7℄ D. Popa, Funtional inlusions on square-symmetri grupoids and Hyers�Ulam sta-bility, Math. Inequal. Appl. 7 (2004), 419�428.[8℄ A. Smajdor, Additive seletions of superadditive set-valued funtions, AequationesMath. 39 (1990), 121�128.[9℄ W. Smajdor, Subadditive set-valued funtions, Glas. Mat. Ser. III 21 (41) (1986),343�348.[10℄ W. Smajdor, Superadditive set-valued funtions and Banah-Steinhaus theorem,Rad. Mat. 3 (1987), 203�214.Vladimir Yu. Protasov Lipshitz stability of linear operators in Banah spaesThe well-known onept of Ulam�Hyers�Rassias stability for the additiveCauhy equation establishes, in partiular, the p-stability of linear maps betweenBanah spaes for all positive parameters p 6= 1. The only exeption is the Lip-shitz ase, when p = 1 (see [1℄ and referenes therein). One of possible ways toobtain stability results for this ase is to introdue the notion of Lipshitz linearstability. Let X,Y be arbitrary Banah spaes and F :X → Y be a map with theonly assumption that there is K > 0 suh that ‖F (x)‖ ≤ K‖x‖, x ∈ X . For agiven ε > 0 we onsider the following ondition on F :
‖{a, b}F − {b, c}F‖ ≤ ε a, c ∈ X, b ∈ [a, c], (1)where {x1, x2}F denotes the divided di�erene F (x2)−F (x1)

‖x2−x1‖
. This ondition is ful-�lled for ε = 0 preisely when F is linear. We say that a map F an be linearlyLipshitz C-approximated if there is a linear operator A:X → Y suh that

‖{x1, x2}F−A‖ ≤ C, x1, x2 ∈ X.This means that ‖F (x1) − F (x2) − (Ax1 − Ax2)‖ ≤ C‖x1 − x2‖. Observe that if
F (0) = 0, then ‖F (x)−Ax‖ ≤ C‖x‖ for any x. Thus, Lipshitz linear approxima-tion property implies the linear approximation in the sense of Ulam�Hyers�Rassiasstability for p = 1. Consider now the following property alled in the sequel Lips-hitz linear stability (LLS):For given Banah spaes X and Y there is a funtion C(ε), whih tends to zeroas ε → 0, suh that any map F :X → Y possessing property (1) an be linearlyLipshitz C(ε)-approximated.



13th International Conferene on Funtional Equations and Inequalities [137℄Any Lipshitz ε-perturbation of a linear operator possesses property (1). Thequestion is whether the onverse is true: if (1) holds for a map F , then F an belinearly Lipshitz C(ε)-approximated? In other words, if a map F :X → Y anbe linearly Lipshitz ε-approximated on any straight line l ⊂ X , an it be C(ε)-approximated globally on X? This problem was stated for ase of funtionals(when Y = R) by Prof. Zsolt Páles in 12th ICFEI [2, Problem 2, pp.150�151℄both for the entire spae X and for onvex domains D ⊂ X . First we answer thequestion of LLS for funtionals:Theorem 1If X is an arbitrary Banah spae and Y = R, then the LLS property holds with
C(ε) = 2ε.The proof is based on the separation priniple, and annot be extended from thease Y = R to an arbitrary Banah spae Y . This extension, nevertheless, an berealized using a totally di�erent idea, whih leads to the following result:Theorem 2The LLS property holds with C(ε) = 2ε for any Banah spaes X,Y , whenever Xis separable.It appears that the estimate C(ε) = 2ε is the best possible in both those theorems,and annot be improved already for X = R2, Y = R. Then we onsider LLS formaps F de�ned on onvex open bounded domains D ⊂ X , in whih ase C(ε)already depends on the geometry of the domain.[1℄ Th.M. Rassias, On the stability of funtional equations and a problem of Ulam, AtaAppl. Math. 62 (2000), 23�130.[2℄ Report of Meeting: 12th ICFEI, Ann. Aad. Pedagog. Cra. Stud. Math. 7 (2008),125�159.Vladimir Yu. Protasov Euler binary partition funtion and re�nement equa-tionsRe�nement equations, i.e., di�erene funtional equations with the double on-trations of the argument have been studied in the literature in great detail dueto their appliations in funtional analysis, wavelets theory, ergodi theory, prob-ability, et. Any re�nement equation is written in the form

ϕ (x) =
d−1
∑

k=0

ckϕ(2x− k), (1)where {ck} are omplex oe�ients suh that ∑d−1
k=0 ck = 2. This equation al-ways possesses a unique, up to multipliation by a onstant, ompatly supportedsolution ϕ in the spae of distributions S′.We present a rather surprising appliation of re�nement equations to a well-known problem of the ombinatorial number theory: the asymptotis of the Eulerpartition funtion. For an arbitrary integer d ≥ 2 the binary partition funtion

b(k) = b(d, k) is de�ned on the set of nonnegative integers k as the total number of



[138℄ Report of Meetingdi�erent binary expansions k =
∑∞

j=0 dj2
j , where the �digits� dj take values fromthe set {0, . . . , d− 1}. The asymptoti behavior of b(k) as k → ∞ was studied byL. Euler, K. Mahler, N.G. de Bruijn, D.E. Knuth, B. Reznik and others.It appears that the exponent of growth of the funtion b(k) an be expressedby the solution ϕ of re�nement equation (1) with equal oe�ients ck = 1

d . Usingthis argument we answer two open questions formulated by B. Reznik in 1990(see [1℄).[1℄ B. Reznik, Some binary partition funtions, Analyti number theory (Allerton Park,IL, 1989), 451�477, Progr. Math. 85, Birkhäuser Boston, Boston, MA, 1990.[2℄ V.Yu. Protasov, On the problem of the asymptotis of the partition funtion, Math.Notes 76 (2004), 144�149.Viorel Radu Ulam�Hyers stability of funtional equations in loally onvex prob-abilisti spaes: a �xed point methodIn [1℄ and [2℄ some generalized Ulam�Hyers stability results for Cauhy fun-tional equation have been proved. Our aim is to outline the results onerning thegeneralized Ulam�Hyers stability for di�erent other kinds of funtional equations.The �xed point method (f. [4℄) will be emphasized, for funtions de�nedon linear spaes and taking values in fuzzy normed spaes and loally onvexprobabilisti spaes.[1℄ D. Miheµ, V. Radu, On the stability of the additive Cauhy funtional equation inrandom normed spaes, J. Math. Anal. Appl. 343 (2008), 567�572.[2℄ L. C dariu, V. Radu, On the stability of the Cauhy funtional equation: a �xedpoints approah, Iteration theory (ECIT'02), 43�52, Grazer Math. Ber. 346, Karl�Franzens�Univ. Graz, Graz, 2004.[3℄ D.H. Hyers, G. Isa, Th.M. Rassias, Stability of funtional equations in severalvariables, Progress in Nonlinear Di�erential Equations and their Appliations 34,Birkhäuser Boston, In., Boston, MA, 1998.[4℄ V. Radu, The �xed point alternative and the stability of funtional equations, FixedPoint Theory 4 (2003), 91�96.Ewa Rak Domination and distributivity inequalities(joint work with J. Drewniak)Domination is a property of operations whih plays an important role in onsid-erations onneted with the distributivity funtional inequalities. Shweizer andSklar [4℄ introdued the notion of domination for assoiative binary operationswith ommon range and ommon neutral element. In partiular, the property ofdomination was onsidered in the families of triangular norms and onorms (seee.g. [1, 2, 3℄). In our onsiderations we shall show some of dependenies betweenthe property of domination and the subdistributivity or the superdistributivity ofoperations on the unit interval.[1℄ J. Drewniak, P. Dryga±, U. Dudziak, Domination between multiplae operations, Is-sues in Soft Computing. Deisions and Operations Researh, EXIT, Warszawa 2005,149�160.



13th International Conferene on Funtional Equations and Inequalities [139℄[2℄ S. Saminger-Platz, The dominane relation in some families of ontinuousArhimedean t-norms and opulas, Fuzzy Sets and Systems 160 (2009), 2017�2031.[3℄ P. Sarkoi, Domination in the families of Frank and Hamaher t-norms, Kybernetia(Prague) 41 (2005), 349�360.[4℄ B. Shweizer, A. Sklar, Probabilisti metri spaes, North-Holland Series in Probabil-ity and Applied Mathematis, North-Holland Publishing Co., New York, 1983.Themistoles M. Rassias Stanisªaw Marin UlamIn this speial session, I will talk brie�y on the life and works of S.M. Ulam.Maiej Sablik Bisymmetrial funtionalsLet Ωi, i = 1, 2 be ompat sets. Consider spaes B(Ωi,R) of bounded fun-tions de�ned on Ωi, and let F and G be funtionals de�ned in B(Ω1,R) and
B(Ω2,R), respetively. We haraterize F and G suh that the equation

G (Ft(x(s, t))) = F (Gs(x(s, t)))holds for every x ∈ B(Ω1 ×Ω2,R), under some additional regularity assumptions.It turns out that F andG are onjugated to an integral with respet to some Radonmeasure in Bi. The main tool in the proof is a result of Gy. Maksa from [1℄.[1℄ Gy. Maksa, Solution of generalized bisymmetry type equations without surjetivityassumptions, Aequationes Math. 57 (1999), 50�74.Ekaterina Shulman Stable quasi-mixing of the horoyle �ow(joint work with F. Nazarov)We onsider the behavior of a one-parameter subgroup of a Lie group underthe in�uene of a sequene of kiks. Our approah follows [1℄ where a speial aseof the problem was related to an asymptoti behavior of �approximate� solutionsof some funtional equations on a disrete group.Let a Lie group G at on a set X , and (ht)t∈R be a one-parameter subgroup of
G; it is a dynamial system ating on X . We perturb this system by a sequene ofkiks {φi} ⊂ G. The kiks arrive with some positive period τ . The dynamis of thekiked system is desribed by a sequene of produts Pτ (i) = φih

τφi−1h
τ . . . φ1h

τthat depend on the period τ .A dynamial property of a subgroup (ht) is alled kik stable, if for everysequene of kiks {φi}, the kiked sequene Pτ (i) inherits this property for a �large�set of periods τ . The property we will onentrate on, is quasi-mixing.A sequene {P (i)} ating on a measure spae (X,µ) by measure-preservingautomorphisms is alled quasi-mixing if there exists a subsequene {ik} → ∞suh that for any two L2-funtions F1 and F2 on X
∫

X

F1(P (ik)x)F2(x) dµ →

∫

X

F1(x) dµ

∫

X

F2(x) dµ when k → ∞.In our ase X = PSL(2,R)/Γ, where Γ ⊂ PSL(2,R) is a lattie. The group
PSL(2,R) ats on X by left multipliation. The prinipal tool used in [1℄ for the



[140℄ Report of Meetingstudy of stable mixing in this setting, is the Howe�Moore theorem whih gives thegeometri desription of quasi-mixing systems: if the sequene P (i) is unboundedthen it is quasi-mixing.It follows from the Howe-Moore theorem that the horoyle �ow
ht =

(

1 t
0 1

)is quasi-mixing on X . We prove that it is kik stably quasi-mixing. This answersthe question raised by L. Polterovih and Z. Rudnik in [1℄.Let us mention an appliation to seond order di�erene equations. A disreteShrödinger-type equation is the equation
qk+1 − (2 + tck)qk + qk−1 = 0, k ≥ 1. (1)Corollary.For every sequene {cn}, the set of the parameters t ∈ R+ for whih all solutionsof the di�erene equation (1) are bounded, has �nite measure.[1℄ L. Polterovih, Z. Rudnik, Kik stability in groups and dynamial systems, Nonlin-earity 14 (2001), 1331�1363.Justyna Sikorska A diret method for proving the Hyers�Ulam stability of somefuntional equationsWe study the stability of the equation of the form

f(x) = af(h(x)) + bf(−h(x))with some onditions imposed on onstants a, b and funtion h. The results arelater applied (by use of a diret method � the Hyers sequenes) for proving thestability of several funtional equations.Barbara Sobek Quadrati equation of Pexider type on a restrited domainLet X be a real (or omplex) loally onvex linear topologial spae. Assumethat U is a nonempty, open and onneted subset of X ×X . Let
U1 := {x : (x, y) ∈ U for some y ∈ X},

U2 := {y : (x, y) ∈ U for some x ∈ X}and
U+ := {x+ y : (x, y) ∈ U},

U− := {x− y : (x, y) ∈ U}.We onsider the funtional equation
f(x+ y) + g(x− y) = h(x) + k(y), (x, y) ∈ U,where f :U+ → Y , g:U− → Y , h:U1 → Y and k:U2 → Y are unknown funtionsand (Y,+) is a ommutative group. The general solution of the equation is given.We also present an extension result.



13th International Conferene on Funtional Equations and Inequalities [141℄Joanna Szzawi«ska Some remarks on a family of multifuntionsLet f : R → R denote the funtion given by
f(t) =

∞
∑

n=0

ant
n, t ∈ R,where an ≥ 0 for n ∈ N. If K is a losed onvex one in a real Banah spae and

H :K → cc(K) a linear and ontinuous set-valued funtion with nonempty, onvexand ompat values in K, then for all t ≥ 0 the set-valued funtion
F t(x) :=

∞
∑

n=0

ant
nHn(x), x ∈ Kis linear and ontinuous and

F t ◦ F s(x) ⊆

∞
∑

n=0

cnH
n(x), x ∈ K,where

cn =
n

∑

k=0

akan−kt
ksn−k, t, s ≥ 0.The neessary and su�ient ondition for the equality

F t ◦ F s(x) =

∞
∑

n=0

cnH
n(x), x ∈ K, t, s ≥ 0will be given.Tomasz Szostok On a funtional equation stemming from some property of tri-anglesBasing on some geometrial property disovered by G. Monge, in [1℄ authorsonsidered the following funtional equation

∣

∣

∣

∣

1

2
(y − x)f

(x+ y

2

)

−
1

2
(f(y) − f(x))

x + y

2

∣

∣

∣

∣

=

y
∫

x

f(t) dt+
1

2
xf(x) −

1

2
yf(y).They proved that the only solutions of this equation are the a�ne funtions.Roughly speaking this means that Monge theorem works only for ollinear points.In the present talk we modify this equation in suh way that it will be satis�edby some funtions di�erent from f(x) = ax + b. Then we solve the obtainedequation.[1℄ C. Alsina, M. Sablik, J. Sikorska, On a funtional equation based upon a result ofGaspard Monge, J. Geom. 85 (2006), 1�6.



[142℄ Report of MeetingJaek Tabor Approximate (ε, p)-midonvexity for p ∈ [0, 1](joint work with Józef Tabor and M. �oªdak)For p ∈ [0, 1] we put
Tp(x) :=

∞
∑

k=0

1

2k
dp(2kx), x ∈ R,where d(x) = 2dist(x,Z) and by 00 we understand 0.A funtion f : I → R, where I is a subinterval of R, is alled (ε, p)-midonvex if

J f(x, y) :=
f(x) + f(y)

2
−
f(x) + f(y)

2
≤ ε|x− y|p, x, y ∈ I.It is known that if f is a ontinuous (ε, p)-midonvex funtion, then

f(rx + (1 − r)y) − rf(x) − (1 − r)f(y) ≤ εTp(r|x − y|), x, y ∈ I, r ∈ [0, 1].The above estimation is optimal for p = 0 (theorem of C.T. Ng and K. Nikodem)and p = 1 (theorem of Z. Boros). Zs. Palés asked what happens in the ase when
p ∈ [0, 1].We show that the above problem an be redued to veri�ation of the followinghypotheses:
min{J dp(x, y)+

1

2
dp(x−y),J dp(x, y)+

1

2
J dp(2x, 2y)+

1

4
dp(2x−2y)} ≤ dp

(x− y

2

)for x, y ∈ [−1, 1]. The above inequality an be easily veri�ed for p = 0 and p = 1(giving in partiular another proof of the result of Z. Boros). Although numerialsimulations support the assertion that the above hypothesis holds for all p ∈ (0, 1),we were not able to prove it.Józef Tabor Jensen semionave funtions with power moduli(joint work with Jaek Tabor and A. Mure«ko)We study the relation between Jensen semionavity and semionavity in thease when modulus of semionavity is of the form ω(r) = Crp for p ∈ (0, 1]. As itis known ontinuous Jensen semionave funtion with modulus ω is semionavewith modulus
ω̃(r) :=

∞
∑

k=0

ω
( r

2k

)

.In ase of ω(r) = Crp for p ∈ (0, 1] we improve this result and determine thesmallest ω̃.Gheorghe Toader Invariane in some families of means(joint work with S. Toader)As it is known from the lassial example of the arithmeti-geometri meanof Gauss (see [1℄), the determination of a (M,N)−invariant mean P is a verydi�ult problem. That is why we study the (equivalent) problem of �nding a



13th International Conferene on Funtional Equations and Inequalities [143℄mean N whih is omplementary to M with respet to P. For the determinationof omplementaries, three methods have been used: the diret alulation (see [4℄),the use of the methods of funtional equations (see [2℄), and the series expansionof means (see [3℄). In the urrent paper we onsider the method of series expansionof means to study the invariane in the family of extended logarithmi means.[1℄ J.M. Borwein, P.B. Borwein, Pi and the AGM. A study in analyti number theory andomputational omplexity, Canadian Mathematial Soiety Series of Monographs andAdvaned Texts, A Wiley-Intersiene Publiation, John Wiley & Sons, In., NewYork, 1987.[2℄ Z. Darózy, Zs. Páles, Gauss-omposition of means and the solution of the Matkowski-Sut� problem, Publ. Math. Debreen 61 (2002), 157�218.[3℄ D.H. Lehmer, On the ompounding of ertain means, J. Math. Anal. Appl. 36 (1971),183�200.[4℄ Gh. Toader, S. Toader, Greek means and the arithmeti-geometri mean, RGMIAMonographs, Vitoria University, 2005 (http://rgmia.vu.edu.au/monographs).Peter Volkmann Continuity of solutions of a ertain funtional equationThe ontinuous solutions f : R → R of the funtional equation
min{f(x+ y), f(x− y)} = |f(x) − f(y)|had been given in a talk during the Conferene on Inequalities and Appliationsat Noszvaj 2007 (http://riesz.math.klte.hu/∼ia07). Here we show that the on-tinuity of a solution of this funtional equation follows from the ontinuity at onepoint.Marek C. Zdun Iteration groups and semigroups � reent resultsThis is a survey talk on seleted topis onerning iteration groups and semi-groups where some progress has been ahieved during the last years. Espeiallywe onern on the problem of embeddability of given funtions in iteration groupsand iterative roots.In the talk we disuss the following diretions in iteration theory:1. Measurable iteration semigroups.2. Embedding of di�eomorphisms in regular iteration semigroups on Rn.3. Iteration groups of �xed point free homeomorphisms on the plane.4. Embedding of interval homeomorphisms with two �xed points in regulariteration groups.5. Commuting funtions and embeddability.6. Iterative roots.7. The struture of iteration groups of homeomorphisms on an interval.8. The struture of iteration groups of homeomorphisms on the irle.



[144℄ Report of Meeting9. Approximately iterated funtions.10. Set-valued iteration semigroups.Marek �oªdak Bernstein�Doetsh type theorem for approximately onvex fun-tions(joint work with Jaek Tabor and Józef Tabor)Let X be a real topologial vetor spae, let D be a subset of X and let
α:X → [0,∞) be an even funtion loally bounded at zero.A funtion f :D → R is alled (α, t)-preonvex (where t ∈ (0, 1) is �xed), if

f(tx+ (1 − t)y) ≤ tf(x) + (1 − t)f(y) + α(x− y)for all x, y ∈ D suh that [x, y] ⊂ D.We give a version of Bernstein�Doetsh theorem and some related results forsuh funtions.Problems and Remarks1. Problem.Consider funtional equations of the form
n

∑

i=1

aif

( ni
∑
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bikxk

)

= 0,

n
∑
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ai 6= 0 (1)and
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∑
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αif

( mi
∑
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βikxk

)

= 0,

m
∑

i=1

αi 6= 0, (2)where all parameters are real and f : R → R.Assume that the two funtional equations are equivalent, i.e., they have thesame set of solutions.Can we say something about the ommon stability? More preisely, if (1)is stable, what an we say about the stability of (2). Under whih additionalonditions the stability of (1) implies that of (2)? Gian Luigi Forti2. Problem and Remark.Let X be a normed spae, D ⊆ X be an open onvex set and let f :D → R bea Lipshitz perturbation of a onvex funtion g:D → R, i.e., let f be of the form
f = g + ℓ,where g is a onvex funtion and ℓ:D → R is ε-Lipshitz, i.e.,

|ℓ(x) − ℓ(y)| ≤ ε‖x− y‖, x, y ∈ D.



13th International Conferene on Funtional Equations and Inequalities [145℄Then, for x, y ∈ D and t ∈ [0, 1], we have
f(tx+ (1 − t)y) − tf(x) − (1 − t)f(y)

=
[

g(tx+ (1 − t)y) − tg(x) − (1 − t)g(y)
]

+
[

ℓ(tx+ (1 − t)y) − tℓ(x) − (1 − t)ℓ(y)
]

≤ t
[

ℓ(tx+ (1 − t)y) − ℓ(x)
]

+ (1 − t)
[

ℓ(tx+ (1 − t)y) − ℓ(y)
]

≤ t
∣

∣ℓ(tx+ (1 − t)y) − ℓ(x)
∣

∣ + (1 − t)
∣

∣ℓ(tx+ (1 − t)y) − ℓ(y)
∣

∣

≤ tε‖(tx+ (1 − t)y) − x‖ + (1 − t)ε‖(tx+ (1 − t)y) − y‖

= 2εt(1 − t)‖x− y‖.Therefore, f satis�es the approximate onvexity inequality:
f(tx+ (1 − t)y) ≤ tf(x) + (1 − t)f(y) + 2εt(1 − t)‖x− y‖. (1)On the other hand, in the ase X = R, we have the following onverse of theabove observation (whih is a partiular ase of a result obtained in [1℄).Proposition.Let I be an open interval and ε ≥ 0. Assume that f : I → R satis�es, for all x, y ∈ Iand t ∈ [0, 1], inequality (1). Then there exists a onvex funtion g : I → R suhthat the funtion ℓ := f − g is (2ε)-Lipshitz.The following more general and open problem seems to be of interest.ProblemDoes there exist a onstant γ (that may depend on X and D) suh that, whenevera funtion f :D → X satis�es inequality (1) for all x, y ∈ D and t ∈ [0, 1], thenthere exists a onvex funtion g:D → R suh that the funtion ℓ := f − g is

γε-Lipshitz on D?A result related to this problem was stated by V. Protasov during the 13thICFEI:If a funtion f :X → R satis�es, for all x, y ∈ X and t ∈ [0, 1],
∣

∣f(tx+ (1 − t)y) − tf(x) − (1 − t)f(y)| ≤ 2εt(1 − t)‖x− y‖,then there exists a ontinuous linear funtional x∗ ∈ X∗ suh that ℓ := f − x∗ is
(4ε)-Lipshitz on X.[1℄ Zs. Páles, On approximately onvex funtions, Pro. Amer. Math. So. 131 (2003),243�252. Zsolt Páles3. Problem.Let X be a Hilbert spae, D ⊆ X an open onvex set, ε > 0 and let f :D → Rbe a ontinuous funtion suh that
f(tx+ (1 − t)y) − tf(x) − (1 − t)f(y) ≤ εt(1 − t)‖x− y‖, x, y ∈ D, t ∈ [0, 1].



[146℄ Report of MeetingDoes there exist an x0 ∈ D suh that f is di�erentiable at x0?This problem is motivated by the results of S. Rolewiz.Jaek Tabor and Józef Tabor4. Problem.In onnetion with some problem in theoretial physis, O.G. Bokov introduedin [1℄ the following funtional equation
f(x, y)f(x+ y, z) + f(y, z)f(y + z, x) + f(z, x)f(z + x, y) = 0. (1)In [2℄ A.V. Yagzhev determined all analyti solutions f : Cn × C

n → C of (1).However, his proof is not lear and presents several gaps. So, we may wonderabout the validity of the result. Therefore, the problem is to �nd all analytisolutions f : C × C → C of (1) with a nie mahematial proof. Also, we may askabout the solutions of (1) in a more general setting.[1℄ O.G. Bokov, A model of Lie �elds and multiple-time retarded Green's funtions of aneletromagneti �eld in dieletri media, Nauhn. Tr. Novosib. Gos. Pedagog. Inst.86 (1973), 3�9.[2℄ A.V. Yagzhev, A funtional equation from theoretial physis, Funt. Anal. Appl. 16(1982), 38�44. Niole Brillouët-Belluot5. Remark.During the last �fteen years a great number of papers onerning stabilityof funtional equations have been published. Unfortunately in many of thesepapers motivations for studying a given equation or/and possible appliationsof the stability results are missing. In my opinion this will eventually produea disredit of the topi and, onsequently, a disredit of the �eld of funtionalequations: a thing that we, funtional equationists, ertainly do not want. Theseonsiderations are mainly direted to younger olleagues, in order to invite themto investigate genuine, not rather arti�ial, mathematial problems.Gian Luigi Forti6. Remark.Let (X, ‖ · ‖) be a normed spae, D ⊂ X be a onvex set and c > 0 be a �xedonstant. A funtion f :D → R is alled strongly onvex with modulus c if
f
(

tx+ (1 − t)y
)

≤ tf(x) + (1 − t)f(y) − ct(1 − t)‖x− y‖2 (1)for all x, y ∈ D and t ∈ [0, 1]. Under the assumption (A) that (X, ‖ · ‖) is an innerprodut spae, the following equivalene (B) holds:
f :D → R is strongly onvex with modulus c if and only if g = f − c‖ · ‖2 isonvex.The following example gives an answer to the question posed by Zsolt Pálesafter my talk at this onferene and shows that assumption (A) is essential for(B).



13th International Conferene on Funtional Equations and Inequalities [147℄Example.Let X = R2 and ‖x‖ = |x1| + |x2| for x = (x1, x2). Take f = ‖ · ‖2. Then
g = f − ‖ · ‖2 = 0 is onvex. However, f is not strongly onvex with modulus 1.Indeed, for x = (1, 0) and y = (0, 1) we have

f
(x+ y

2

)

= 1 > 0 =
f(x) + f(y)

2
−

1

4
‖x− y‖2,whih ontradits (1).One an also prove that if (B) holds for every f :X → R, then (X, ‖ · ‖) mustbe an inner produt spae. Thus ondition (B) gives another haraterization ofthe inner produt spaes among normed spaes. Kazimierz Nikodem7. Remark.The Institute of Mathematis of the Pedagogial University of Craow aeptedin 1983 for realization Dobiesªaw Brydak's proposal of ontinuing in Poland theseries of �ve international onferenes on funtional equations, whih had beenorganized by our Hungarian olleagues at Miskol and Debreen from 1966 to1979 (see [1℄).The First International Conferene on Funtional Equations and Inequalitieswas held at Sielpia in Kiele region of Poland from May 27 to June 2, 1984. Infat, it was a seond onferene on funtional equations held in Poland, ever afterthat organized by Professors Stanisªaw Goª¡b and Marek Kuzma at Zakopanein Otober 9-13, 1967 (see [2℄). The organizers of the 1st ICFEI were DobiesªawBrydak, Bogdan Chozewski and Józef Tabor. The meeting was opened (andthen attended) by Professor Zenon Moszner, Retor Magni�us of the PedagogialUniversity of Craow (see [3℄).The general statistial data, onerning 1st, 13th and all ICFEIs (in brakets:the numbers of di�erent persons partiipating) are presented in Table 1, whereasin Tables 2 and 3 the distribution of partiipants into ountries and ities (ofa�liation) is exhibited. Table 4 shows the number of all ICFEIs the partiipant ofthe 13th one attended, with "⋆" meaning her or his presene at the 1st ICFEI. (Allthe data have been olleted by Miss Janina Wierioh, a member of organizingsta�s from 1991 (3rd ICFEI) on.)ICFEI All partiipants Foreign partiipants Countries Talks Sessions1st 59 9 8 41 813th 76 31 10 73 26All 13 857 (269) 206 (111) 32 694 239Table 1. General data



[148℄ Report of MeetingCountry 1st ICFEI 13th ICFEI CitiesAustralia 2 - La Trobe, MelbourneAustria 1 1 Graz ‖ InnsbrukCzehoslovakia 1 - BrnoFrane - 1 NantesGermany - 2 Clausthal-Zellerfeld, LobauGreee - 1 AthensHungary 2 14 Miskol ‖ Debreen 13, Miskol 1Israel - 1 HaifaItaly 1 1 Milan ‖ MilanRomania - 5 Cluj-Napoa 3, Timi³oara 2Russia - 5 Mosow 1, Nizhny Novgorod 3,Vologda 1Switzerland 1 - BernWest Germany 1 - Karlsruhe
∑ 9 31Table 2. Partiipants from abroadCity 1st ICFEI 13th ICFEIBiaªystok 1 -Bielsko-Biaªa 3 3Cz�stohowa 1 -Gda«sk 1 1Gliwie - 2Katowie 11 12Kiele 4 1Kraków 22 16Rzeszów 6 8Zielona Góra - 2

∑ 50 45Table 3. Polish partiipantsAording to Table 4 in the 13th ICFEI took part 13 olleagues who alsoattended our �rst meeting held 25 years ago. Among them were: Karol Baron,Roman Ger, Maiej Sablik (all from Katowie) who partiipated in all ICFEIs,and from abroad: Gian Luigi Forti (Milan) and Peter Volkmann (Karlsruhe) whotook part in 5, respetively 10, onferenes. Moreover, what may be surprising, atthe 13th ICFEI were present less Polish mathematiians than in the 1st one. Onean also observe that 9 olleagues (7 from abroad) ame to our onferene for the�rst time (at least four of them seemed to be younger than the ICFEI).The most numerous group of our guests from abroad usually was that of Hun-garians (altogether 85 presenes, 14 partiipants of the 13th ICFEI). The author



13th International Conferene on Funtional Equations and Inequalities [149℄then proposed to transform the popular saying on Hungarian-Polish fraternity asfollows:Magyar-Lengyel jó barát - igen függvényegyenletek, igen függvényegyenlötlen-ségek (Hungarian and Pole are good nephews - both in funtional equations andinequalities). R. Badora 9 J. Mako 1A. Bahyryz 5 G. Maksa 6Sz. Baják 1 F. Mészáros 3K. Baron 13 ⋆ B. Miherda 1L. Bartªomiejzyk 8 V. Mityushev 3S. Belmesova 1 L. Molnár 3M. Bessenyei 2 J. Morawie 10Z. Boros 6 J. Mrowie 5N. Brillouët-Belluot 7 A. Mure«ko 5J. Brzd�k 9 A. Najdeki 5P. Burai 2 K. Nikodem 10 ⋆L. C dariu 2 A. Nuyatov 1J. Chmieli«ski 11 A. Olbry± 3B. Chozewski 12 ⋆ J. Olko 6J. Chudziak 7 B. Paneah 4K. Ciepli«ski 6 Z. Páles 9M. Czerni 11 ⋆ M. Piszzek 4S. Czerwik 9 V.D. Popa 2Z. Darózy 8 V.Yu. Protasov 2J. Dasal 2 B. Przebieraz 3J. Domsta 8 V. Radu 2A. Filhenkov 1 E. Rak 2G.-L. Forti 5 ⋆ Th.M. Rassias 3W. Förg-Rob 10 M. Sablik 13 ⋆R. Ger 13 ⋆ E. Shulman 3A. Gilányi 6 J. Sikorska 8D. Gªazowska 4 A. Smajdor 10 ⋆E. Gselmann 1 B. Sobek 2G. Guzik 6 P. Solarz 6A. Házy 3 J. Szzawi«ska 10E. Jabªo«ska 3 T. Szostok 6H.-H. Kairies 11 Jaek Tabor 7B. Kol�ga-Kulpa 4 Józef Tabor 12 ⋆Z. Kominek 12 ⋆ G. Toader 4D. Krassowska 5 S. Toader 1Z. Le±niak 9 P. Volkmann 10 ⋆A. Mah 8 ⋆ M.C. Zdun 10 ⋆E. Mainka 1 M. �oªdak 4Table 4. Numbers of all ICFEIs attended by partiipants



[150℄ Report of Meeting[1℄ B. Chozewski, International meetings organized by Polish shools on funtional equa-tions, Ann. Aad. Pedagog. Cra. Stud. Math. 5 (2006), 13�32.[2℄ Mi�dzynarodowa Konferenja z Równa« Funkyjnyh, International Conferene onFuntional Equations, Zakopane, 9.X.-13.X.1967, Zeszyty Nauk Uniw. Jagiello. PraeMat. 14 (1970).[3℄ Proeedings of the International Conferene on Funtional Equations and Inequalities,May 27 - June 2, 1984, Sielpia (Poland), Roznik Nauk.-Dydakt. Prae Mat. 11(1985), 185�265. Bogdan ChozewskiList of PartiipantsBADORA Roman, Instytut Matematyki, Uniwersytet �l¡ski, ul. Bankowa 14,40-007 KATOWICE, Poland, e-mail: robadora�ux2.math.us.edu.plBAHYRYCZ Anna, Instytut Matematyki, Uniwersytet Pedagogizny, ul. Podhor¡»yh 2,30-084 KRAKÓW, Poland, e-mail: bah�up.krakow.plBAJÁK Szabols, Institute of Mathematis, University of Debreen, P.O. Box 12,H-4010 DEBRECEN, Hungary, e-mail: bajaksz�math.klte.huBARON Karol, Instytut Matematyki, Uniwersytet �l¡ski, ul. Bankowa 14,40-007 KATOWICE, Poland, e-mail: baron�us.edu.plBART�OMIEJCZYK Leh, Instytut Matematyki, Uniwersytet �l¡ski, ul. Bankowa 14,40-007 KATOWICE, Poland, e-mail: leh�math.us.edu.plBELMESOVA Svetlana, Faulty of Mehanis and Mathematis, Nizhny Novgorod StateUniversity, Gagarin ave. 23a, building 6, o�e 501, 603950 NIZHNY NOVGOROD, Russia,e-mail: belmesovass�mail.ruBESSENYEI Mihály, Institute of Mathematis, University of Debreen, P.O. Box 12,H-4010 DEBRECEN, Hungary, e-mail: besse�math.klte.huBOROS Zoltán, Institute of Mathematis, University of Debreen, P.O. Box 12,H-4010 DEBRECEN, Hungary, e-mail: boros�math.klte.huBRILLOUËT-BELLUOT Niole, Département d'Informatique et de Mathématiques,Eole Centrale de Nantes, 1, rue de la Noë, B.P. 92101, F-44321 NANTES-Cedex 3, Frane,e-mail: Niole.Belluot�e-nantes.frBRZD�K Janusz, Instytut Matematyki, Uniwersytet Pedagogizny, ul. Podhor¡»yh 2,30-084 KRAKÓW, Poland, e-mail: jbrzdek�up.krakow.plBURAI Pál, Faulty of Informatis, University of Debreen, P.O. Box 12,H-4010 DEBRECEN, Hungary, e-mail: buraip�inf.unideb.huC�DARIU Liviu, Department of Mathematis, �Politehnia" University of Timi³oara,Vitoriei 2, 300006 TIMI�OARA, Romania, e-mail: liviu.adariu�mat.upt.ro,ladariu�yahoo.omCHMIELI�SKI Jaek, Instytut Matematyki, Uniwersytet Pedagogizny,ul. Podhor¡»yh 2, 30-084 KRAKÓW, Poland, e-mail: jaek�up.krakow.plCHOCZEWSKI Bogdan, Wydziaª Matematyki Stosowanej, Akademia Górnizo-Hutniza,al. Mikiewiza 30, 30-059 KRAKÓW, Poland, e-mail: smhoze�yf-kr.edu.pl,smhoze�yfronet.plCHUDZIAK Jaek, Instytut Matematyki, Uniwersytet Rzeszowski, ul. Rejtana 16 A,35-959 RZESZÓW, Poland, e-mail: hudziak�univ.rzeszow.plCIEPLI�SKI Krzysztof, Instytut Matematyki, Uniwersytet Pedagogizny,ul. Podhor¡»yh 2, 30-084 KRAKÓW, Poland, e-mail: k�up.krakow.pl
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