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Perturbation of Toeplitz operators and reflexivity

Abstract. It was shown that the space of Toeplitz operators perturbated by
finite rank operators is 2-hyperreflexive.

1. Introduction

In [6] it was shown that the rank one perturbation preserves 2-hyperreflexivity
of Toeplitz operators. In this paper we will generalise this result for a finite rank
perturbation.

Let us start with basic notations and definitions. For a Hilbert space H we
will write B(#) for the algebra of all bounded linear operators on .

By 7c¢ denote the space of trace class operators (which is predual to B(H)
with the dual action (S,t) = tr(St) for S € B(H) and ¢ € 7¢) equipped with the
trace norm || - ||;. Let Fy, = {t € T¢: rank(t) < k}. Each rank one operator can
be written as z ® y, for z,y € H, and (z ® y)z = (z,y)x for z € H. Moreover,
tr(S(a © 1)) = (Sz, ).

Let us now recall the definition of reflexivity. The reflexive closure of a sub-
space M C B(H) is given by the formula

ref M ={Ae€B(H): Ah € [Mh] for all h € H},

here [-] denotes the norm-closure. If M = ref M then M is said to be reflexive. It
is known (see [I0]) that if subspace M is a weak* closed, then M is reflexive if and
only if operators of rank one are linearly dense in M (i.e., M, = [M N Fy)),
where M | is the preannihilator of M.

A subspace M C B(H) is called k-reflexive if M) = {T®) . T ¢ M} is
reflexive in B(H®), where T®) =T @ ... @ T and H® =H & .- @ H. Similarly
as before, in case of weak* closed subspaces we have an equivalent condition to k-
reflexivity proved by Kraus and Larson [9, Theorem 2.1]. Namely, a weak* closed
subspace M C B(H) is k-reflexive if and only if M| = [M N F).
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For a closed subspace M C B(H) denote by d(A, M) the usual distance from
an operator A to a subspace M, i.e., d(A, M) =inf{||[A—-T| : T € M}. When
M is weak* closed then d(A, M) = sup{|tr(A¢)|: t € My, ||t]1 <1}.

Hyperreflexivity was introduced by Arveson in [2] for operator algebras. In
[8] his definition was generalized to the operator subspaces. Namely, a subspace
M C B(H) is said to be hyperreflexive if there is a constant ¢ such that

d(A, M) < ¢ sup{||QTAP| : P,Q are projections such that Q* MP = 0}

for all A € B(H). In [9] it was shown that the supremum on the right hand side
is equal to sup{[(A,z @ y)|: 2@y e M, |[rxoy| <1}.

Let us recall the definition of k-hyperreflexivity from [7]. For a subspace
M C B(H) and an operator A € B(H) denote by

ap(A, M) = sup{|tr(At)| : t € ML N Fy, ||t < 1}.
A subspace M is k-hyperrefierive if there is a constant ¢ > 0 such that
d(Aa M) < CO(k(A, M) (1)

for any A € B(#H). The constant of k-hyperreflexivity is the infimum of all con-
stants ¢ such that holds and is denoted by kg (M).

2. Finite rank perturbation of Toeplitz operators

Denote by H? the classical Hardy space on the unit circle T and let Py2: L? —
H? be the orthogonal projection. The Toeplitz operator with the symbol ¢ € L>
is defined as follows T,,: H? — H? and T,,f = Py=(pf) for f € H?. Let T denote
the space of all Toeplitz operators.

It is well known that 7 = {T, : ¢ € L>®} = {A: TrAT, = A} (see [5}
Corollary 1 to Problem 194]). Therefore T is closed in weak* topology.

Let {e;}jen be the usual basis in H2. Let .J be a finite subset of Nx N. Denote
by S; = span{e; ® e; : (i,j) € J} and consider the subspace

S=T+S;=span{T,+g: g€ L™, ge Ss}.

Notice that S is weak* closed. It was shown in [3, Theorem 3.1] that 7 is not
reflexive but it is 2-reflexive. In [6] similar result was obtained for Toeplitz oper-
ators perturbated by rank one operator. In this paper we will prove the same for
the subspace S.

ProrosIiTION 1
The subspace S =T + Sy is not reflexive but it is 2-reflexive.

Proof. 1t is easy to see that (S), = 71 N(Sy)L. Because there is no rank one
operator in 7, hence S cannot be reflexive.
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On the other hand, 7, = span{e; ® e; — Se; ® Se; : 4,57 =1,2,...}, where S
denotes the unilateral shift. Hence

(S)L =span{e; ®e; —Se; ® Sej @ 1,5 =1,2,...,
(t,§) # Jand (i + 1,5 +1) # J}.

That implies 2-reflexivity of S.

In [4] Davidson proved hyperreflexivity of the algebra of all analytic Toeplitz
operators. Since the space T is not reflexive it cannot be hyperreflexive, but we
know due to [7, [11] that T is 2-hyperreflexive with x2(7) < 2. Now we will prove
that the finite rank perturbation preserves 2-hyperreflexivity of 7. The projection
7: B(H?) — T given by Arveson in [I] will be a useful tool in the proof.

PROPOSITION 2
The subspace S =T + Sy is 2-hyperreflexive with constant k2(S) < 2.

Proof. Let w: B(H?) — T be the projection defined in [I, Proposition 5.2].
This projection has the property that for any B € B(H?) the operator w(B)
belongs to the weak* closed convex hull of {T7. BT,~» : n € N}.

Let A € B(H?)\ S and A = (a;j)i jen. Since J is a finite set, there is 7 € N
such that for every (i,j) € J we have (i+r,j+r) ¢ J. For each (i,5) € J we define
Aij = Qij — ity j+r and put A= A—Z(i’j)e, Aije; ®e;. Notice that m(A) = n(A).

Observe that for any A € C,

d(A,8) < HA —n ) - Y Me ejH = |A - n(A)].
(i,5)eJd

In [7] it was shown that the space of Toeplitz operators T is 2-hyperreflexive
with constant at most 2. Using similar calculations as in [7] we obtain that

d(A,T) < | A= n(A)] < 202(A, T).

Now we will show that

o) (/L T) = Q3 (Aa S) (2)
Firstly, note that ax(A4,7) > aa(4,S) and
(A, T) =sup{|tr(At)|: 2t =e;®Rej —eipr Dejun, k>1,4,5=0,1,2,...}.
If the supremum above is realized by 2t = e; ® e; — ej11 ® ej4 for (¢,7) ¢ J and
(i+k,j+Fk) ¢ J, then we have the equality (2).

Now consider the case, when 2t = e; ® e — e;4; ® €4 and (i,7) € J and
(t+k,j+k)¢J. Then

~ 1 1
|tr(At)| = §|aij —Aijei @ €5 — Qiyk,jrk| = §\ai+m+r — Qiyk k| < 2(4,S)

(since €j4r @ €j1r — €ivk R €j4k € S1).
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Similarly, if 2t = e; ® e; — €j4x ® €j1 and (i,5) ¢ J and (1 + k,j + k) € J,

then

e 1
[ tr(A)] = Slaig — Qirkergrrsr] < a2(4,5).

Finally, if 2t = e¢; ® ¢; — €;41 ® €4 and (i,5) € J and (i + k, j + k) € J, then

~ 1
[tr(At)| = §|az‘+k+r,j+k+r| < az(4,9).

We obtained that ay(A,7) = as(A,S) and the proof is completed.
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