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symmetric surface

Abstract. For every two-dimensional manifold M with locally symmetric
linear connection V, endowed also with V-parallel volume element, we con-
struct a flat connection on some principal fibre bundle P(M, G). Associated
with — satisfying some particular conditions — local basis of T'M local con-
nection form of such a connection is an R(G)-valued 1-form  build from the
dual basis w!, w? and from the local connection form w of V. The structural
equations of (M, V) are equivalent to the condition dQ2 — QA Q = 0.

This work was intended as an attempt to describe in a unified way the
construction of similar 1-forms known for constant Gauss curvature surfaces,
in particular of that given by R. Sasaki for pseudospherical surfaces.

1. Introduction

In the paper [7] R. Sasaki considered the soliton equations which can be solved
by the 2 x 2 inverse scattering method — for example the sine-Gordon equation
Uz = sinu, the Korteweg de Vries equation us + 6uuy, + Uz = 0 or the modified
Korteweg de Vries equation u; + 6uty + Upes = 0. To the known remarkable
properties of those equations - such as possessing infinite number of conservation
laws and possessing the Bécklund transformation - he added the property that
they describe pseudospherical surfaces.

One of the facts on which the inverse scattering method is based is that each
of those nonlinear equations may be written as the integrability condition of some

linear system dv = Qu, v = (Z;) Sasaki has explained how to build an sl(2,R)-

valued 1-form € satisfying the condition dQ — Q A Q = 0, using the 1-forms w?,

w?, which are the basis dual to the g-orthonormal local basis of TM, and the local

connection form w: Lo ) )
Q- ( —5w 5(w+w ))
= l( 1 9 .
2

—w +wh) Fw
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Q1 Q1o
Q21 =011
dQY—QAQ =0 and (252 + Q21) A Q1 # 0, then the metric g = w! @ w! +w? @w?
with w! = Q12 + Qo1, w? = —2Q4; has constant negative Gaussian curvature,
whereas w := {219 — Qo7 is the local connection form of the Levi-Civita connection
of g.

Sasaki also mentioned that in the case of surfaces of constant positive curvature
it is also possible to construct from 1-forms w!, w? and w a 1-form €2 in such a way
that the structural equations of the surface are written as dQ—QAQ =0, tr Q = 0.
The corresponding Lie algebraic structure is that of SO(3), being the isometry
group of the sphere S2.

A g-valued 1-form ) can be interpreted itself as a local connection form of some
connection on a principal G-bundle, where G is a Lie group with Lie algebra g.
The condition dQ2 — Q2 A Q = 0 means that the curvature form of this connection
vanishes. Therefore such a 1-form 2 is called a zero-curvature representation of
the given differential equation.

In order that dQ2—QAQ = 0 is a differential equation, the entries of {2 or equiv-
alently the forms w!, w? and w must depend on some function and its derivatives.
Such dependence arises in a natural way when we consider for example surfaces
immersed in R? and the induced connection. Furthermore, if the differential equa-
tion describes a surface M immersed in R3, then it is possible to associate with
the immersion some mapping from M into GL(3,R) and then the pull-back of the
Maurer-Cartan form is also a zero-curvature representation of this equation. In
this case the flat connection concerned is the standard connection in R3.

Not every equation which possesses a zero-curvature representation is a soli-
ton equation. An important thing in soliton theory is the dependence of (2
on some spectral parameter A, so in fact we have a family of flat connection
forms ). Moreover, parameters introduced through the gauge transformation
Q) = SQS~! +dSS~! play no role in soliton theory [3]. The issue of the spectral
parameter will not be considered in the present paper.

Apart from constant Gauss curvature surfaces there are other kinds of sub-
manifolds described by soliton equations, there exist also higher dimension gener-
alisations (see [8] and the references given there). Affine spheres with indefinite
Blaschke metric are examples of soliton surfaces in affine geometry [9].

It is possible that one differential equation has zero-curvature representa-
tions within different, non-isomorphic Lie algebras. For example, for describing
pseudospherical surfaces sin-Gordon equation u,, = sinu we have the following
parametrized by A sl(2, R)-valued Sasaki form [7]

A —%uw 1 [cosu sinu
= <§uw - > do + 4\ (sinu —cosu) @,

Conversely, if an sl(2, R)-valued 1-form Q = ( ) satisfies the conditions

whereas from the Maurer-Cartan form on SO(3,R) one can obtain one-parameter
family of so(3)-valued 1-forms (cf [§])
0 u; 0 1 0 0 —sinu
D=1 —-u 0 2\ |dz+ — 0 0 —cosu |dy.

2A .
0 —-2X2 0 sinu cosu 0
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The aim of this paper is to construct similar 1-form 2 satisfying the condition
dQ2—QAQ = 0 for surfaces with non-metrizable locally symmetric connection. We
use an elementary method, which is applicable to all locally symmetric surfaces.
We show that the Sasaki 1-form may be also obtained in this way.

In section 2 we recall some results concerning locally symmetric connections on
surfaces. In section 3 we choose some special local bases of TM which will be used
in the construction of €2, for example the orthogonal bases in the metrizable case.
Those bases are local sections of a subbundle Q(M, H) of LM (M,GL(2,R)), where
H is one-dimensional Lie subgroup of GL(2,R). The considered locally symmetric
connection is reducible to @

In section 4 for any given homomorphism ¢: H — G of Lie groups we con-
struct some principal fibre bundle P(M, G) and a homomorphism of fibre bundles
Q(M,H) — P(M,G). To every local section o of Q we want to assign an R(G)-
valued 1-form Q,. We explain how Q, should vary with o, if the family {Q,}
has to define a connection on P. In section 5 we add to this the condition —
which is satisfied in particular by the 1-form of Sasaki — that the entries of 2,
are linear combinations with constant coefficients of the 1-forms w!, w? and w
corresponding to the section . Those two conditions together with the condition
of flatness allow us in each case to find all classes of possible 1-forms 2, with
respect to the equivalence relation Q, ~ S~1€,S, where S € GL(N,R). In the
case of surfaces of constant negative curvature we also use the homomorphism
t: SO(2) 3 a —~ /a € SL(2,R)/{I,—1I} in order to look directly for an sl1(2,R)
valued Q.

2. Locally symmetric connections on two-dimensional manifolds

Let M be a connected, two-dimensional real manifold and let V be a torsion-
free, non-flat, locally symmetric linear connection on M. From the equality
dimim R, + dimker Ric, = 2 [5], where R is the curvature tensor of V, Ric its
Ricci tensor, im R, = span{R(X,Y)Z : X,Y,Z € T,M} and kerRic, = {X €
T,M : VY € T, M, Ric(X,Y) = 0}, it follows that either dimim R = 1 or Ric is
non-degenerate. The number dimim R is called the rank of the connection V.

In the case of dimim R = 1 we shall use

ProprosITION 2.1 ([5])
Let V be a locally symmetric connection of rank 1 on a 2-dimensional manifold M.
For every p € M there is a coordinate system (u,v) around p such that

Vo,0u =Vp,0, =0 and Vo, 00 = €uly, (1)
where € = sign Ric.

The Ricci tensor of such connection V is symmetric [5].
In the case of dimim R = 2 we use

PRroOPOSITION 2.2 ([6])
If M is a 2-dimensional manifold with a locally symmetric connection V of rank 2,
then the Ricci tensor of V is symmetric.



[22] Maria Robaszewska

In this case V is the Levi-Civita connection of Ric [6]. If Ric is definite,
then Ric or — Ric is a metric, if Ric is indefinite, then it is a pseudometric. The
curvature k of this metric or pseudometric is constant.

It follows that we only have to consider the following cases:

I": dimimR=1and e =1,

I7: dimimR=1and e = —1,

IId*: V is metrizable of constant positive curvature,
I1Id™: V is metrizable of constant negative curvature,
I1Ii: V is pseudometrizable of constant curvature.

If V is metrizable and M is orientable, then there exists globally defined
V-parallel volume element vol. If M is not orientable, then we can define vol
on some open subset V of M. The last is true also in cases I and I~, because
an affine connection V with zero torsion has a symmetric Ricci tensor if and only
if there is a parallel volume element around each point [4]. In the canonical coor-
dinates (u,v) from Proposition vol = cdu A dv with any ¢ € R\ {0}.

From now on we assume that M is connected and that there exists on M
a V-parallel volume element vol.

3. Reduction of LM to one-dimensional subgroup H of GL(2,R)

In this section we will consider a reduction of LM (M, GL(2,R)) to some one-
dimensional subgroup H of GL(2,R).

Cases IT and I—.
Let

Q := {(v1,v2) € LM : v € kerRic, vol(vy,v5) = 1 and Ric(vg,vs) = ¢}

{3 e (3 4) e

The subset Q of LM (M, GL(2,R)) satisfies the assumptions of the following

lemma.

and let

Lemma 3.1 ([2])
Let Q be a subset of P(M,G) and H a Lie subgroup of G. Assume:

(1) the projection w: P — M maps Q onto M;

(2) Q is stable by H;

(3) ifp,q € Q and w(p) = 7(q), then there is an element a € H such that ¢ = pa;
(4)

4) every point of M has a neighbourhood U and a cross section o: U — P such

that o(U) C Q.
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Then Q(M, H) is a reduced subbundle of P(M,G).

Indeed, if (u,v) are canonical coordinates on U, then vol = cdu A dv for some
¢ € R\ {0} and the cross section o := (18,,0,) satisfies (4). The condition (1)
follows from (4).
Assume that 7((v1,v2)) = 7((w1,w2)). Then (wy,ws) = (v1,v2) - @ with some
11
a= (Z; Zf) € GL(2,R). To check the condition (3) we have to show that if
1 0%
(v1,v2) € Q and (w1, ws) € Q, then a € H. We have

1 2 1 2
w1 = a1 + a“ v, Wy = A5V + a"5v2.

Since v1,w; € ker Ric and dim ker Ric = 1, we have a? = 0. From vol(vy,vs) =
vol(wy,ws) it follows that det(a’;) = 1. Consequently a';a® = 1. Comparing
Ric(vq,v2) and Ric(wg, ws) we obtain (a2)? = 1.

It is easily seen that if (vq,vq) € @ and a € H, then (vy,v2) -a € @, hence C~2
satisfies (2).

Cases I1d* and I1d~.
We take as ) the bundle of orthonormal frames satisfying the condition
vol(vy,v2) > 0. The structure group is H = SO(2,R).

Case I1i.
Let ¢g be a pseudometric such that V is the Levi-Civita connection of g. Let

Q = {(v1,v2) € LM : g(v1,v1) = —g(va,v9) = 1, g(v1,v2) = 0, vol(v1,vq) > 0}.

The structure group of the reduced bundle @ is

10 10
SO(l,l):{AeGL(Q,R): AT (o _1>A: (0 _1) and detAzl}.

In the following we will use a principal fibre bundle Q(M, H) with H acting on

Q on the left. As a set ) is equal to @, and the left action of H is L,((v1,v2)) :=
(vi,v2) -a~t fora € H.

4. Extension P(M,G) of Q(M, H) and a connection on P

Unless otherwise stated we will consider principal fibre bundles with the struc-
tural groups acting on the left. By R(G) we denote the Lie algebra of right-
invariant vector fields on the Lie group G and ¥ stands for the R(G)-valued
Maurer-Cartan form on G.

ProrosIiTION 4.1
Let v: H — G be a continuous homomorphism of Lie groups H and G. Let
Q(M,H) be a principal fibre bundle. Then there exist a principal fibre bundle
P(M,G) and a mapping f: Q — P such that (f,idr,t) is a homomorphism of
principal fibre bundles.

If v is an imbedding, then the same holds for f.
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Proof. The proposition is a slight modification of Theorem 26.12, page 224
in [I]. We only replace the inclusion H C G by a homomorphism ¢: H — G and
the right action of G by the left action. The main idea of the proof is similar.
Some parts of it we describe here with more details. B

We define the left action L of H and the left action L of G on G x Q:

La(b,q) := (bu(a™1), aq), Zc(b, q) = (cb,q) fora € H, b,ce (.
Then we define an equivalence relation on G x Q:

(b1,q1) ~ (b2,q2) <= Ja€ H: (b, q2) = La(b1,q1).
Let P = (G x Q)/ ~.

1. P with the quotient topology is a Hausdorff space.
The canonical projection p: G x Q 3 (b,q) — [(b,q)] € P is an open mapping,
because
p ) = | La(U)

a€cH

is open for an open subset U C G x Q. Let
Ro={(b,q,e,1) EGXxQxGxQ: (bq)~(c,7)}.

It suffices to check that Ry is closed. Let (b,q,c,7) € (G X Q x G x Q) \ Ro. Let
m: Q — M denote the projection in Q(M, H).

If w(q) # m(r), then there exist disjoint neighbourhoods U; and Us of 7(g) and
7(r), respectively. Then G x 7=1(U;) x G x 7=1(Us) is an open neighbourhood of
(b,q,c,r) in G x Q x G x Q and

(G x 7Y U) x Gx 77 (Uy)) N Ry =0,

because if (b1,q1,c1,71) € Ro, then (ci,71) = (b1e(a™'),aq) for some a € H,
hence 7(r1) = 7(q1).

Assume now that 7(q) = 7(r), so r = ag with some a € H. From (b,q, ¢, aq) ¢
Ry it follows that b='ci(a) # eg. Let Uy C G be an open neighbourhood of
b~Lci(a) such that eq ¢ Us.

The continuity of the mapping G x G x H 3 (£,71,¢) — £ 1nu(¢) € G implies
that there exist open neighbourhoods Us,Us C G, Uy C H of b, ¢, a, respectively,
such that (&,7,¢) € Uy x Uz x Uy implies £~ 'nu(¢) € Uy. Next we use the continuity
of Hx H > (a,8) = aaf~! € H and find the neighbourhoods Us, Us of e such
that aaB~1 € Uy if (o, B) € Us x Us.

Let o = (,7): m=Y(U) — H x U with U > 7(q) be a local trivialisation of
Q(M, H). Then Us := ¢ 1((Usa(q)) x U) C Q is an open neighbourhood of ag,
and Us := o1 ((Us)(q)) x U) C Q is an open neighbourhood of g.

We check that (Us x Ug x Us x Us) N Ry = 0.

Let (b/,¢',c,r") € Uy x Us x Us x Us. If 7(q') # w(r'), then (V',q',c,7") ¢ Ry.
If n(¢") = w(r'), then v’ = a’q’ with some o’ € H.
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From ¢ € Us = ¢ Y((Us)(q)) x U) it follows that ¢(q') € Ust(q), hence
¥(q') = Bi(q) with some 3 € Ug. Similarly, from 1’ € Us = ¢~ ((Usatp(q)) x U) it
follows that 1 (r') = aa(q) with some o € Us. But v’ = da'¢/, so ¥(r') = a'¢¥(¢'),
hence a’B1(q) = aarp(q) and consequently a’ = aa8~!, which implies a’ € Uy and
v ~'¢u(a’') € Uy. Therefore ' '¢u(a’) # e and (V, ¢, ¢, ') = (b, ¢, ¢, d'q) ¢
Ry.

2. G acts freely on P on the left.
From

(Lco La)(b,q) = Le(bu(a™?), aq) = (cbu(a™?), aq) = La(cb, q) = (Lq 0 Lc) (b, q)

it follows that p(b1,q1) = p(ba,g2) implies p(L.(b1,q1)) = p(Lc(b2,g2)), and the
left action of G on P _

c[(b:9)] == [Le(b, q)] = [(cb, q)]
is well defined. If ¢[(b,q)] = [(b,q)], then for some a € H we have (cb,q) =
(be(a™1),aq). From aq = q it follows that a = ey, because H acts freely on Q.
Now from ¢b = b we conclude that ¢ = eg.

3. The projection w: P — M.
The projection 7: P — M, 7([(b,q)]) := m(q), is defined in such a way that
the diagram
GxQ 2 Q
rd A
(GxQ))~=P " M
is commutative. The mapping 7 is continuous, because so is w o ps.

Let 7([(b1,q1)]) = 7([(b2,¢2)]). Then 7(q1) = 7(g2) which means ¢ = aq
with some a € H. It follows that

[(b2, 42)] = [(b2, aq1)] = [(bat(a)e(a™ ), aqr)] = [(bat(a), q1)] = bae(a)by (b1, q1)]-
Conversely, for any ¢ € G, 7(c[(b, q)]) = 7([(cb, q)]) = 7(q) = 7([(b, q)])-

4. Local trivialisations.

Let ¢: 71 (U) — H x U, ¢ = (¢, ), be a local trivialisation of Q(M, H). We
define a homeomorphism @: 7= 1(U) — G x U. Let ¢([(b,q)]) := (be(¥(q)), m(q))-
The mapping ¢ is well defined, because if (b2, q2) = (bit(a™1),aq;) with some
a € H, then

(b2e(10(g2)), w(q2)) = (bre(a™)u(t(aqr)), m(aq1))
= (br(a™u(ap(aqr)), w(q1)) = (bre(a™ arp(ar)), m(qn))
= (b1e(y(q1)), 7(q1))-

The continuity of ¢ follows from that of @ o p.
To define the inverse mapping of @, we use the local section o: U — Q,
o(z) = ¢ Yem,x). Let ®(b,z) :=[(b,o(x))] for b € G, x € U. Then

(P o ®@)(b,x) = &([(b,0())]) = (be(¥(0(2))), m(0(x))) = (be(en), x) = (beg, ¥)
= (bv x)
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and

Since ® = po (idg, o), it is continuous.
We see that ¢ = (¢, %), where ¢ ([(b, q)]) := bu(¢)(¢)). The mapping ¢ satisfies
the condition $(c[(b,g)]) = e (((5,q)]).

5. Differentiable structure in P.

Let o m 1 (Uy) = HxU,, pp: 71 (Ug) — HxUg be two local trivialisations
of Q with U,NUg # 0, 0, o the corresponding local sections of @ and @, @3 the
corresponding local trivialisations of P. Let hgo: Uy N Ug — H be the transition

function, hga(7(q)) = (¥5(¢)) *a(q). Then o5(z) = hga(x)oa(x) and

P50 @5 (b,x) = §g o Pa(b, ) = F5([(b, 0 ())])
= (be(¥p(0a(2))), m(0a(2)))
= (be((hga(x)) ™), 2).

It follows that we have an open covering {7 1(U,)}a of P and a family of
homeomorphisms {@,} such that g5 o g,! is smooth for any a and 8. If this is
so, then there exists exactly one differentiable structure in P such that all ¢, are
diffeomorphisms.

We see now that 7: P — M is differentiable, because 7|z-1(y,) = p2 © @q is
differentiable and {7~1(U, )} is an open covering of P.

6. Homomorphism f: Q — P of principal fibre bundles.
Let f(q) := [(eq,q)]- Let p: 71 (U) — H x U be a local trivialisation of Q.
Since we have the following commutative diagram

) L 71 w)

el ®
vxid

HxU — GxU,

f is differentiable. Moreover, from 7(f(q)) = 7(q) and
flag) = [(eg,aq)] = [(egi(a)u(a™"), aq)] = [(«(a), )] = w(a)[(ec, @)]

it follows that (f,idas, ) is a homomorphism of principal fibre bundles.
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Assume now that ¢ is an imbedding. From f| -1y = @ to (L xidy) o
it follows that f is an immersion. Let f(¢1) = f(g2). Then n(¢1) = 7(f(q1)) =
7(f(q2)) = m(g2), hence g2 = aqy for some a € H, [(eq,aq1)] = [(eq,q1)] and
consequently (eq,aq1) = (ege(b™1),bg1) with some b € H, which implies b = a
and t(a) = eg. Since ¢ is injective, we have a = ey and q; = ¢o.

In the next proposition we state some condition on ¢ — €2, under which the
family of 1-forms €, may define a connection on P.

PROPOSITION 4.2

Let (f,idp,t) be a homomorphism of principal fibre bundles Q(M,H) and
P(M,G). Assume that with every local section o of Q we associate some R(G)-
valued 1-form Q,. Moreover, assume that if Qo and Qg are the 1-forms associated
with 0o Uy = Q, 05: Ug = Q, respectively, and on Uy, NUg we have 03 = hgaoq
with hgo: Us NUg — H, then

Qg = Adwhga - Qo+ (L o hﬁa)*’ﬁg. (2)

Under the conditions stated above, there exists a unique connection I' in P such
that for every local section o of Q the 1-form Q. is the local connection form
corresponding to the local section foo of P.

Proof. We will define the connection form Q of I.

Let o: U — Q be a local section of Q. Let @: 75" (U) — G x U be the local
trivialisation associated with the local section f oo of P: @(bf oo(x)) = (b,x).
Then d(b’w)(ﬁ_l) maps TG & T, M isomorphically onto T} oq(2) P. Consequently,
for every W € Tyfoq(s) P there exist A € R(G) and X, € T, M, such that W =
d(b@)(@*l)(Ab S¥] Xm) Let

W foo(e) (o) (7 (Ap @ X)) 1= A+ Ady(Q0(X,.)). (3)

We first check that in this way we may obtain a 1-form Q on the whole M. Let
o: U — @ be another local section of Q and we define $ by = !(c,y) := cf 0 5(y)
for c € G,y € U. Assume that UNU # 0, then & = ho and fo& = (1o h)(f o o)
onUNU. R

Let p € P and z :=7p(p) € UNU. Let $(p) = (b,z) and $(p) = (¢, x). Then
p=">bfoo(x) =cfod(x) and consequently b = ct o h(zx).

Now we take Z, € T,,P. Let

Zp =dp0) ($7) (A & X)) = de) (371)(Be & Ya). (4)
We have to check that A+ Ady(Q,(X,)) = B+ Ad.(26(Y2)).

Since py 0 © = wp = P2 0 P, we have
Xy = d(b,m)p2 (Ab 2] Xa:) = d(b,m)p2 © dp‘)z(d(b,z) (@i_l)(Ab ® Xz))
= d(pe)P2 © dpP(Z)p)
= dpp(Zp)
and similarly Y, = d,mp(Z,), which yields X, =Y.
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If B € R(G) and B. = [t — by, then By = [t — bg]. Let X, = [t — ~(1)].
We conclude from @ o $71(g,y) = (gt o h(y),y) and from ¢ o h(x) = ¢~ 1b that

die.y (@0 @ 1) (B.®0) = [t = (byevoh(z),z)] = [t — (beec™ 'b,2)] = B, &0
and
ey (@070 @ X,) = [t = (cLoh(y(8),7()] = [t = cLo h(y(1)] @ X,

Let ((to h)*¥a).(X,) = C € R(G), which means that du (.o h)(X;) = Cion) =
C.-1p, hence

[t v 0 h(3(£)] = dusyle(Comy) = (Ade(C)),
where [, is the left translation on G. Consequently we have
ey (P o @) (Be ® X)) = (By + (Ade(O))s) ® X,
which implies
d(e,0) (FT)(Be ® Xa) = dy,) (27 ((By + (Ade(C))s) @ Xo).

But the left-hand side is equal to d, .1 (@) (As ® X)), therefore A = B+Ad.(C).
From it follows that

Q&'z = Adboh(a:) © Qa|z + ((L o h)*ﬁGNI
Now we obtain the desired equality

B+ Adc(Q5(X:)) = B 4 Ade(Ad,op(2) (6 (Xe)) + (Lo h)"0g)(X2))
= B+ (Adc 0 Ade-14) (26 (Xz)) + Ade(CO)
=B+ Ady(Q(X,))+A-B
= A+ Adp(2,(X,)).
We next prove that € is a connection form. We have to check the following

two conditions:

(i) Q(A*) = A for every fundamental vertical vector field A* on P,
(i) (Lo)*Q = Ad, - Q for every ¢ € G.

Letpe P,z :=7p(p) € Uandlet o: U — @ be a local section of (). Similarly
as before we define ¢ by @(gf o o(y)) = (9,y). Let @(p) = (b, x).

Condition (i). Let A € R(G). Since

Ap = [t ap] = [t aibf oo (x)] = [t = & ((ash, x))]
= dp,0) (P ) (A @ 0),

we obtain from 1] that ﬁp(A;) = A
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V=% 1o (l. x idy) we have

Condition (ii). Since L. o @~

((LC)*Q)p(d(b,z)‘Z_l(Ab@Xa:)) cp (d L.od (b,z)P )(Ab@X ))

Qep(

Qep(dp,zy(Le °<P N (4 & Xa))
(
(

Qcp d(b z)( (l X ldU))(Ab @X ))
= Qep(den,e) @ Ay, (le X idy) (Ap & X))
But
d(b,z)(lc X idU)(Ab O Xz ) = d(b z)(l X idU)([ ( b, ( ))D
= [t = (le x idy)(a:b,v(t))] = [t — (carb,~(t))]
(

= [t = (cazc™ e, x(1))]
( (A))cb @ Xwa

which yields

((LC)*Q)p(d(b»w)gil (Ap © X2))

p(dieb,) P~ ((Ade(A))op & X))
(A) + Adp (26 (X2))

(A4 Adp(Q2:(X2)))

(0 (dp0 @ (A & X))

Now we will look for the local connection form corresponding to the local
section foo:

((f 0 0)* Q)al(Xs) = Qor(e) (da(f 0 0)(X2)
= Qoo ([t = F oo 07 (1)) = Qponay ([t = 7 (ea, 1(1)])
= Qfor(@)(dieeny? 10D X)) = 0+ Adeg (2(X,))
= Q,(X,).

Qe

Ad
Ad
Ad

Uniqueness of . Let Q be a connection form on P such that (fo a)*ﬁ =Q,

for any local section ¢ of Q). We will show that Q=1q.
We have

Qbfotr(z) (d(b,z)gz_l(Ab D O)) = QbeU(CE) (Az;foa(m)) =4,
because Q satisfies the condition (i), and

ﬁbfoa(x) (dip,0y 2 (00 X))
= 5bfoa(r)((dfw($)Lb 0 dy oo (x) L1 © d(y,z)@ ) (0 ® X))
= (L5Q) foo (@) (d(p,0) (Lp-1 0 57 (0© X))
= (L) foo (@) () (F 1 0 (-1 x idy)) (08 X))
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= (L) foo(x) (d(e,e)@ " 0 dip,y (lp-1 X idp)) (0 ® X))

— (LD oo (oo @1 (0 X))

— (L5 ponte ([t 7 (e 1(8))])

— (LiD) footo ([t = £ 000 7(B)]) = (L) ooty (e (f 0 ) (X))
— Ady(gan(e(da(f 0 0)(X2))) = Ady(((f 0 0)* D)o (X))

— Ady(92(X.))

because of the condition (ii).
It follows that

ﬁbfoo(z) (d(b,z)()z_l (Ab > Xw))

= ﬁbfoo‘(m) (d(b,z)g_l(Ab 3] 0)) + §vzbfoa(x) (d(b,x) Q_I(O ® X:E))
=A+ Adb(Qa(Xr))

= ﬁbfocr(m) (d(b,z)(ﬁ_l(Ab 2] Xa:))

5. Construction of the 1-form (2,

We apply Proposition to the bundle Q(M, H) constructed in section 3.
We assume that G is some matrix Lie group and identify R(G) with the related
subalgebra of gl(N,R).

Our goal is to find the formula for €2,. It turns out, that the three conditions:

(i) entries of €, are linear combinations of the associated to the section o one

forms w', w? and w with constant coefficients, the coefficients do not depend

on c;
(ii) condition from Proposition [4.2}
(iii) flatness of the connection given by €

allow us to determine €.

Cases It and I~.
From we easily obtain the local connection form for the local section X; =
10, X3 =0, of Q:

wh =wh =w% =0, why = ecuw?, w! = cdu, w? = dv.
If we consider another local section
X, =0X1, Xo=1tX1+6X, (5)
of @, 6 € {1,—1}, then the dual basis is

ol = dw! — tw?, 0% = dw? (6)
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and the new local connection form is
(’:}11 == &21 = (:-522 == O, &12 == OJ12 + 5dt. (7)

From now on, X5, X5 stands for an arbitrary local section of @, its dual basis is
w', w? and the transformation to another basis is described by (5), (6) and (7).
For abbreviation, in cases IT and I~ we let w stand for wl,.

We will use
A 0
A) = 8
=g ) ®

where Iy_s is the (IV — 2) x (N — 2) identity matrix.
According to the condition (i) we have

Q, = Aw' + Bw? 4+ Cw (9)

and
Qs = AG' + Ba® 4+ Co = A(0w' — tw?) + Béw? + C(w + § dt), (10)

with A, B,C € gl(N, R).

Since (X1, X5) = (X1,X3) - a™t = Lo((Xy1, X5)) for a = (g _(St), we have
d —t(z) 0...0
0 6 0...0
h(z) = <f) t(gx)) and coh(x)=|0 0 . We will write it simply
c I
0 0
b —t(z) O
astoh(z)=10 ¢ 0 |. For G C GL(N,R) we have (9g)5(Ys) = Vb~ !,
0 0 Iy—2

From (ii) we now obtain

0 —t 0 ot 0 0 —d0dt 0
Q=106 0 Q106 O +10 0 0
0 0 In—2 00 In—2 0 0 O
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Ay Ay
Az Ay

M(N —2,2;R), Ay € M(N —2,N — 2;R) and similarly B = (gl ?), C =
3 4
G2 (2 o _ 91 Qg
C3 Cy )7 7" Q3 Q4 )77 Qs Q4
It is easy to check that

N 5 —t 5t 0 —ddt
0 = 0
! <0 5) 1<06>+<0 0)’
N 5 —t N 5t .
Q2=<O 5>927 Q3=Q3<O 6)’ Qy = Q4.

We consider now the first block. Using @[) and we obtain

Let A = ( ), where A; € M(2,2;R), Ay € M(2,N — 2;R), A3 €

A (6wt — tw?) 4+ Bidw? 4+ C1(w + 6 dt)
5 —t dt 0 —ddt 11
:(0 6)(A1w1+B1w2+C1w) (0 5>+<0 0 ) (11)

for every function ¢ and for every 6 € {1,—1}. For ¢ = 0, § = —1 we obtain
—Aiw! — Biw? 4+ Ciw = Ajw! + Biw? + Ciw which implies A;w? + Biw? = 0.
Computing the left-hand side on X; and X5 succesively, we obtain A; = 0 and
B; =0.

Let Cy = CIL 2 ) Brom (11)) we obtain
C21 C22

7621(% 7021152 + (011 — 022)5t c11 C12 + 1 00
w — odt =
0 co10t C21 C22 00

for every function ¢ and for every § € {1,—1}. In particular, for every constant ¢
we obtain cz10t = 0 and c21t% + (co2 — ¢11)0t = 0 because w # 0. It follows that

co1 = 0 and ¢a9 = ¢11. Now we have i ez 1 odt = 00 for every t and
0 C11 00

d, which implies ¢17 = 0, ¢12 = —1 and finally C; = (0 1)
A similar method applied to other blocks of Q25 gives

Oy =0, A2:<a1 Qg ... CkN2>7 Bgz(ﬁl B2 ... BNQ)7

0 0 ... 0 a1 Qg ... AN_2
0 m -M 0
0 7 —2 P
C3 =0, Az = ; B; =
0 yN—2 —YN-2 ON_2

andA4:B4:C’4:0.
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We consider now condition (iii). A connection is flat if and only if the R(G)-
valued connection form €2 satisfies the condition

dUZ, W) + [QZ), AW )r(c) =0
for all vector fields Z, W on P, which is equivalent to
dQ. (X,Y) + [QU(X), QU(Y)]R(G) =0

for all ¢ and for all vector fields X, Y on M. If G is a matrix group, then for
A,B € R(G), [A,Blrq) = —AB + BA = —[A, B]. Using the matrix external

product we may also write the zero curvature condition as
dQs — Qe N Qy = 0.
It is easy to obtain from @
42 (X, Y) = [ (X), 2 (V)]

= Adw'(X,Y) + Bdw?(X,Y) + Cdw(X,Y)
—[A, Blw'A WA (X,)Y) — [A, Clw' Aw(X,Y) — [B,Clw’*Aw(X,Y).

From the structural equations
dw' = —w A w?, dw? =0, dw = ew' A w?
it follows that
dQys — [Q0, Q] = (eC — [A, B)w'Aw? — [A,Clw' Aw + (A — [B, C)w? A w.

But [A,C] = 0 and [B,C] = A, therefore the connection is flat if and only if
[A, B] = eC. It follows that v;a; = 0 for all 4,5 € {1,...,N —2} and > (o;0; —
Bivi) = —e.

Let Eji € M(N,N;R) denote the matrix, whose j-th row and k-th column
entry is 1 and whose all other entries are 0.

PROPOSITION 5.1
There exists S € GL(N;R) such that

S_IAS = E13 and S_lBS = E23 —€E32 and S_lCS =C= —E12 (12)
or
STLAS = FEi3 and S~1BS = FEi4+ FEo3 —eFE39 and S~lcs=C= —Fis (13)
or
S_IAS = E32 and S_lBS = 5E13 — E31 and S‘lCS =(C= —E12 (14)

or

STLAS = FE35 and S7IBS = eFB13—FE31+FEy and S~lcS=C = —Fqs. (15)
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Proof. In fact, if aj, # 0 for some jg, then 71 = v2 = ... = yv—2 =0
and Zf;f ;6; = —e. Let a = (a1,...,any_2) € RVN"2 3 := (B1,...,8n_2),
v = (1,...,7nv_2) and A := (61,...,6n_2). Let (-)* denote the orthogonal
complement with respect to the standard scalar product (£,7) = Zf\gg &mi in
RN=2_ If o and f are linearly dependent in RV~=2, then ot N B+ = ot is an
N — 3 dimensional subspace of RV=2. Let v1,...,vn_3 be its basis. Let v, =:
(flka§2ka---7£N—2 k), k= 1,...,N73. For

1 762 B,(;i 0 0 PN 0

0 1 0 0 e 0
s=10 0 —€d1 1 - &1N-3

0 0 —edN—2 En—21 ... EN—2 N-3

we easily obtain AS = SE3, BS = S(E23 — cE33) and CS = SC. Since A ¢ o,
S is invertible and conditions are satisfied.

If o and $ are linearly independent, then dim(a® N B+) = N — 4. Let v; =:
(€11, éN—21),--sUN-a4 = (E1N_4,---,EN_2n_4) be a basis of a* N B+, The
vector w := (a, B)a—||a||? 8 belongs to a* and does not belong to 8+, because w €
B+ would imply (w,w) = 0 and w = 0, which contradicts the linear independence
of  and 8. Let n = ﬁ and

1 —¢ Z 5151 0 0 0 e 0

0 1 0 0 0 0
=10 0 -6 M ST S

0 0 —e0n—2 NN—2 En—21 ... EN—2 N—4

then S is invertible and the conditions hold.

Assume now that a; = as =... = any_2 =0. Then 8 # 0 and y # 0, because
> Bivi =e. If v and A are linearly dependent, then we take an arbitrary basis
v1 = (&1, €v—21),---sun—3 = (&1 N—3,...,EN—2 N—3) of B and for

0 1 0 0 0
s=10 0 T 1 ... &in-3
0 0 IN—2 EN—21 ... EN—2 N-3

we have (I4). Note that A = ¢y and Y By = ¢ imply 0 = ey, Y. fid; for all
ked{l,...,N -2}

If v and A are linearly independent, then let n = A — (3, A)y. Then n € 5+
and 1 # 0. Therefore we can find vectors vy,...,vn_4 such that n,vy,...,on5_4 is
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a basis of . We denote the coordinates of vj, in the same manner as before. For

1 e Z Bzéz 0 0 0 e 0

0 1 0 0 0 0
s—10 0 M m S R S A

0 0 YN-2 MN—2 EN—21 --- EN—2 N—4

the conditions hold.

From Proposition it follows that in cases I and I~ there are four 1-forms
associated to a locally symmetric connection:

0 —w wt

1°N=3,Q=]0 0 w?|;
0 —ew? 0
0 —w w! w?
0 O 2.0
2° N=4,Q, = 9 “ ;
0 —ew® 0 O
0 O 0 O
0 —w ew?
3° N=3,Q, = 0 0
—w? Wl
0 —w ew? 0
0 0 0 O
4° N =4, Q, = 5
—w® w 0 O
0 w? 0 0

Cases I1d" and I1d™.
We consider two local sections o = (X1, X2) and

o= ()?1,)?2) = (cos p X1 + sin o Xo, —sin ¢ X1 + cos ¢ Xa)

cos —sin
= (X1, Xo) - ( . v 90)
sing cos

of the bundle of g-orthonormal frames. Since the left action of SO(2,R) on @Q is
. T ~ . [ cosp singp
given by Ly(q) = gb—*, we have & = ho with h = <—singo cos<p)'
The new dual basis is

cos g w! + sin p w?,

&
|

0? = —sinpw! +cos<pw2
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and the new local connection form is
@21 = w21 + d@.

From now on we will write w and @ instead of w?, @?, respectively.
According to the condition (i) we have Q, = Aw! + Bw? + Cw and

O = A + B&? + C@
= A(cos pw' + sin pw?) + B(—sin g w! + cos pw?) + C(w + dy),

with A, B, C € sl(2, R).
We will firstly use the homomorphism ¢: SO(2,R) — SL(2,R)/{I,—I}, where

2
(( cos @ sincp)) {( cos (£ sin(g))]
. _
—sing cosy —sin (£) cos (£)
and look directly for an sl(2,R)-valued 1-form €2,.

Let G denote the quotient group SL(2,R)/{I,—I}. The canonical projection
mg: SL(2,R) — G is a covering of multiplicity 2. Each point of G has a neigh-
bourhood U such that each of two components Vi, V5 of wgl(U) is homeomorphic
to U under mg. The differentiable structure in G is introduced by requiring all
v, : Vi = U to be diffeomorphisms. For every a € SL(2,R) the differential
domc: ToSL(2,R) — TjG is an isomorphism.

If « € SL(2,R) and Vi, € TG, then dg(Vi,) = Ay, where A € R(G)
satisfies the condition Vi, = ﬁ[a] = drRyg (E[I])' Assume that we have Vi, =
doma(W,) for W, € T,SL(2,R). Let A € R(SL(2,R)) be such that W, = A,,
then

Vg = damc(drRa(Ar)) = di(me o Ra)(Ar) = di(Rpa) o me)(Ar)
== d[[]R[a} (d[’]'rg(A[)).

It follows that Af;y = drmg(Ar), where Ap = Ogp0m) (Wa) = Woa ™'
For x € M and X, € T, M we have locally

dw(l’ o h) (XLE) = da(z)ﬂ-G(dxa(Xz)),

)

It follows that

(Lo h)Ve)e(Xa) = (V6)(on) (2) (da (0 1) (X))
= (96) ja(e)) (da(a)Ta (dz(Xy)))
= dima(Vsr(2,r) (dea(Xy)))
= drmg(d.a(X,) (a(z))” )

Let U C G be a neighbourhood of [I] such that 75" (U) = V3 U Va, with V; and V5
diffeomorphic to U under 7. Let I € Vi. Since V3 C SL(2,R) C GL(2,R) C R%,

where

o < 00.8(22 s1n(
—sin (2

) COS(

w6 N6
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we may replace every tangent vector [y]. € TinG by %((wch/l)*l 0 )|t=o and
[0]~ € T1SL(2,R) by 25|,—0. In this way we identify TG and T;SL(2,R) with
the subalgebra s1(2,IR) of gl(2,IR). After such identification d;mg = idg(2,r) and
we have simply

((toh)Vg)a(Xz)
= dya(X,)(a(z)™!

= %Xz(so) (01 (1)) :

Consequently
1 0 dy
h)*¥q = = .
(coha 2(—dsﬂ 0)

Similar considerations lead to
Ad[a](d]ﬂ'g(Bj)) = d]ﬂg(Ada(Bj))
and, after the identification of 7TjG and T7SL(2,R) with sl(2,R), to

Adon) (@) (26 (X))

= o(2)Q0 (X)) (a(x))
cos(£5)  sin(£5) cos(£)) —sin(£L))
- (Sm((p S Cos(w(gm)) Bo(Xe) Sin(ﬂ) Cos(@) '

According to the condition (ii), for any function ¢ we have

A(cos pw’ + sin pw?) + B(—sin pw! + cos pw?) + C(w + dyp)
= ( cos(3) sin(3 )>(Aw + Bw? + Cw )(COS(g) _sm(qf)> (16)

—sin(Z) cos(%) sin(%) cos(%)

1 0 d

+= 7).

2<d<ﬂ 0>
Taking ¢ =7 = 3,14 ... we obtain

0 1 0 -1
Awle2+C’w< 10>(Aw1+Bw2+C’w)( >

1 0
Let A = ( 1 “12) B=
a21 —aii

bui biz and C = [ ' “2 ). Then
bgl 7611 C21 —C11

O 1 A O -1 - —ai11 —az1
-10 1 0 a —a12 Qi1 ’
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similarly for B and C'. We have
—a1; —a —by; —b c c
< 11 12>w1+< 11 12)w2+<11 12>w
—az1 a1 —ba1 b1 C21 —C11
_ <—a11 —a21> Wl i <—bn —b21) e n (—011 —621) w
—aiz2 aii —bi2 b1 —Ci2 C11
which implies 2¢11w = 0,
(a21 — a12)w" + (ba1 — b12)w” + (c12 + c21)w = 0,

(a12 — ag1)w' + (bia — bay)w? + (€12 + c21)w = 0.

Adding and subtracting the last two equations we obtain (cj2 + ¢o1)w = 0 and
(a12 — agl)wl + (b12 — bgl)w2 = 0. It follows that

A:(Gu a12)’ B:(bu b12>’ C:( 0 012>.
a2 —ai b2 —b11 —c12 0
If we insert such A, B and C into , then we obtain for an arbitrary function ¢
sin gﬁ(f(bll + alg)wl + (a11 — b12)w2) =0
and 1
sin ((—bya + ar1)w! + (a12 + by1)w?) + (612 — 5) dp = 0.

From the first equation we obtain b1y = —ai12 and b2 = a1, then from the second
equation it follows that c1o = % We have now
) .

[« 153 1 -6 « 9 0
Q"‘(ﬂ —a)“*(a ﬁ)“’*(—;

The zero-curvature condition d€2, — 2, A Q, = 0 and the structural equations

O ol

dw! = w A w?,

dw? = —w AW,
dw = —% whA w?
p
yield
2 2 3
« +B - _rp2.

Recall that k = p%.
It follows that this method of finding an s1(2, R)-valued £, is effective only in

the case of constant negative curvature, i.e. € = —1.

Let ¢ = —1. Wehavea:%and,@:%forsomefeﬂ& Let S =

€ in &
cos3 sin3 140 1(01 -1 1 (10 1 .

— Sin 5 COS 3

1( 01
2<1 0 and
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In case Kk = —1 we have p = 1 and €2, is the well known form of Sasaki.
Now we consider the cases IId' and I1d~ again, using the homomorphism .
We have now
cosp sing 0

toh= 1| —siny cosp 0
0 0 In_o
and
(0 h)"V6)a(Xa) = (do(t 0 h)(Xa)) (Lo h(x)) ™
—singp cosp 0 cosp —sinp 0
= | —cosp —sing 0 | dyp(X,) | sinp cosy 0
0 0 0 0 0 In_o
0 10
=1 =10 0 |dyp(Xy).
0 00

It follows from (ii) that

A(cos pw! +sin pw?) + B(—singpw! 4 cos pw?) + C(w + dyp)

cosp sing 0 cosp —sinp 0
= | —sing cosp 0 (Aw' + Bw? + Cw) | sing cosep 0 (17)
0 0 In_o 0 0 In-o
0 10
+ | -100|de
0 00

for an arbitrary function ¢. Similarly as in case I we divide A, B, C into four
blocks. If we write with ¢ = m, then we obtain easily 4; = 0, A4 = 0,
By =0, By =0, Cy =0 and C3 = 0. Writing for an arbitrary ¢ again and
comparing ()11 + (+)22 of both sides gives c¢11 + o2 = 0, comparing (+)12 — ()21
gives c12 — co1 = 2. Next we consider (-)12 + (-)21 with ¢ = 7 and with ¢ = 7,
which gives ¢12 + 21 —2¢11 = 0 and ¢12 + 21 = 0. If we compute (-);; with 4,5 > 2
on both sides of , then we obtain ¢;; dp = 0 for an arbitrary ¢, which implies
cij = 0. In a similar way we consider the upper right block and the lower left
block. We obtain blj = —a2j, bgj = a1y, bjl = —aj;2 and bjg = Gj1 for j > 2. Now
it is easy to check that [B,C] = —A and [A, C] = B. The only possibly non-zero

term in dQ), — Qs A €),, after we have used the structural equations, is equal to

(—p% — [A, B])w! A w?. Consequently, the connection associated with ©Q, is flat
if and only if [A, B] = —5C. If we write (-)12 of this equality, then we obtain

N N .
Z airag1 + Z A2kak2 = ——, (18)
k=3 k=3 p



[40] Maria Robaszewska
whereas (-)p; with k,1 > 2 gives
apoa1; — ag1as; = 0 for all k,1 > 2. (19)

We will show that either
N €
ay; =a;1 =0 foralli>2 and E Agare = —— (20)
p
k=3

or there exists A € R such that

1
. (21
14+ M2 (21)

N
. e
ag; = )\ali, aio = Aa;1 for all i > 2 and E 101 = ——5
p
k=3

Indeed, if a; = 0 for all 4 > 2, then (|18) implies that ag, # 0 for some ly and
we obtain from 1) ap1 % = 0 for all k¥ > 2. Similarly, if a;; = 0 for all
0]

i > 2, then ay; = 0 for all ¢ > 2. Assume now that aq;, # 0, then ax,1 # 0 for
some kg. From we obtain age = Aayi for all £ > 2 with A = Z?—ZZ Using

again gives Aagia1; = agiag for all k,1 > 2, in particular for k = k.

If a;; = a;1 = 0 for all ¢ > 2, then we take the basis vy4,...,vx of the
subspace in RV~2 orthogonal to the non-zero vector (ags,...,aan). Let vy =:
(83k; Sak,-- - SNk) for b =4,...,N. Let sp3 = —Zagz. From it follows that
V3,04, ...,UN With vs := (33, 843, ..., Sn3) are also linearly independent. We take
811 = S99 = O, S12 = —891 = 1 and S1k = Sok = Sp1 = Sp2 =0 for k > 2.

If w:= (ai3,a14,...,a1n) # 0 € RV=2 then we take the basis vy, ...,vy of
wt in RN~2 and define (31, S4k, - - -, SNk) = v for k > 4. Let sp3 := §(1+)\2)ak1
for k > 2. Then vs := (533, 843, - - - , Sx3) is not in wt and v3, vy, . .., vy are linearly
independent. Let s11 = S99 = 1, S91 = —S12 = A and S1x = Sop = Sg1 = Sg2 = 0
for k > 2.

In both cases S is invertible and it is easy to check that AS = SAq, BS =SBy
and C'S = SC with

1 € 1 €
Ao =——Ei3+ —Es, By = ——Es3 + — 3.
p p p p

It follows that it suffices to consider the case N = 3 and the 1-form

0 w?i —iuwt
1

QO’ == _w21 0 _; 2
et g2 0

Case I11.
We consider two local sections of @, (X1, X2) and

()2'1,)?2) = (d cosh p X7 + 0 sinh ¢ X5, d sinh ¢ X7 + d cosh p X5),
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with 6 € {1,—1}. For a local basis satisfying the conditions ¢g(X;,X71) = 1,
9(X1,X3) = 0 and g(X2,X3) = —1 the local connection form is (w';) =

0 2
( 9 w1 ) We denote w? by w. The structural equations are
wy 0

dw! = —w A w?, dw? = —w A w?, dw = —kw A w2,
The new dual basis and the new local connection form are

! = dcosh pw! — dsinh pw?,
©? = —dsinh pw® + 6 cosh pw?,

w=w+dp.

The transition function is

b dcoshp —dsinhe
-\ —dsinhg dcoshy

and its composition with ¢: SO(1,1) — GL(N,R) is

dcoshy —dsinhy 0
toh= ] —6sinhp §coshyp 0
0 0 In_—2

It follows that for x € M, X, € T, M

((boh)Va)e(Xe)
= VG 1on(x) (ds (00 h)(Xy)) = do (00 h)(Xo) (L0 h(x)) ™!
d0sinhgp —dcoshy 0 dcoshy dsinhp 0
= | —dcoshy dsinhp 0 | dp(X,) | dsinhg dcoshy O
0 0 0 0 0 In_o
0 —-10
= -1 0 0 |dp(Xs).
0 00

We now look for A, B, C such that for all § € {1, —1} and for every function ¢

A(0 cosh g w! — dsinh pw?) + B(—dsinh pw® + § cosh g w?) + C(w + di)
dcoshep —dsinhy 0
= | —dsinhy dcoshe 0 (Aw' + Bw? + Cw)
0 0 In_o
dcoshe dsinhp 0 0 -10
x | dsinhy dcoshp 0O +1 -1 0 0 |de
0 0 Iy 0 00
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Analysis similar to that in the cases I and II/d shows that a;; = 0 and b;; = 0
for (i,7) € ({1,2} x {1,2}) U ({3,..., N} x {3,...,N}), bix = ask, bop = a1,
bkl = —ag2, b2 = —agy for k > 2, and C = —FE3 — Fa;. Since [A,C] = B and
[B,C] = A, we have

dQy — Qy AQy = (—kC — [A, B))w!' Aw?

The connection is flat if and only if [4, B] = —«C'. In particular ([A, B])12 = —kc12
and ([A, B))r = —keyy for all k,1 > 2, which implies

N N
— E aljajl — E agjajg =K
j=3 j=3

and

QK102 = —Qk201]
for all k,I > 2. It follows that either a;; = a;1 = 0 for all 4 > 2, or for all
i > 2, a;2 = Aaj and ag; = —Aay; with some A ¢ {1,—1}. In both cases it
is easy to find an automorphism S of RY such that S~1AS = —%Elg + %Egl,
S—1BS = —%Ezg — %E32 and S71CS = C = —E13 — Ey;, where € € {1,—1} and

p > 0 are such that K = 5. The corresponding sl(3,R) valued 1-form Q, is

p
0 —w =it
Q=] w 0 -2
gl —g,2 0
P P

6. Summary

For any two-dimensional manifold M with locally symmetric linear connec-
tion V and with V-parallel volume element vol one can construct a flat connection.
Its local connection forms €, are build of the dual basis forms w!, w? and a local
connection form of V. The structural equations of the surface are equivalent to
the zero-curvature condition df2, — Q, A Q, = 0. The corresponding Lie algebras
g may differ from case to case depending on algebraic properties of the curvature
tensor.

If a locally symmetric surface is associated to every solution of some differential
equation, then such 1-form €, constitutes a g-valued zero-curvature representation
of this equation.
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