FOLIA 149

Annales Universitatis Paedagogicae Cracoviensis Studia Mathematica XIII (2014)

Monika Herzog A note on the convergence of partial Szász-Mirakyan type operators

Abstract. In this paper we study approximation properties of partial modified Szasz-Mirakyan operators for functions from exponential weight spaces. We present some direct theorems giving the degree of approximation for these operators. The considered version of Szász-Mirakyan operators is more useful from the computational point of view.

1. Introduction

Let us denote by $C(\mathbb{R}_0)$ a set of all real-valued functions continuous on $\mathbb{R}_0 = [0; +\infty)$ and let $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$. In paper [1] we investigated operators of Szász-Mirakyan type defined as follows

$$A_{n}^{\nu}(f;x) = \begin{cases} \sum_{k=0}^{\infty} p_{n,k}^{\nu}(x) f\left(\frac{2k}{n}\right), & x > 0; \\ f(0), & x = 0 \end{cases}$$

and

$$p_{n,k}^{\nu}(x) = \frac{1}{I_{\nu}(nx)} \frac{x^{2k+\nu}}{2^{2k+\nu}k!\,\Gamma(k+\nu+1)},$$

where Γ is the gamma function and I_{ν} stands for the modified Bessel function, i.e.

$$I_{\nu}(z) = \sum_{k=0}^{\infty} \frac{z^{2k+\nu}}{2^{2k+\nu}k!\,\Gamma(k+\nu+1)}.$$

We studied the operators in polynomial weight spaces

 $C_p = \{ f \in C(\mathbb{R}_0) : w_p f \text{ is uniformly continuous and bounded on } \mathbb{R}_0 \},\$

AMS (2000) Subject Classification: 41A36.

where w_p was the polynomial weight function defined as follows

$$w_p(x) = \begin{cases} 1, & p = 0;\\ \frac{1}{1+x^p}, & p \in \mathbb{N} \end{cases}$$

for $x \in \mathbb{R}_0$. The space C_p is a normed space with the norm

$$||f||_p = \sup_{x \in \mathbb{R}_0} w_p(x) |f(x)|.$$

In paper [4] a certain modification of the above operators was introduced

$$B_n^{\nu}(f, a_n; x) = \begin{cases} \sum_{k=0}^{[n(x+a_n)]} p_{n,k}^{\nu}(x) f\left(\frac{2k}{n}\right), & x > 0; \\ f(0), & x = 0 \end{cases}$$

for $f \in C_p$, where (a_n) was a sequence of positive numbers such that

$$\lim_{n \to \infty} a_n \sqrt{n} = \infty \tag{1}$$

and $[n(x + a_n)]$ denotes the integral part of $n(x + a_n)$.

In the paper were studied approximation properties of these operators. Among others there was deduced that

$$\lim_{n \to \infty} \{B_n^{\nu}(f, a_n; x) - f(x)\} = 0$$

for every $f \in C_p$, uniformly on every interval $[x_1, x_2], x_2 > x_1 \ge 0$. In that case the crucial assumption was that the sequence of positive numbers (a_n) satisfied the condition (1).

Similar problems for Baskakov type operators were discussed in paper [5] and some generalization of truncated operators we can find in [6].

We shall drive analogous results for the modified Szász-Mirakyan operators for functions from exponential weight spaces

 $E_q = \{ f \in C(\mathbb{R}_0) : v_q f \text{ is uniformly continuous and bounded on } \mathbb{R}_0 \},\$

where v_q is the exponential weight function defined as follows

$$v_q(x) = e^{-qx}, \qquad q \in \mathbb{R}_+$$

for $x \in \mathbb{R}_0$. The space E_q is a normed space with the norm

$$||f||_{q} = \sup_{x \in \mathbb{R}_{0}} v_{q}(x) |f(x)|.$$
(2)

In this paper we will present a certain modification of the operator B_n^{ν} . We shall apply the modification to prove the convergence of the operators in exponential weight spaces.

2. Main results

At the beginning of this section we will recall the definition of \overline{A}_n^{ν} and some preliminary results from papers [2] and [3], which we shall apply to prove main theorems.

If $\nu \in \mathbb{R}_0$ and $n \in \mathbb{N}$ we considered operators of Szász-Mirakyan type as follows

$$\overline{A}_n^{\nu}(f;x) = \begin{cases} \displaystyle\sum_{k=0}^{\infty} p_{n,k}^{\nu}(x) f\Big(\frac{2k}{n+q}\Big), \quad x > 0;\\ f(0), \quad x = 0 \end{cases}$$

for $f \in E_q$.

LEMMA 1 For all $\nu \in \mathbb{R}_0$, $n \in \mathbb{N}$ and $x \in \mathbb{R}_0$ we have

$$\overline{A}_{n}^{\nu}(1;x) = 1.$$

Lemma 2

For all $q \in \mathbb{R}_+$ and $\nu \in \mathbb{R}_0$ there exists a positive constant $M(q,\nu)$ such that for each $n \in \mathbb{N}$ we have

$$\left\|\overline{A}_{n}^{\nu}\left(\frac{1}{v_{q}};\cdot\right)\right\|_{q} \leq M(q,\nu).$$

Applying the definition of \overline{A}_n^{ν} and (2) we get

LEMMA 3 For all $q \in \mathbb{R}_+$ and $\nu \in \mathbb{R}_0$ there exists a positive constant $M(q,\nu)$ such that for each $n \in \mathbb{N}$ we have

$$\left\|\overline{A}_n^{\nu}(f;\cdot)\right\|_q \le M(q,\nu) \|f\|_q.$$

Notice that operators \overline{A}_n^{ν} are bounded and transform the space E_q into itself.

Lemma 4

For all $q \in \mathbb{R}_+$ and $\nu \in \mathbb{R}_0$ there exists a positive constant $M(q,\nu)$ such that for each $x \in \mathbb{R}_0$ and $n \in \mathbb{N}$ we have

$$\left|\overline{A}_{n}^{\nu}((t-x)^{2};x)\right| \leq M(q,\nu)\frac{x(x+1)}{n}.$$

Lemma 5

For all $q \in \mathbb{R}_+$ and $\nu \in \mathbb{R}_0$ there exists a positive constant $M(q,\nu)$ such that for all $x \in \mathbb{R}_0$ and $n \in \mathbb{N}$ we have

$$v_q(x)\overline{A}_n^{\nu}\left(\frac{(t-x)^2}{v_q(t)};x\right) \le M(q,\nu)\frac{x(x+1)}{n}.$$

THEOREM 6 If $\nu \in \mathbb{R}_0$ and $f \in E_q$ with some $q \in \mathbb{R}_+$, then for all $x \in \mathbb{R}_0$

$$\lim_{n \to \infty} \left\{ \overline{A}_n^{\nu}(f; x) - f(x) \right\} = 0.$$

Moreover, the above convergence is uniform on every set $[x_1, x_2]$ with $0 \le x_1 < x_2$.

Proof. Let $f \in E_q$ with some $q \in \mathbb{R}_+$. Pick $x \in \mathbb{R}_0$ and $\varepsilon > 0$. There exists a number δ such that

$$|f(t) - f(x)| < \frac{\varepsilon}{2} \tag{3}$$

for $|t - x| < \delta$, $t \in \mathbb{R}_0$. By linearity of \overline{A}_n^{ν} and Lemma 1 we get $|\overline{A}_n^{\nu}(f;x) - f(x)|$

$$\sum_{\substack{|\frac{2k}{n+q}-x|<\delta}} f(x) = \int_{|\frac{2k}{n+q}-x|<\delta} p_{n,k}^{\nu}(x) \left| f\left(\frac{2k}{n+q}\right) - f(x) \right| + \sum_{\substack{|\frac{2k}{n+q}-x|\geq\delta}} p_{n,k}^{\nu}(x) \left| f\left(\frac{2k}{n+q}\right) - f(x) \right|$$

$$= I_1 + I_2.$$

Hence by (3) we obtain $I_1 < \frac{\varepsilon}{2}$. Further we get

$$I_2 \leq \frac{\|f\|_q}{\delta} \overline{A}_n^{\nu} \Big(\frac{|t-x|}{v_q(t)}; x \Big) + \frac{\|f\|_q}{\delta v_q(x)} \overline{A}_n^{\nu}(|t-x|; x).$$

Using the Hölder inequality and Lemmas 2–5 we have

$$I_{2} \leq \frac{\|f\|_{q}}{\delta} \Big[\overline{A}_{n}^{\nu} \Big(\frac{(t-x)^{2}}{v_{q}(t)};x\Big)\Big]^{\frac{1}{2}} \Big[\overline{A}_{n}^{\nu} \Big(\frac{1}{v_{q}(t)};x\Big)\Big]^{\frac{1}{2}} + \frac{\|f\|_{q}}{\delta v_{q}(x)} \big[\overline{A}_{n}^{\nu}((t-x)^{2};x)\big]^{\frac{1}{2}}$$
$$\leq \frac{\|f\|_{q}}{\delta} \Big[M(q,\nu)\frac{x(x+1)}{nv_{q}(x)}\Big]^{\frac{1}{2}} \Big[M(q,\nu)\frac{1}{v_{q}(x)}\Big]^{\frac{1}{2}} + \frac{\|f\|_{q}}{\delta v_{q}(x)} \Big[M(q,\nu)\frac{x(x+1)}{n}\Big]^{\frac{1}{2}}$$
$$< \frac{\varepsilon}{2}.$$

The above estimations imply the convergence in Theorem 6.

In the space E_q we define the following class of partial operators

$$\overline{B}_{n}^{\nu}(f, a_{n}; x) = \begin{cases} \sum_{k=0}^{[(n+q)(x+a_{n})]} p_{n,k}^{\nu}(x) f\left(\frac{2k}{n+q}\right), & x > 0; \\ f(0), & x = 0, \end{cases}$$

where we replace the infinite summing in \overline{A}_{n}^{ν} by the finite one and we still have the assumption (1).

THEOREM 7 If $\nu \in \mathbb{R}_0$ and $f \in E_q$ with some $q \in \mathbb{R}_+$ then for all $x \in \mathbb{R}_0$

$$\lim_{n \to \infty} \left\{ \overline{B}_n^{\nu}(f, a_n; x) - f(x) \right\} = 0.$$

Moreover, the above convergence is uniform on every interval $[x_1, x_2], x_2 > x_1 \ge 0$.

Proof. Let $f \in E_q$ with some $q \in \mathbb{R}_+$. From the definitions of the operators \overline{A}_n^{ν} and \overline{B}_n^{ν} we get

$$B_{n}^{\nu}(f, a_{n}; x) - f(x) = \sum_{k=0}^{[(n+q)(x+a_{n})]} p_{n,k}^{\nu}(x) f\left(\frac{2k}{n+q}\right) - f(x)$$
$$= \sum_{k=0}^{\infty} p_{n,k}^{\nu}(x) f\left(\frac{2k}{n+q}\right) - f(x) - \sum_{k=[(n+q)(x+a_{n})]+1}^{\infty} p_{n,k}^{\nu}(x) f\left(\frac{2k}{n+q}\right)$$
$$= \overline{A}_{n}^{\nu}(f; x) - f(x) - R_{n}^{\nu}(f, a_{n}; x)$$

for $x \in \mathbb{R}_0$ and $n \in \mathbb{N}$. Observe that

$$\left|\frac{2k}{n+q} - x\right| \ge a_n$$
 if $k \ge [(n+q)(x+a_n)] + 1.$

Analogously as in the previous proof we can write the following estimation

$$\begin{split} \left| R_{n}^{\nu}(f,a_{n};x) \right| &\leq \sum_{k=[(n+q)(x+a_{n})]+1}^{\infty} p_{n,k}^{\nu}(x) \left| f\left(\frac{2k}{n+q}\right) \right| \\ &\leq \sum_{\substack{|\frac{2k}{n+q}-x|\geq a_{n}}} p_{n,k}^{\nu}(x) \left| f\left(\frac{2k}{n+q}\right) \right| \leq \frac{\|f\|_{q}}{a_{n}} \sum_{k=0}^{\infty} p_{n,k}^{\nu}(x) \frac{|\frac{2k}{n+q}-x|}{v_{q}(\frac{2k}{n+q})} \\ &= \frac{\|f\|_{q}}{a_{n}} \overline{A}_{n}^{\nu} \Big(\frac{|t-x|}{v_{q}(t)}; x \Big). \end{split}$$

The Hölder inequality, Lemmas 2 and 5 imply

$$\begin{aligned} \left| R_n^{\nu}(f, a_n; x) \right| &\leq \frac{\|f\|_q}{a_n} \left[\overline{A}_n^{\nu} \left(\frac{(t-x)^2}{v_q(t)}; x \right) \right]^{\frac{1}{2}} \left[\overline{A}_n^{\nu} \left(\frac{1}{v_q(t)}; x \right) \right]^{\frac{1}{2}} \\ &\leq M(q, \nu) \frac{\|f\|_q}{a_n} \frac{\sqrt{x(x+1)}}{\sqrt{n}} \frac{1}{v_q(x)}. \end{aligned}$$

In view of (1) we obtain the required result.

Notice that the same simplified method we can use in polynomial weight spaces C_p to estimate the reminder of the series A_n^{ν} , which was considered in [4].

References

- M. Herzog, Approximation theorems for modified Szász-Mirakyan operators in polynomial weight spaces, Matematiche (Catania) 54 (1999), no. 1, 77–90. Cited on 45.
- M. Herzog, Approximation of functions from exponential weight spaces by operators of Szász-Mirakyan type, Comment. Math. Prace Mat. 43 (2003), no. 1, 77–94. Cited on 47.

- [3] M. Herzog, Approximation of functions of two variables from exponential weight spaces, Technical Transactions. Fundamental Sciences, 1-NP (2012), 3–10. Cited on 47.
- [4] R.N. Mohapatra, Z. Walczak, Remarks on a class of Szász-Mirakyan type operators, East J. Approx. 15 (2009), no. 2, 197–206. Cited on 46 and 49.
- [5] Z. Walczak, V. Gupta, A note on the convergence of Baskakov type operators, Appl. Math. Comput. 202 (2008), no. 1, 370–375. Cited on 46.
- [6] Z. Walczak, Approximation theorems for a general class of truncated operators, Appl. Math. Comput. 217 (2010), no. 5, 2142–2148. Cited on 46.

Institute of Mathematics Cracow University of Technology Warszawska 24 31-155 Kraków Poland E-mail: mherzog@pk.edu.pl

Received: March 30, 2014; final version: May 11, 2014; available online: June 30, 2014.