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Starlike functions of complex order involving
q-hypergeometric functions with fixed point

Abstract. Recently Kanas and Ronning introduced the classes of starlike
and convex functions, which are normalized with f(ξ) = f ′(ξ) − 1 = 0, ξ
(|ξ| = d) is a fixed point in the open disc U = {z ∈ C : |z| < 1}. In this
paper we define a new subclass of starlike functions of complex order based
on q-hypergeometric functions and continue to obtain coefficient estimates,
extreme points, inclusion properties and neighbourhood results for the func-
tion class T Sξ(α, β, γ). Further, we obtain integral means inequalities for
the function f ∈ T Sξ(α, β, γ).

1. Introduction

Let ξ (|ξ| = d) be a fixed point in the unit disc U := {z ∈ C : |z| < 1}.
Denote by A(ξ) the class of functions which are regular and normalized by f(ξ) =
f ′(ξ)− 1 = 0 consisting of the functions of the form

f(z) = (z − ξ) +
∞∑
n=2

an(z − ξ)n, (z − ξ) ∈ U. (1)

Also denote by Sξ = {f ∈ A(ξ) : f is univalent in U}, the subclass of A(ξ).
Denote by Tξ the subclass of Sξ consisting of the functions of the form

f(z) = (z − ξ)−
∞∑
n=2

an(z − ξ)n, an ≥ 0. (2)

Note that S0 = S and T0 = T be the subclasses of A = A(0) consisting of univalent
functions in U. By S∗ξ (β) and Kξ(β) respectively, we mean the classes of analytic
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functions that satisfy the analytic conditions

<
{ (z − ξ)f ′(z)

f(z)

}
> β, <

{
1 + (z − ξ)f ′′(z)

f ′(z)

}
> β and (z − ξ) ∈ U

for 0 ≤ β < 1 introduced and studied by Kanas and Ronning [9]. The class S∗ξ (0)
is defined by geometric property that the image of any circular arc centered at ξ
is starlike with respect to f(ξ) and the corresponding class K∗ξ(0) is defined by the
property that the image of any circular arc centered at ξ is convex. We observe
that the definitions are somewhat similar to the ones introduced by Goodman in [8]
for uniformly starlike and convex functions, except that in this case the point ξ is
fixed. In particular, K = K0(0) and S∗0 = S∗(0) respectively, are the well-known
standard classes of convex and starlike functions[10, 19].

We recall a generalized q-Taylors formula in fractional q-calculus and certain
q-generating functions for q-hypergeometric functions studied more recently by
Purohit and Raina [15] and further by Mohammed Aabed and Maslina Darus [1].
For complex parameters a1, . . . , al and b1, . . . , bm (bj 6= 0,−1, . . . ; j = 1, 2, . . . ,m)
the q-hypergeometric function lΨm(z) is defined by

lΨm(a1, . . . , al; b1, . . . , bm; q, z)

:=
∞∑
n=0

(a1; q)n . . . (al; q)n
(b1; q)n . . . (bm; q)n

[
(−1)n q(

n
2)]1+m−l

zn
(3)

with
(
n
2
)

= n(n−1)
2 , where q 6= 0 when l > m+ 1 (l,m ∈ N0 = N ∪ {0}; z ∈ U).

The q-shifted factorial is defined for a, q ∈ C as a product of n factors by

(a; q)n =
{

1, n = 0,
(1− a)(1− aq) . . . (1− aqn−1), n ∈ N

and in terms of basic analogue of the gamma function

(qa; q)n = Γq(a+ n)(1− q)n

Γq(a) , n > 0. (4)

It is interest to note that limq→1−
(qa;q)n

(1−q)n = (a)n = a(a + 1) . . . (a + n − 1) the
familiar Pochhammer symbol.

Now for z ∈ U, 0 < |q| < 1 and l = m+ 1, the basic q-hypergeometric function
defined in (3) takes the form

lψm(a1, . . . , al; b1, . . . , bm; q, z) =
∞∑
n=0

(a1; q)n . . . (al; q)n
(q; q)n(b1; q)n . . . (bm, q)n

zn

which converges absolutely in the open unit disk U. Let

I(al, bm; q; z) = z lψm(a1, . . . , al; b1, . . . , bm; q, z) =
∞∑
n=0

Υl,m
n [a1, q]zn+1,
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where for convenience,

Υl,m
n [a1, q] = (a1; q)n . . . (al; q)n

(q; q)n(b1; q)n . . . (bm; q)n
.

The operator I(al, bm; q)f(z) was studied recently by Aabed and Darus [1].
In this paper we define a new linear operator for (z − ξ) ∈ U, |q| < 1 and

l = m+ 1 as follows:

I(al, bm; q, z − ξ) = (z − ξ) lψm(a1, . . . , al; b1, . . . , bm; q, z − ξ)

=
∞∑
n=0

Υl,m
n [a1, q](z − ξ)n+1.

Using the above, we let

I(al, bm; q, z − ξ) ∗ f(z) = Ilmf(z) = (z − ξ) +
∞∑
n=2

Υl,m
n [a1, q]an(z − ξ)n, (5)

where
Υl
m(n) = Υl,m

n [a1, q] = (a1; q)n−1 . . . (al; q)n−1

(q; q)n−1(b1; q)n−1 . . . (bm; q)n−1

unless otherwise stated.
For ai = qαi , bj = qβj , αi, βj ∈ C, and βj 6= 0,−1,−2, . . . , (i = 1, . . . , l, j =

1, . . . ,m) and q → 1, we obtain the well-known Dziok-Srivastava linear operator
[7, 6] (for l = m + 1). For l = 1, m = 0, a1 = q, and further specializing the
parameters, it gives many (well known and new) integral and differential operators
introduced and studied in [4, 5, 10, 13, 16].

Making use of the operator Ilm and motivated by the results discussed by
Altintas et al. [2], (see [14] and references stated therein) and Aouf et al. [3], in
this paper we introduce a new subclass Sξ(α, β, γ) of analytic functions of complex
order associated with q-hypergeometric functions as given below.

For −1 ≤ α < 1, β ≥ 0 and γ ∈ C \ {0}, we let Sξ(α, β, γ) be the subclass of
A(ξ) consisting of functions of the form (1) and satisfying the analytic criterion

<
(

1 + 1
γ

[ (z − ξ)(Ilmf(z))′

Ilmf(z) − α
])

> β
∣∣∣1 + 1

γ

[ (z − ξ)(Ilmf(z))′

Ilmf(z) − 1
]∣∣∣

for every z ∈ U, where Ilmf(z) is given by (5). We also let T Sξ(α, β, γ) =
Sξ(α, β, γ) ∩ Tξ.

Example 1
We note that Sξ(1, 0, γ) ≡ S∗ξ (γ), the class of starlike functions of complex order
γ (γ ∈ C \ {0}), satisfying the following conditions

f(z)
z − ξ

6= 0 and <
(

1 + 1
γ

[ (z − ξ)(Ilmf(z))′

Ilmf(z) − 1
])

> 0.
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Further,

S∗ξ ((1− δ) cosλ e−iλ) = S∗ξ (δ, λ), |λ| < π

2 ; 0 ≤ δ ≤ 1

and
S∗ξ (cosλ e−iλ) = S∗ξ (λ), |λ| < π

2 ,

where S∗ξ (δ, λ) denotes the subclass of λ-spiral-like function of order δ and S∗ξ (λ)
denotes spiral-like functions with fixed point analogous to the classes introduced
and investigated by Libera [11] and Spacek [18](Also see[21]), respectively.

The main object of this paper is to study some usual properties such as the
coefficient bounds, extreme points, radii of close to convexity, starlikeness and
convexity for the class T Sξ(α, β, γ). Further, we obtain neighborhood results and
integral means inequalities for aforementioned class.

2. Coefficient bounds

In this section we obtain a necessary and sufficient condition for functions
f ∈ T Sξ(α, β, γ).

Theorem 2.1
A necessary and sufficient condition for f of the form (2) to be in the class
T Sξ(α, β, γ) is
∞∑
n=2

[(n+ |γ|)(1− β)− (α− β)](r + d)n−1Υl
m(n)an ≤ (1− α) + |γ|(1− β), (6)

where −1 ≤ α < 1, β ≥ 0 and γ ∈ C \ {0}.

Proof. Assume that f ∈ T Sξ(α, β, γ), then

<
(

1 + 1
γ

[ (z − ξ)(Ilmf(z))′

Ilmf(z) − α
])

> β
∣∣∣1 + 1

γ

[ (z − ξ)(Ilmf(z))′

Ilmf(z) − 1
]∣∣∣,

<
(

1 + 1
γ

[ (z − ξ)(1− α)−
∑∞
n=2(n− α)Υl

m(n)an(z − ξ)n

(z − ξ)−
∑∞
n=2 Υl

m(n)an(z − ξ)n
])

> β
∣∣∣1− 1

γ

[ ∑∞
n=2(n− 1)Υl

m(n)an(z − ξ)n

(z − ξ)−
∑∞
n=2 Υl

m(n)an(z − ξ)n
]∣∣∣.

On choosing the values of (z− ξ) on the positive real axis, where 0 < |z− ξ| ≤
r + d < 1, we have

{
1 + 1
|γ|

( (1− α)−
∑∞
n=2(n− α)Υl

m(n)an(r + d)n−1

1−
∑∞
n=2 Υl

m(n)an(r + d)n−1

)}
> β

{
1− 1
|γ|

(∑∞
n=2(n− 1)Υl

m(n)an(r + d)n−1

1−
∑∞
n=2 Υl

m(n)an(r + d)n−1

)}
.
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The simple computation leads the desired inequality
∞∑
n=2

[(n+ |γ|)(1− β)− (α− β)]Υl
m(n)an(r + d)n−1 ≤ (1− α) + |γ|(1− β).

Conversely, suppose that (6) is true for (z − ξ) ∈ U, then

<
(

1 + 1
γ

[ (z − ξ)(Ilmf(z))′

Ilmf(z) − α
])
− β

∣∣∣1 + 1
γ

[ (z − ξ)(Ilmf(z))′

Ilmf(z) − 1
]∣∣∣ > 0.

If

1 + 1
|γ|

( (1− α)−
∑∞
n=2(n− α)Υl

m(n)an|z − ξ|n−1

1−
∑∞
n=2 Υl

m(n)an|z − ξ|n−1

)
− β

[
1− 1
|γ|

(∑∞
n=2(n− 1)Υl

m(n)an|z − ξ|n−1

1−
∑∞
n=2 Υl

m(n)an|z − ξ|n−1

)]
≥ 0.

That is if
∞∑
n=2

[(n+ |γ|)(1− β)− (α− β)]Υl
m(n)an(r + d)n−1 ≤ (1− α) + |γ|(1− β),

which completes the proof.

Corollary 2.2
Let the function f defined by (2) belongs T Sξ(α, β, γ). Then

an ≤
[(1− α) + |γ|(1− β)]

[(n+ |γ|)(1− β)− (α− β)]Υl
m(n)(r + d)n−1 ,

n ≥ 2, −1 ≤ α < 1, β ≥ 0 and γ ∈ C \ {0}, with equality for

f(z) = (z − ξ)− [(1− α) + |γ|(1− β)]
[(n+ |γ|)(1− β)− (α− β)]Υl

m(n) (z − ξ)n.

For the sake of brevity we let

Θd(n, α, β, γ) = [(n+ |γ|)(1− β)− (α− β)](r + d)n−1,

Θd(2, α, β, γ) = [(2− α− β) + |γ|(1− β)](r + d) (7)
throughout our study.

In the next theorem we state extreme points for the functions of the class
T Sξ(α, β, γ).

Theorem 2.3 (Extreme points)
Let

f1(z) = (z − ξ),

fn(x) = (z − ξ)− [(1− α) + |γ|(1− β)]
[(n+ |γ|)(1− β)− (α− β)]Υl

m(n) (z − ξ)n, n = 2, 3, . . . . (8)

Then f ∈ T Sξ(α, β, γ) if and only if f can be expressed in the form f(z) =∑∞
n=1 ωnfn(z), where ωn ≥ 0 and

∑∞
n=1 ωn = 1.
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The proof of the Theorem 2.3 follows on lines similar to the proof of the
theorem on extreme points given in Silverman [19].

3. Close-to-convexity, starlikeness and convexity

In this section we obtain the radii of close-to-convexity, starlikeness and con-
vexity for the class T Sξ(α, β, γ).

Theorem 3.1
Let f ∈ T Sξ(α, β, γ). Then f is close-to-convex of order δ (0 ≤ δ < 1) in the disc
|z − ξ| < R1, that is <(f ′(z)) > δ, where

R1 = inf
n≥2

[ (1− δ)Θd(n, α, β, γ)
n[(1− α) + |γ|(1− β)]Υ

l
m(n)

] 1
n−1

.

Proof. Given f ∈ Tξ and f is close-to-convex of order δ, we have
|f ′(z)− 1| < 1− δ. (9)

For the left hand side of (9) we have

|f ′(z)− 1| ≤
∞∑
n=2

nanR
n−1
1 .

The last expression is less than 1− δ if
∞∑
n=2

n

1− δ anR
n−1
1 < 1.

Using the fact, that f ∈ T Sξ(α, β, γ) if and only if
∞∑
n=2

Θd(n, α, β, γ)
(1− α) + |γ|(1− β)Υl

m(n)an < 1.

We can say (9) is true if
n

1− δR
n−1
1 ≤ Θd(n, α, β, γ)

(1− α) + |γ|(1− β)Υl
m(n).

Or equivalently,

R1 ≤
[ (1− δ)Θd(n, α, β, γ)
n[(1− α) + |γ|(1− β)]Υ

l
m(n)

] 1
n−1

.

Which completes the proof.

Theorem 3.2
Let f ∈ T Sξ(α, β, γ). Then

1. f is starlike of order δ (0 ≤ δ < 1) in the disc |z − ξ| < R2; that is,
<( (z−ξ)f ′(z)

f(z) ) > δ, where

R2 = inf
n≥2

{ (1− δ)
(n− δ)

Θd(n, α, β, γ)
[(1− α) + |γ|(1− β)]Υ

l
m(n)

} 1
n−1

,
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2. f is convex of order δ (0 ≤ δ < 1) in the unit disc |z − ξ| < R3, that is
<(1 + (z−ξ)f ′′(z)

f ′(z) ) > δ, where

R3 = inf
n≥2

{ (1− δ)
n(n− δ)

Θd(n, α, β, γ)
[(1− α) + |γ|(1− β)]Υ

l
m(n)

} 1
n−1

.

These results are sharp for the extremal function f given by (8).

Proof. For the case 1, notice that for given f ∈ Tξ and f is starlike of order δ,
we have ∣∣∣ (z − ξ)f ′(z)

f(z) − 1
∣∣∣ < 1− δ. (10)

For the left hand side of (10) we obtain∣∣∣ (z − ξ)f ′(z)
f(z) − 1

∣∣∣ ≤ ∑∞n=2(n− 1)an|z − ξ|n−1

1−
∑∞
n=2 an|z − ξ|n−1 .

The last expression is less than 1− δ if
∞∑
n=2

n− δ
1− δ an|z − ξ|

n−1 < 1.

Using the fact, that f ∈ T Sξ(α, β, γ) if and only if
∞∑
n=2

Θd(n, α, β, γ)
(1− α) + |γ|(1− β)Υl

m(n)an < 1.

We can say (10) is true if

n− δ
1− δ |z − ξ|

n−1 <
Θd(n, α, β, γ)

(1− α) + |γ|(1− β)Υl
m(n).

Or equivalently,

Rn−1
3 <

(1− δ)Θd(n, α, β, γ)
(n− δ)[(1− α) + |γ|(1− β)]Υ

l
m(n)

which yields the starlikeness of the family.
Notice that we can prove case 2, on lines similar the proof of case 1, it is

sufficient to use the fact that f is convex if and only if (z − ξ)f ′ is starlike.

4. Modified Hadamard products

For functions of the form

fj(z) = (z − ξ)−
∞∑
n=2

an,j(z − ξ)n, j = 1, 2

we define the modified Hadamard product as

(f1∗f2)(z) = (z − ξ)−
∞∑
n=2

an,1an,2(z − ξ)n.
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Theorem 4.1
If fj ∈ T Sξ(α, β, γ), j = 1, 2, then (f1∗f2)(z) ∈ T Sξ(α, β, γ), where

ξ = (2− β)Θd(2, α, β, γ)Υl
m(2)− 2(1− β)[(1− α) + |γ|(1− β)]

(2− β)Θd(2, α, β, γ)Υl
m(2)− (1− β)[(1− α) + |γ|(1− β)] ,

with Υl
m(2) be defined as in (7).

Proof. Since fj ∈ T Sξ(α, β, γ), j = 1, 2, we have

∞∑
n=2

Θd(n, α, β, γ)Υl
m(n)an,j ≤ (1− α) + |γ|(1− β), j = 1, 2.

The Cauchy-Schwartz inequality leads to
∞∑
n=2

Θd(n, α, β, γ)Υl
m(n)

(1− α) + |γ|(1− β)
√
an,1an,2 ≤ 1. (11)

Note that we need to find the largest ρ such that
∞∑
n=2

Θd(n, α, ρ, γ)Υl
m(n)

(1− α) + |γ|(1− ρ) an,1an,2 ≤ 1. (12)

Therefore, in view of (11) and (12), whenever

n− ξ
1− ξ

√
an,1an,2 ≤

n− β
1− β , n ≥ 2

holds, then (12) is satisfied. We have, from (11),

√
an,1an,2 ≤

(1− α) + |γ|(1− β)
Θd(n, α, β, γ)Υl

m(n) , n ≥ 2. (13)

Thus, if (n− ξ
1− ξ

)[ (1− α) + |γ|(1− β)
Θd(n, α, β, γ)Υl

m(n)

]
≤ n− β

1− β , n ≥ 2,

or, if

ξ = (n− β)Θd(n, α, β, γ)Υl
m(n)− n(1− β)[(1− α) + |γ|(1− β)]

(n− β)Θd(n, α, β, γ)Υl
m(n)− (1− β)[(1− α) + |γ|(1− β)] , n ≥ 2,

then (11) is satisfied. Note that the right hand side of the above expression is an
increasing function on n. Hence, setting n = 2 in the above inequality gives the
required result. Finally, by taking the function

f(z) = (z − ξ)− (1− α) + |γ|(1− β)
(2− β)[Θd(2, α, β, γ)]Υl

m(n) (z − ξ)2,

we see that the result is sharp.
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5. Integral means

In order to find the integral means inequality and to verify the Silverman
Conjuncture [20] for f ∈ T Sξ(α, β, γ) we need the following subordination result
due to Littlewood [12].

Lemma 5.1 ([12])
If the functions f and g are analytic in U with g ≺ f , then

2π∫
0

|g(reiθ)|ηdθ ≤
2π∫

0

|f(reiθ)|η dθ, η > 0, z = reiθ and 0 < r < 1.

Applying Theorem 2.1 with extremal function given by (8) and Lemma 5.1,
we prove the following theorem.

Theorem 5.2
Let η > 0. If f ∈ T Sξ(α, β, γ) and {Φ(α, β, γ, n)}∞n=2 is non-decreasing sequence,
then for (z − ξ) = reiθ and 0 < r + d < 1 we have

2π∫
0

|f(reiθ)|η dθ ≤
2π∫

0

|f2(reiθ)|η dθ,

where
f2(z) = (z − ξ)− (1− α) + |γ|(1− β)

Θd(2, α, β, γ)Υl
m(2) (z − ξ)2.

Proof. Let f(z) of the form (2) and

f2(z) = (z − ξ)− (1− α) + |γ|(1− β)
Θd(2, α, β, γ)Υl

m(2) (z − ξ)2,

then we must show that

2π∫
0

∣∣∣∣1− ∞∑
n=2

an(z − ξ)n−1
∣∣∣∣η dθ ≤

2π∫
0

∣∣∣1− (1− α) + |γ|(1− β)
Θd(2, α, β, γ)Υl

m(2) (z − ξ)
∣∣∣η dθ.

By Lemma 5.1, it suffices to show that

1−
∞∑
n=2

an(z − ξ)n−1 ≺ 1− (1− α) + |γ|(1− β)
Θd(2, α, β, γ)Υl

m(2) (z − ξ).

Setting

1−
∞∑
n=2

an(z − ξ)n−1 = 1− (1− α) + |γ|(1− β)
Θd(2, α, β, γ)Υl

m(2)w(z). (14)
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From (14) and (6) we obtain

|w(z)| =
∣∣∣∣ ∞∑
n=2

Θd(n, α, β, γ)Υl
m(n)

(1− α) + |γ|(1− β) an(z − ξ)n−1
∣∣∣∣

≤ |z − ξ|
∞∑
n=2

Θd(n, α, β, γ)Υl
m(n)

(1− α) + |γ|(1− β) an

≤ |z − ξ|
< 1.

This completes the proof of the Theorem 5.2.

6. Inclusion relations involving Nδ(e)

In this section following [14, 17], we define the n, δ neighborhood of function
f ∈ Tξ and discuss the inclusion relations involving Nδ(e).

Nδ(f) =
{
g ∈ Tξ : g(z) = (z − ξ)−

∞∑
n=2

bn(z − ξ)n and
∞∑
n=2

n|an − bn| ≤ δ
}
.

In particular, for the identity function e(z) = z we have

Nδ(e) =
{
g ∈ Tξ : g(z) = (z − ξ)−

∞∑
n=2

bnz
n and

∞∑
n=2

n|bn| ≤ δ
}
.

Theorem 6.1
Let

δ = 2[(1− α) + |γ|(1− β)]
Θd(2, α, β, γ)Υl

m(2) ,

where −1 ≤ α < 1, β ≥ 0 and γ ∈ C \ {0}. Then T Sξ(α, β, γ) ⊂ Nδ(e).

Proof. For f ∈ T Sξ(α, β, γ) Theorem 2.1 yields

Θd(2, α, β, γ)Υl
m(2)

∞∑
n=2

an ≤ (1− α) + |γ|(1− β)

so that
∞∑
n=2

an ≤
(1− α) + |γ|(1− β)
[Θd(2, α, β, γ)Υl

m(2) . (15)

On the other hand, from (6) and (15) we have
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(1− β)(r + d)Υl
m(2)

∞∑
n=2

nan

≤ (1− α) + |γ|(1− β) + [(α− β)− |γ|(1− β)](r + d)Υl
m(2)

∞∑
n=2

an

≤ (1− α) + |γ|(1− β) + [(α− β)− |γ|(1− β)](r + d)Υl
m(2)

× (1− α) + |γ|(1− β)
[(2− α+ β) + |γ|(1− β)](r + d)Υl

m(2)

≤ [(1− α) + |γ|(1− β)]2(1− β)
(2− α+ β) + |γ|(1− β) .

Hence
∞∑
n=2

nan ≤
2[(1− α) + |γ|(1− β)]

[(2− α+ β) + |γ|(1− β)](r + d)Υl
m(2)

and
∞∑
n=2

nan ≤
2[(1− α) + |γ|(1− β)]

Θd(2, α, β, γ)Υl
m(2) = δ. (16)

Now we determine the neighborhood for each of the function class T Sξ(α, β, γ)
which we define as follows:

A function f ∈ Tξ is said to be in the class T Sξ(α, β, γ, η) if there exists
a function g ∈ T Sξ(α, β, γ) such that∣∣∣f(z)

g(z) − 1
∣∣∣ < 1− η, (z − ξ) ∈ U, 0 ≤ η < 1. (17)

Theorem 6.2
If g ∈ T Sξ(α, β, γ) and

η = 1− δΘd(2, α, β, γ)Υl
m(2)

Θd(2, α, β, γ)Υl
m(2)− 2[(1− α) + |γ|(1− β)] . (18)

Then Nδ(g) ⊂ T Sξ(α, β, γ, η).

Proof. Suppose that f ∈ Nδ(g), then we find from (16) that
∞∑
n=2

n|an − bn| ≤ δ,

which implies the coefficient inequality
∞∑
n=2
|an − bn| ≤

δ

2 .

Next, since g ∈ T Sξ(α, β, γ), we have
∞∑
n=2

bn ≤
2[(1− α) + |γ|(1− β)]

Θd(2, α, β, γ)Υl
m(2) .
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So that ∣∣∣f(z)
g(z) − 1

∣∣∣ < ∑∞
n=2 |an − bn|

1−
∑∞
n=2 bn

≤ δ

2 ×
Θd(2, α, β, γ)Υl

m(2)
Θd(2, α, β, γ)Υl

m(2)− 2[(1− α) + |γ|(1− β)]
≤ 1− η,

provided that η is given precisely by (18). Thus by definition, f ∈ T Sξ(α, β, γ, η)
for η given by (18), which completes the proof.

Concluding Remarks: By suitably specializing the various parameters involved
in Theorem 6 to Theorem 6.2 we can state the corresponding results for the new
subclasses defined in Example 1 and also for many relatively more familiar function
classes.

Acknowledgement: The authors thank the referee for his insightful suggestions
to improve this paper in the present form.
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