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On generalized M -projectively recurrent manifolds

Abstract. The purpose of the present paper is to study generalized M -pro-
jectively recurrent manifolds. Some geometric properties of generalized M -
projectively recurrent manifolds have been studied under certain curvature
conditions. An application of such a manifold in the theory of relativity has
also been shown. Finally, we give an example of a generalized M -projectively
recurrent manifold.

1. Introduction

As is well known, symmetric spaces play an important role in differential geom-
etry. The study of Riemannian symmetric spaces was initiated in the late twenties
by Cartan [4], who, in particular, obtained a classification of those spaces. Let
(Mn, g), n = dimM , be a Riemannian manifold, i.e., a manifold M with the Rie-
mannian metric g and let ∇ be the Levi-Civita connection on (Mn, g). A Rieman-
nian manifold is called locally symmetric [4] if ∇R = 0, where R is the Riemannian
curvature tensor of (Mn, g). This condition of local symmetry is equivalent to the
fact that at every point P ∈ M , the local geodesic symmetry F (P ) is an isome-
try [22]. The class of Riemannian locally symmetric manifolds is a very natural
generalization of the class of manifolds of constant curvature. During the last six
decades the notion of locally symmetric manifolds have been weakened by many
authors in several ways and to various extent such as: conformally symmetric
manifolds by Chaki and Gupta [6], recurrent manifolds introduced by Walker [36],
conformally recurrent manifolds by Adati and Miyazawa [1], conformally symmet-
ric Ricci-recurrent spaces by Roter [29], pseudo symmetric manifolds introduced
by Chaki [7] etc.

The notion of recurrent manifolds have been generalized by various authors to:
Ricci-recurrent manifolds by Patterson [26], 2-recurrent manifolds by Lichnerowicz
[18], projective 2-recurrent manifolds by D. Ghosh [15] and others.
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A tensor field T of type (0, q) is said to be recurrent [29] if the relation

(∇XT )(Y1, Y2, . . . , Yq)T (Z1, Z2, . . . , Zq)
− T (Y1, Y2, . . . , Yq)(∇XT )(Z1, Z2, . . . , Zq) = 0

holds on (Mn, g). From the definition it follows that if at a point x ∈M , T (x) 6= 0,
then in some neighbourhood of x, there exists a unique 1-form A satisfying

(∇XT )(Y1, Y2, . . . , Yq) = A(X)T (Y1, Y2, . . . , Yq).

In 1952, Patterson [26] introduced Ricci-recurrent manifolds. According to Pat-
terson, a manifold (Mn, g) of dimension n, is called Ricci-recurrent if

(∇XS)(Y,Z) = A(X)S(Y,Z)

for some 1-form A. He denoted such a manifold by Rn. Ricci-recurrent manifolds
have been studied by several authors [5, 28, 29, 37] and many others. In a recent
paper De, Guha and Kamilya [12] introduced the notion of generalized Ricci re-
current manifolds which is defined as follows:
a non-flat Riemannian manifold (Mn, g), n > 2 is called generalized Ricci recurrent
if the Ricci tensor S is non-zero and satisfies the condition

(∇XS)(Y,Z) = A(X)S(Y,Z) +B(X)g(Y,Z),

where A and B are non-zero 1-forms. Such a manifold shall be denoted by GRn.
If the associated 1-form B becomes zero, then the manifold GRn reduces to a
Ricci-recurrent manifold Rn. This justifies the name generalized Ricci-recurrent
manifold and the symbol GRn for it. Also De and Guha in [11] introduced a non-
flat Riemannian manifold (Mn, g), n > 2 called a generalized recurrent manifold
if its curvature tensor R of type (1, 3) satisfies the condition

(∇XR)(Y,Z)U = A(X)R(Y,Z)U +B(X)[g(Z,U)Y − g(Y, U)Z],

where A and B are non-zero 1-forms, and ∇x has the meaning already mentioned.
Such a manifold has been denoted by GKn. If the associated 1-form B becomes
zero, then the manifold GKn reduces to a recurrent manifold introduced by Ruse
[30] and Walker [36] which is denoted by Kn.

Generalized recurrent and generalized Ricci recurrent manifolds have been
studied by several authors such as Özgür [23, 24, 25], Mallick, De and De [19],
Arslan et al [2] and many others.

On the other hand, quasi Einstein manifolds arose during the study of exact
solutions of the Einstein field equations as well as during considerations of quasi-
umbilical hypersurfaces of semi-Euclidean spaces. A non-flat Riemannian manifold
(Mn, g), n > 2 is defined to be a quasi Einstein manifold if its Ricci tensor S of
type (0, 2) is not identically zero and satisfies the following condition

S(X,Y ) = ag(X,Y ) + bη(X)η(Y ),

where a, b ∈ R and η is a non-zero 1-form such that

g(X, ξ) = η(X)
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for all vector fields X, η is the 1-form metrically equivalent to the vector field ξ.
Also Mantica and Suh [20] studied quasi-conformally recurrent Riemannian

manifolds. In [10] De and Gazi proved that a generalized concircularly recurrent
manifold with constant scalar curvature is a GRn. Motivated by the above studies
in the present paper we have studied a type of non-flat connected semi-Riemannian
manifold which is called generalized M -projectively recurrent manifolds.

In 1971, Pokhariyal and Mishra [27] introduced a new curvature tensor of type
(1, 3) in an n-dimensional Riemannian manifold (Mn, g), n > 2 denoted by M
and defined by

M(Y, Z)U = R(Y, Z)U − 1
2(n− 1) [S(Z,U)Y

− S(Y, U)Z + g(Z,U)LY − g(Y, U)LZ],
(1.1)

where R and L denote the Riemannian curvature tensor of type (1, 3) and the
Ricci operator defined by g(LX, Y ) = S(X,Y ), respectively. Such a tensor M
is known as an M -projective curvature tensor. In the same paper the authors
studied relativistic significance of such a tensor M. The M -projective curvature
tensor have been studied by J.P. Singh [33], S.K. Chaubey and R.H. Ojha [8],
S.K. Chaubey [9], R.N. Singh and S.K. Pandey [34] and many others. Recently
De and Mallick [13] studied M -projectively flat spacetime and also the divergence
of the M -projective curvature tensor in a perfect fluid spacetime with the energy
momentum tensor of Codazzi type.

From (1.1) we can define a (0, 4) type M -projective curvature tensor M as
follows

M(Y,Z, U, V ) = R(Y, Z, U, V )− 1
2(n− 1) [S(Z,U)g(Y, V )

− S(Y,U)g(Z, V ) + S(Y, V )g(Z,U)− S(Z, V )g(Y,U)],
(1.2)

where R denotes the Riemannian curvature tensor of type (0, 4) defined by

R(Y,Z, U, V ) = g(R(Y,Z)U, V ),
and

M(Y,Z, U, V ) = g(M(Y,Z)U, V ).
The M -projective curvature tensor satisfies the properties of the Riemannian cur-
vature tensor. In this paper we consider a non-flat n-dimensional connected semi-
Riemannian manifold (Mn, g), n ≥ 3 in which the M -projective curvature tensor
of type (0, 4) satisfies the condition

(∇XM)(Y,Z, U, V ) = A(X)M(Y,Z, U, V )
+B(X)[g(Z,U)g(Y, V )− g(Y,U)g(Z, V )],

(1.3)

where A and B are 1-forms. Such an n-dimensional connected semi-Riemannian
manifold will be called a generalized M -projectively recurrent manifold and it is
denoted by G{MP (Kn)}. If the 1-form B is zero, then the manifold reduces to
an M -projectively recurrent manifold.

The paper is organized as follows: After preliminaries in Section 2, we obtain
a necessary and sufficient condition for constant scalar curvature of aG{MP (Kn)}.
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We study a Ricci-symmetricG{MP (Kn)} and an EinsteinG{MP (Kn)} in Section
4 and 5, respectively. In Section 6, we study conformally flat G{MP (Kn)}, n > 3.
Next we obtain a sufficient condition for a G{MP (Kn)} to be a quasi Einstein
manifold. Section 8 deals with decomposable G{MP (Kn)}. Section 9 is devoted
to study G{MP (Kn)} warped product manifolds. Also a relativistic application
is shown in Section 10. Finally, we give an example of a G{MP (Kn)}.

2. Preliminaries

Let S and r denote the Ricci tensor of type (0, 2) and the scalar curvature,
respectively. L denotes the symmetric tensor of type (1, 1) corresponding to the
Ricci tensor S, that is,

g(LX, Y ) = S(X,Y ). (2.1)
In this section, some formulas useful while studying G{MP (Kn)} are derived.
Let {ei} be an orthonormal basis of the tangent space at each point of the semi-
Riemannian manifold, where 1 ≤ i ≤ n such that g(ei, ej) = 0 for i 6= j and
g(ei, ei) = εi, εi = ±1.

From (1.1) we can easily verify that the tensor M satisfies the following prop-
erties:

i) M(Y,Z)U = −M(Z, Y )U,
ii) M(Y,Z)U +M(Z,U)Y +M(U, Y )Z = 0. (2.2)

From (1.2) and (2.2) it follows that

(i) M(Y, Z, U, V ) = −M(Z, Y, U, V ),
(ii) M(Y, Z, U, V ) = −M(Y,Z, V, U),

(iii) M(Y, Z, U, V ) = M(U, V, Y, Z),
(iv) M(Y, Z, U, V ) +M(Z,U, Y, V ) +M(U, Y, Z, V ) = 0.

Also from (1.2) we have
n∑
i=1

M(Y, Z, ei, ei) = 0 =
n∑
i=1

M(ei, ei, U, V )

and
n∑
i=1

εiM(ei, Z, U, ei) =
n∑
i=1

εiM(Z, ei, ei, U)

= n

2(n− 1)

[
S(Z,U)− r

n
g(Z,U)

]
,

(2.3)

where r =
∑n
i=1 εiS(ei, ei) is the scalar curvature.

Let
M̃(Z,U) = S(Z,U)− r

n
g(Z,U).

Therefore,
n∑
i=1

εiM̃(ei, ei) = 0. (2.4)
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3. Necessary and sufficient condition for constant scalar curva-
ture of a generalized M -projectively recurrent manifold

In this section we would like to obtain a necessary and sufficient condition
for constant scalar curvature of a generalized M -projectively recurrent manifold.
From (1.2) and (1.3) we get

(∇XR)(Y, Z, U, V )
= A(X)M(Y, Z, U, V ) +B(X)[g(Z,U)g(Y, V )− g(Y, U)g(Z, V )]

+ 1
2(n− 1) [(∇XS)(Z,U)g(Y, V )− (∇XS)(Y, U)g(Z, V )

+ (∇XS)(Y, V )g(Z,U)− (∇XS)(Z, V )g(Y,U)].

(3.1)

Using (3.1) and Bianchi’s 2nd identity we get

[A(X)M(Y,Z, U, V ) +A(Y )M(Z,X,U, V ) +A(Z)M(X,Y, U, V )]
+ [B(X){g(Z,U)g(Y, V )− g(Y,U)g(Z, V )}
+B(Y ){g(X,U)g(Z, V )− g(Z,U)g(X,V )}
+B(Z){g(Y,U)g(X,V )− g(X,U)g(Y, V )}]

+ 1
2(n− 1) [{(∇XS)(Z,U)g(Y, V )− (∇XS)(Y, U)g(Z, V )

+ (∇XS)(Y, V )g(Z,U)− (∇XS)(Z, V )g(Y, U)}
+ {(∇Y S)(X,U)g(Z, V )− (∇Y S)(Z,U)g(X,V )
+ (∇Y S)(Z, V )g(X,U)− (∇Y S)(X,V )g(Z,U)}
+ {(∇ZS)(Y,U)g(X,V )− (∇ZS)(X,U)g(Y, V )
+ (∇ZS)(X,V )g(Y,U)− (∇ZS)(Y, V )g(X,U)}] = 0.

(3.2)

Contracting (3.2) over Y and V , we get

A(X)
[ n

2(n− 1){S(Z,U)− r

n
g(Z,U)}

]
+A(M(Z,X)U)

−A(Z)
[ n

2(n− 1){S(X,U)− r

n
g(X,U)}

]
+ (n− 1)B(X)g(Z,U)

+B(Z)g(X,U)−B(X)g(Z,U) +B(Z)g(X,U)− nB(Z)g(X,U)

+ 1
2(n− 1) [{n(∇XS)(Z,U)− (∇XS)(Z,U) (3.3)

+ dr(X)g(Z,U)− (∇XS)(Z,U)}

+
{

(∇ZS)(X,U)− (∇XS)(Z,U) + 1
2dr(Z)g(X,U)− 1

2dr(X)g(Z,U)
}

+ {(∇ZS)(X,U)− n(∇ZS)(X,U) + (∇ZS)(X,U)− dr(Z)g(X,U)}] = 0.

Again contracting (3.3) over Z and U , we get

− n

n− 1

{
A(LX)− r

n
A(X)

}
+ (n2 − 3n+ 2)B(X)

+ 1
2(n− 1)

[
(2n− 2)dr(X)− n

2 dr(X)− n

2 dr(X)
]

= 0,
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which implies that

rA(X) = nA(LX)− (n− 1)(n2 − 3n+ 2)B(X)− (n− 2)
2 dr(X). (3.4)

Thus we can state the following:

Theorem 3.1
The scalar curvature r of a generalized M -projectively recurrent manifold is con-
stant if and only if rA(X) = nA(LX) − (n − 1)(n2 − 3n + 2)B(X) holds for all
vector fields X.

Now we suppose that the scalar curvature r is constant in a G{MP (Kn)},
that is, dr = 0. Then from (3.4) we get

rA(X) = nA(LX)− (n− 1)2(n− 2)B(X). (3.5)

Contracting (3.1) over Y and V we get

(∇XS)(Z,U)

= n

2(n− 1)A(X)
[
S(Z,U)− r

n
g(Z,U)

]
+ (n− 1)B(X)g(Z,U) (3.6)

+ 1
2(n− 1) [(n− 2)(∇XS)(Z,U) + dr(X)g(Z,U)].

Using (3.5) and dr = 0 in (3.6) we get

(∇XS)(Z,U) = A(X)S(Z,U) + [−A(LX) + (n− 1)2B(X)]g(Z,U).

This can be written as

(∇XS)(Z,U) = A(X)S(Z,U) +D(X)g(Z,U),

where D(X) = [−A(LX) + (n − 1)2B(X)]. Hence the manifold is a generalized
Ricci-recurrent manifold or Ricci-recurrent manifold. Thus we have the following
theorem:

Theorem 3.2
A generalized M -projectively recurrent manifold with constant scalar curvature is
a generalized Ricci-recurrent manifold or Ricci-recurrent manifold.

4. Ricci-symmetric generalized M -projectively recurrent mani-
fold

In this section we assume that G{MP (Kn)} is Ricci-symmetric, that is, ∇S =
0, that is, ∇L = 0. Then the scalar curvature r is constant and dr = 0. So we
have from (3.6)

n

2(n− 1)A(X)
[
S(Z,U)− r

n
g(Z,U)

]
+ (n− 1)B(X)g(Z,U) = 0. (4.1)
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Again, since r is constant we can use (3.5). Putting the value of B(X) from (3.5)
in (4.1) we get

n

2(n− 1)A(X)S(Z,U)

= r

2(n− 1)A(X)g(Z,U) + (n− 1)
[rA(X)− nA(LX)

(n− 1)2(n− 2)

]
g(Z,U),

which implies

S(Z,U) =
{ r

n− 2 −
2

(n− 2)
A(LX)
A(X)

}
g(Z,U),

where we take X so that (at least locally) A(X) 6= 0. In order to guarantee that
A 6= 0 we have to assume that M is not locally symmetric. This can be written as

S(Z,U) = λg(Z,U),

where λ = { r
n−2 −

2
n−2

A(LX)
A(X) } is a scalar.

Hence the manifold M is an Einstein manifold. This leads to the following
theorem:

Theorem 4.1
A Ricci-symmetric generalized M -projectively recurrent manifold is an Einstein
manifold, provided that it is not locally symmetric.

5. Einstein G{MP (Kn)}

This section deals with an Einstein G{MP (Kn)}. Then the Ricci tensor sat-
isfies

S(Y,Z) = r

n
g(Y,Z), (5.1)

from which it follows that
dr(X) = 0

and
(∇XS)(Y,Z) = 0 for all X,Y, Z. (5.2)

Using (5.1) and (5.2) we get from (1.2)

(∇XM)(Y,Z, U, V ) = (∇XR)(Y,Z, U, V ). (5.3)

Now using (5.3) in (1.3) we have

(∇XR)(Y,Z, U, V )
= A(X)M(Y,Z, U, V ) +B(X)[g(Z,U)g(Y, V )− g(Y,U)g(Z, V )].

(5.4)

Again using (1.2) in (5.4) we get

(∇XR)(Y, Z, U, V )

= A(X)[R(Y,Z, U, V )− 1
2(n− 1){S(Z,U)g(Y, V )− S(Y, U)g(Z, V )

+ g(Z,U)S(Y, V )− g(Y, U)S(Z, V )]
+B(X)[g(Z,U)g(Y, V )− g(Y,U)g(Z, V )].

(5.5)
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Since the manifold is Einstein, so using (5.1) in (5.5) we obtain

(∇XR)(Y,Z, U, V ) = A(X)R(Y,Z, U, V ) +
{
B(X)− r

n(n− 1)A(X)
}

× [g(Z,U)g(Y, V )− g(Y,U)g(Z, V )],

which implies

(∇XR)(Y,Z, U, V ) = A(X)R(Y,Z, U, V )
+D(X)[g(Z,U)g(Y, V )− g(Y, U)g(Z, V )],

(5.6)

where D(X) = B(X) − r
n(n−1)A(X). Let the 1-forms A and B be metrically

equivalent to the vector fields P and Q, respectively.
From (5.6) we conclude that an Einstein G{MP (Kn)} is a GKn, provided

Q 6= r
n(n−1)P .

Hence we have the following:

Theorem 5.1
An Einstein G{MP (Kn)}, n > 2 is a GKn, provided Q 6= r

n(n−1)P .

6. Conformally flat G{MP (Kn)}, n > 3

Suppose (Mn, g) is a semi-Riemannian manifold of dimension n and X is any
vector field on M . Then the divergence of the vector field X, denoted by divX,
is defined as divX =

∑n
i=1 εig(∇eiX, ei), where {ei} is an orthonormal basis of

the tangent space TpM at any point p ∈ M . Again, if K is a tensor field of
type (1, 3), then its divergence divK is a tensor field of type (0,3) defined as
(divK)(X1, . . . , X3) =

∑n
i=1 εig((∇ei

K)(X1, . . . , X3), ei).
In this section we assume that the manifold G{MP (Kn)}, n > 3 is conformally

flat. Then divC = 0, where C denotes the Weyl’s conformal curvature tensor and
‘div’ denotes divergence. Hence we have (see [14]),

(∇XS)(Y, Z)− (∇ZS)(X,Y ) = 1
2(n− 1) [g(Y,Z)dr(X)− g(X,Y )dr(Z)]. (6.1)

Now using (1.2) in (1.3) and then contracting over Y and V we get

n

2(n− 1)(∇XS)(Z,U)− 1
2(n− 1)dr(X)g(Z,U)

= n

2(n− 1)A(X)
[
S(Z,U)− r

n
g(Z,U)

]
+ (n− 1)B(X)g(Z,U),

from which it follows that

(∇XS)(Y, Z) = A(X)
{
S(Y,Z)− r

n
g(Y,Z)

}
+ 2(n− 1)2

n
B(X)g(Y,Z) + 1

n
dr(X)g(Y, Z).

(6.2)
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Using (6.2) in (6.1) we obtain

A(X)
{
S(Y,Z)− r

n
g(Y, Z)

}
+ 2(n− 1)2

n
B(X)g(Y,Z)

+ 1
n
dr(X)g(Y,Z)−A(Z)

{
S(X,Y )− r

n
g(X,Y )

}
− 2(n− 1)2

n
B(Z)g(X,Y )− 1

n
dr(Z)g(X,Y )

= 1
2(n− 1) [g(Y,Z)dr(X)− g(X,Y )dr(Z)].

(6.3)

Now contracting (6.2) over X and Z, we get

dr(Y ) = 2n
n− 2

[
A(LY )− r

n
A(Y )

]
+ 4(n− 1)2

n− 2 B(Y ). (6.4)

Replacing Y by X in (6.4) we obtain

dr(X) = 2n
n− 2

[
A(LX)− r

n
A(X)

]
+ 4(n− 1)2

n− 2 B(X). (6.5)

Contracting (6.3) over Y and Z, we get

dr(X) = 2n
n− 2

[
A(LX)− r

n
A(X)

]
− 4(n− 1)3

n− 2 B(X). (6.6)

From (6.5) and (6.6) it follows that

B(X) = 0.

Then the G{MP (Kn)}, n > 3 is reduced to a MP (Kn). Thus we have the
following:

Theorem 6.1
A conformally flat G{MP (Kn)}, n > 3 is a MP (Kn).

7. Sufficient condition for a generalized M -projectively recur-
rent manifold to be a quasi Einstein manifold

From (6.2) we have

(∇XS)(Y, Z) = A(X)
{
S(Y,Z)− r

n
g(Y,Z)

}
+ 2(n− 1)2

n
B(X)g(Y,Z) + 1

n
dr(X)g(Y, Z).

(7.1)

A vector field P on a manifold with a linear connection ∇ is said to be con-
circular if

∇XP = αX + ω(X)P (7.2)
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for every vector field X, where α is a scalar function and ω is a closed 1-form ([32],
pages 322, 10 and the table on page 323). If the manifold is a semi-Riemannian
manifold and a concircular field P satisfies additional assumption that g(P, P ) ≡ 1,
then g(∇XP, P ) = 0 and consequently

ω(X) = −αA(X), (7.3)

where A defined by
A(X) = g(X,P ) (7.4)

is the 1-form associated with the vector field P .
Using (7.2) and (7.3) we get

g(αX, Y )− g(αA(X)P, Y ) = g(∇XP, Y ),

which implies
α[g(X,Y )−A(X)A(Y )] = g(Y,∇XP ). (7.5)

Now, we have
(∇XA)(Y ) = X(A(Y ))−A(∇XY ),

which implies
(∇XA)(Y ) = X(g(Y, P ))− g(∇XY, P ).

Since (∇Xg)(Y, P ) = 0, so, we have

(∇XA)(Y ) = g(Y,∇XP ). (7.6)

Now, since P is a unit one, using (7.5) in (7.6) we get

(∇XA)(Y ) = α[g(X,Y )−A(X)A(Y )]. (7.7)

Using (7.3) in (7.7) we get

(∇XA)(Y ) = αg(X,Y ) + ω(X)A(Y ).

Let (Mn, g) be a G{MP (Kn)} with corresponding 1-forms A and B in (1.3),
the vector field P defined by g(X,P ) = A(X) for any vector fieldX is a concircular
vector field [32] with a constant function α and g(P, P ) = 1, and ω is a closed 1-
form and the scalar curvature r of this manifold is constant. We assume that
G{MP (Kn)} admits the associated vector field P defined by (7.4), with a non-
zero constant α. Now we can state and prove the following theorem:

Theorem 7.1
If in a G{MP (Kn)} with constant scalar curvature the associated unit vector field
P is a unit concircular vector field whose associated scalar is a non-zero constant,
then the manifold reduces to a quasi Einstein manifold.

Proof. The Ricci identity for 1-form A reads

∇X(∇YA)−∇Y (∇XA)−∇[X,Y ]A = R(X,Y ).A,
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and
(R(X,Y ).A)(Z) = −A(R(X,Y )Z).

Applying Ricci identity to (7.7) we obtain

A(R(X,Y )Z) = α2[g(X,Z)A(Y )− g(Y,Z)A(X)].

Putting Y = Z = ei in (7.4) and taking the summation over i, 1 ≤ i ≤ n, where
{ei} is an orthonormal basis of the tangent space at each point of the manifold,
we get

A(LX) = −(n− 1)α2A(X), (7.8)

where L is the Ricci operator defined by

g(LX, Y ) = S(X,Y ),

which implies
S(X,P ) = −(n− 1)α2A(X). (7.9)

Now,
(∇XS)(Y, P ) = X(S(Y, P ))− S(∇XY, P )− S(Y,∇XP ). (7.10)

Applying (7.9) in (7.10) we get

(∇XS)(Y, P ) = −(n− 1)α2X(A(Y )) + (n− 1)α2A(∇XY )− S(Y,∇XP ).

This can be written as

(∇XS)(Y, P ) = −(n− 1)α2(∇XA)(Y )− S(Y,∇XP ). (7.11)

Using (7.7) in (7.11), we have

(∇XS)(Y, P ) = −(n− 1)α3[g(X,Y )−A(X)A(Y )]− S(Y,∇XP ). (7.12)

Using (7.3) in (7.2) we get

∇XP = αX − αA(X)P.

This yields
∇XP = α(X −A(X)P ).

Therefore,
S(Y,∇XP ) = S(Y, αX)− S(Y, αA(X)P ).

Hence
S(Y,∇XP ) = α[S(X,Y )−A(X)S(Y, P )]. (7.13)

Applying (7.13) in (7.12), we obtain

(∇XS)(Y, P ) = − (n− 1)α3[g(X,Y )−A(X)A(Y )]
− α[S(X,Y )−A(X)S(Y, P )].

(7.14)
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Using (7.9) in (7.14), we get

(∇XS)(Y, P ) = −(n− 1)α3g(X,Y )− αS(X,Y ).

Putting Z = P in (7.1) we have

(∇XS)(Y, P ) = A(X)
{
S(Y, P )− r

n
g(Y, P )

}
+ 2(n− 1)2

n
B(X)g(Y, P ) + 1

n
dr(X)g(Y, P ).

(7.15)

Now using (7.14) and (7.9) in (7.15) yields

−(n− 1)α3g(X,Y )− αS(X,Y )

= −(n− 1)α2A(X)A(Y )− r

n
A(X)A(Y ) (7.16)

+ 2(n− 1)2

n
B(X)A(Y ) + 1

n
dr(X)A(Y ).

Also we assume that the scalar curvature of the G{MP (Kn)}, is constant.
Hence

dr = 0. (7.17)

Now using (7.8) and (7.17) in (3.4) we get

B(X) = − 1
(n− 1)2(n− 2) [r + n(n− 1)α2]A(X). (7.18)

Using (7.17) and (7.18) in (7.16) we get

S(X,Y ) = −(n− 1)α2g(X,Y ) +
[αn(n− 1)

n− 2 + r

α(n− 2)

]
A(X)A(Y ). (7.19)

Since α is a non-zero constant, (7.19) can be written as

S(X,Y ) = pg(X,Y ) + qA(X)A(Y ),

where p = −(n − 1)α2 and q = [αn(n−1)
n−2 + r

α(n−2) ] are two non-zero constants as
α is a non-zero constant. Hence the manifold is a quasi Einstein manifold. Thus
the theorem is proved.

8. Decomposable G{MP (Kn)}

A semi-Riemannian manifold (Mn, g) is said to be decomposable or a product
manifold ([32]) if it can be expressed as Mp

1 × Mn−p
2 for some p in the range

2 ≤ p ≤ (n−2), that is, in some coordinate neighbourhood of the semi-Riemannian
manifold (Mn, g), the metric can be expressed as

ds2 = gijdx
idxj = ḡabdx

adxb + g∗
αβdx

αdxβ , (8.1)
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where ḡab are functions of x1, x2, . . . , xp denoted by x̄ and g∗
αβ are functions of

xp+1, xp+2, . . . , xn denoted by x∗. Here a, b, c, . . . run from 1 to p and α, β, γ, . . .
run from p+ 1 to n.

The two parts of (8.1) are the metrics ofMp
1 , p ≥ 2 andMn−p

2 , n−p ≥ 2 which
are called the components of the decomposable manifold Mn = Mp

1 ×M
n−p
2 .

Let (Mn, g) be a semi-Riemannian decomposable manifold such thatMp
1 , p ≥ 2

and Mn−p
2 , n− p ≥ 2 are components of this manifold.

Throughout this section each object denoted by a ‘bar’ is assumed to come
from M1 and each object denoted by ‘star’ is assumed to come from M2.

Let X̄, Ȳ , Z̄, Ū , V̄ ∈ χ(M1) and X∗, Y ∗, Z∗, U∗, V ∗ ∈ χ(M2). Then in a de-
composable semi-Riemannian manifold Mn = Mp

1 ×M
n−p
2 , 2 ≤ p ≤ n − 2, the

following relations hold [38]:

R(X∗, Ȳ , Z̄, Ū) = 0 = R(X̄, Y ∗, Z̄, U∗) = R(X̄, Y ∗, Z∗, U∗),

(∇X∗R)(Ȳ , Z̄, Ū , V̄ ) = 0 = (∇X̄R)(Ȳ , Z∗, Ū , V ∗) = (∇X∗R)(Ȳ , Z∗, Ū , V ∗),
R(X̄, Ȳ , Z̄, Ū) = R̄(X̄, Ȳ , Z̄, Ū)

R(X∗, Y ∗, Z∗, U∗) = R∗(X∗, Y ∗, Z∗, U∗),
S(X̄, Ȳ ) = S̄(X̄, Ȳ ); S(X∗, Y ∗) = S∗(X∗, Y ∗),

(∇X̄S)(Ȳ , Z̄) = (∇̄X̄ S̄)(Ȳ , Z̄); (∇X∗S)(Y ∗, Z∗) = (∇∗
X∗S∗)(Y ∗, Z∗),

where the meaning of X̄, Ȳ and Z̄ is different on each side, that is, the left
hand side of S(X̄, Ȳ ) = S̄(X̄, Ȳ ) means the value of the Ricci tensor S on M for
X̄, Ȳ , Z̄ ∈ χ(M1) and right hand side means the value of the Ricci tensor S̄ on
M1 for X̄, Ȳ , Z̄ ∈ χ(M1). Similarly for X∗, Y ∗ and Z∗, and r = r̄ + r∗, where r,
r̄ and r∗ are scalar curvatures of M , M1 and M2, respectively.

Let us consider a semi-Riemannian manifold (Mn, g), which is a decomposable
G{MP (Kn)}. Then Mn = Mp

1 ×M
n−p
2 , 2 ≤ p ≤ n− 2.

Now from (1.2), we get

M(Ȳ , Z̄, Ū , V̄ ) = M̄(Ȳ , Z̄, Ū , V̄ ), (8.2)

M(Y ∗, Z∗, U∗, V ∗) = M∗(Y ∗, Z∗, U∗, V ∗),

M(Y ∗, Z̄, Ū , V̄ ) = 0 = M(Ȳ , Z∗, U∗, V ∗) = M(Ȳ , Z∗, Ū , V̄ )
= M(Ȳ , Z̄, U∗, V̄ ),

M(Ȳ , Z∗, U∗, V̄ ) = − 1
2(n− 1) [S(Z∗, U∗)g(Ȳ , V̄ ) + S(Ȳ , V̄ )g(Z∗, U∗)], (8.3)

M(Y ∗, Z̄, Ū , V ∗) = − 1
2(n− 1) [S(Z̄, Ū)g(Y ∗, V ∗) + S(Y ∗, V ∗)g(Z̄, Ū)], (8.4)

M(Y ∗, Z̄, U∗, V̄ ) = 1
2(n− 1) [S(Y ∗, U∗)g(Z̄, V̄ ) + S(Z̄, V̄ )g(Y ∗, U∗)],

M(Ȳ , Z∗, Ū , V ∗) = 1
2(n− 1) [S(Ȳ , Ū)g(Z∗, V ∗) + S(Z∗, V ∗)g(Ȳ , Ū)],

(∇X∗M)(Ȳ , Z̄, Ū , V̄ ) = 0 = (∇X̄M)(Y ∗, Z∗, U∗, V ∗).
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Again from (1.3), we get

(∇X̄M)(Ȳ , Z̄, Ū , V̄ ) = A(X̄)M(Ȳ , Z̄, Ū , V̄ )
+B(X̄)[g(Z̄, Ū)g(Ȳ , V̄ )− g(Ȳ , Ū)g(Z̄, V̄ )],

A(X∗)M(Ȳ , Z̄, Ū , V̄ ) +B(X∗)[g(Z̄, Ū)g(Ȳ , V̄ )− g(Ȳ , Ū)g(Z̄, V̄ )] = 0, (8.5)
and

B(p̄,p∗)(0⊕ v) = 0
for every p̄ ∈ M1, p∗ ∈ M2 and v ∈ Tp∗M2. Also for every (p̄, p∗) ∈ M from (1.3)
we obtain

(∇X∗M)(p̄,p∗)(Y ∗, Z∗, U∗, V ∗) = (∇∗
X∗M∗)p∗(Y ∗, Z∗, U∗, V ∗) (8.6)

and the value of (∇X∗M)(p̄,p∗)(Y ∗, Z∗, U∗, V ∗) does not depend on p̄ ∈ M1 for
every p̄ ∈M1 and p∗ ∈M2.

If possible let B(X∗) = 0 for all X∗ ∈ χ(M2), then from (8.5) we get

A(X∗)M(Ȳ , Z̄, Ū , V̄ ) = 0. (8.7)

Using (8.2) in (8.7) we get

A(X∗)M̄(Ȳ , Z̄, Ū , V̄ ) = 0. (8.8)

If M1 is not M -projectively flat, that is, M̄p̄0 6= 0 for some p̄0 ∈ M1, then from
(8.7) and (8.8) it follows that

A(p̄,p∗)(0⊕ v) = 0 (8.9)

for every p̄ ∈M1, p∗ ∈M2 and for every v ∈ Tp∗M2. Hence (1.3) yields

(∇X∗M)(p̄,p∗)(Y ∗, Z∗, U∗, V ∗) = 0

for every p̄ ∈ M1 and p∗ ∈ M2. It follows that if M1 is not M -projectively flat,
then

A(p̄,p∗)(X∗)M∗
p∗(Y ∗, Z∗, U∗, V ∗) = 0 (8.10)

for all p̄ ∈M1 and p∗ ∈M2.
Now we assume that

(∇XM)(Y, Z, U, V ) = Ā(X)M(Y, Z, U, V )
+ B̄(X)[g(Z,U)g(Y, V )− g(Y,U)g(Z, V )],

(8.11)

where Ā and B̄ are 1-forms. Putting (8.11) in (1.3) we get

[A(X)− Ā(X)]M(Y, Z, U, V )
+ [B(X)− B̄(X)][g(Z,U)g(Y, V )− g(Y,U)g(Z, V )] = 0.

(8.12)

Contracting (8.12) over Y and V , and using (2.3) we obtain
n

2(n− 1) [A(X)− Ā(X)]M̃(Z,U) + (n− 1)[B(X)− B̄(X)]g(Z,U) = 0. (8.13)
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Again contracting (8.13) over Z and U and using (2.4) we get

B(X) = B̄(X) (8.14)

for all X ∈M . From (8.14) in (8.12) it follows that

A(X) = Ā(X)

for all X ∈ M , provided M(Y,Z, U, V ) 6= 0, that is, if the manifold is not M -
projectively flat manifold. Thus the 1-forms A and B in (1.3) are uniquely de-
termined, provided that the manifold is not M -projectively flat manifold. Hence
from (8.10) we obtain

A(p̄,p∗)(X∗) = 0 (8.15)
for all p̄ ∈M1 and p∗ ∈M2.

From (8.8) we conclude that either

(I) A(X∗) = 0 for all X∗ ∈ χ(M2), or

(II) M1 is M -projectively flat.

Also from (1.3), we obtain

(∇X∗M)(Y ∗, Z̄, Ū , V ∗)
= A(X∗)M(Y ∗, Z̄, Ū , V ∗) (8.16)

+B(X∗)[g(Z̄, Ū)g(Y ∗, V ∗)− g(Y ∗, Ū)g(Z̄, V ∗)].

Now we consider the case (I). From (8.16), it follows that

(∇X∗M)(Y ∗, Z̄, Ū , V ∗) = 0,

which implies by the virtue of (8.4) that,

(∇X∗S)(Y ∗, V ∗) = 0. (8.17)

Hence the component M2 is Ricci symmetric. Using (8.4), (8.6), (8.9), (8.10) and
(8.15) and A(X∗) = 0, B(X∗) = 0 for all X∗ ∈ χ(M2), from (1.3), we have

(∇X∗M)(Y ∗, Z∗, U∗, V ∗) = 0

and hence

(∇X∗R)(Y ∗, Z∗, U∗, V ∗)− 1
2(n− 1) [(∇X∗S)(Z∗, U∗)g(Y ∗, V ∗)

− (∇X∗S)(Y ∗, U∗)g(Z∗, V ∗) + (∇X∗S)(Y ∗, V ∗)g(Z∗, U∗)
− (∇X∗S)(Z∗, V ∗)g(Y ∗, U∗)] = 0,

which yields by the virtue of (8.17) that

(∇X∗R)(Y ∗, Z∗, U∗, V ∗) = 0,

that is, the component M2 is locally symmetric. Similar result can be proved for
M1. Thus we can state the following:
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Theorem 8.1
Let (Mn, g) be a semi-Riemannian manifold which is not M -projectively flat, such
that M = Mp

1 ×M
n−p
2 for some 2 ≤ p ≤ n− 2. If (Mn, g) is a G{MP (Kn)} and

B(X∗) = 0 for all X∗ ∈ χ(M2), (resp.B(X̄) = 0 for all X̄ ∈ χ(M1)), then either
(I) or (II) holds.

(I) A(X∗) = 0 for all X∗ ∈ χ(M2) (resp. A(X̄) = 0 for all X̄ ∈ χ(M1)), and
hence M2 (resp. M1) is Ricci symmetric as well as locally symmetric.

(II) M1 (resp. M2) is M -projectively-flat.

Also from (1.3) we get

(∇X̄M)(Ȳ , Z∗, U∗, V̄ )
= A(X̄)M(Ȳ , Z∗, U∗, V̄ ) (8.18)

+B(X̄)[g(Z∗, U∗)g(Ȳ , V̄ )− g(Ȳ , U∗)g(Z∗, V̄ )].

Using (8.3) in (8.18) we get

1
2(n− 1) [(∇X̄S)(Ȳ , V̄ )g(Z∗, U∗)]

= A(X̄)
[ 1

2(n− 1){S(Z∗, U∗)g(Ȳ , V̄ ) + S(Ȳ , V̄ )g(Z∗, U∗)}
]

(8.19)

−B(X̄)g(Z∗, U∗)g(Ȳ , V̄ ).

Now assume that S(Z∗, U∗) = 0 and g(Z∗, U∗) 6= 0. Then from (8.19) we get

(∇X̄S)(Ȳ , V̄ ) = A(X̄)S(Ȳ , V̄ )− 2(n− 1)B(X̄)g(Ȳ , V̄ ),

which implies

(∇X̄S)(Ȳ , V̄ ) = C(X̄)S(Ȳ , V̄ ) +D(X̄)g(Ȳ , V̄ ),

where C(X̄) = A(X̄) and D(X̄) = −2(n − 1)B(X̄) are two non-zero 1-forms.
Therefore M1 is a generalized Ricci-recurrent manifold if M2 is Ricci-flat. Thus
we have the following:

Theorem 8.2
Let (Mn, g) be a semi-Riemannian manifold such that M = Mp

1 ×M
n−p
2 , 2 ≤ p ≤

n − 2. If Mn is a G{MP (Kn)} and M2 is Ricci flat, then M1 is a generalized
Ricci-recurrent manifold.

9. G{MP (Kn)} warped product manifolds

The study of warped product manifolds was initiated by Kručkovič [17] in
1957. In 1969 Bishop and O’Neill [3] also obtained the same notion of the warped
product manifolds, while they were constructing a large class of manifolds of neg-
ative curvature. Warped product manifolds are generalizations of the Cartesian
product of Riemannian manifolds. We extend this definition to semi-Riemannian
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manifolds. Let (M̄, ḡ) and (M̃, g̃) be two semi-Riemannian manifolds. Let M̄ and
M̃ be covered by coordinate charts (U ;x1, x2, . . . , xp) and (V ; y1, y2, . . . , yn−p),
respectively. Then the warped product M = M̄ ×f M̃ is the product manifold
M̄ × M̃ which is covered by the coordinate charts (U × V ;x1, x2, . . . , xp, xp+1 =
yp+1, xp+2 = yp+2, . . . , xn = yn). Then the local components of the metric g with
respect to such a coordinate chart are given by

gij =

 ḡij for i = a and j = b,
f g̃ij for i = α and j = β,
0 otherwise,

Here a, b, c, . . . ∈ {1, 2, . . . , p} and α, β, γ, . . . ∈ {p+1, p+2, . . . , n}, and i, j, k, . . . ∈
{1, 2, . . . , n}. Here M̄ is called the base, M̃ is called the fiber and f is called the
warping function of the warped product M = M̄ ×f M̃ . We denote by Γijk,
Rijkl, Sij and κ the components of the Levi-Civita connection ∇, the Riemann-
Christoffel curvature tensor R, Ricci tensor S and the scalar curvature of (M, g),
respectively. Moreover, when Ω is a quantity formed with respect to g, we denote
by Ω̄ and Ω̃, the similar quantities formed with respect to ḡ and g̃, respectively.
Then the non-zero local components of Levi-Civita connection ∇ of (M, g) are
given by

Γabc = Γ̄abc, Γαβγ = Γ̃αβγ , Γaβγ = −1
2 ḡ

abfbg̃βγ , Γαaβ = 1
2f faδ

α
β ,

where fa = ∂af = ∂f
∂xa . The local components Rhijk = ghlR

l
ijk = ghl(∂kΓlij −

∂jΓlik + ΓmijΓlmk −ΓmikΓlmj), ∂k = ∂
∂xk , of the Riemann-Christoffel curvature tensor

R of (M, g) which may not vanish identically are the following:

Rabcd = R̄abcd, Raαbβ = −fTabg̃αβ , Rαβγδ = fR̃αβγδ − f2PG̃αβγδ,

where Gijkl = gilgjk − gikgjl and

Tab = − 1
2f

(
∇bfa −

1
2f fafb

)
, tr(T ) = gabTab,

Q = f((n− p− 1)P − tr(T )), P = 1
4f2 g

abfafb.

The non-zero local components of the Ricci tensor Sjk = gilRijkl of (M, g) are
given by

Sab = S̄ab + (n− p)Tab, Sαβ = S̃αβ −Qg̃αβ . (9.1)
The scalar curvature κ of (M, g) is given by

κ = κ̄+ κ̃

f
− (n− p)[(n− p− 1)P − 2tr(T )].

Again the non-zero local components of ∇R and ∇S are given by [16]

(i) ∇eRabcd = ∇̄eR̄abcd,

(ii) ∇eRaαbβ = −f∇̄eTabg̃αβ ,
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(iii) ∇eRαβγδ = −feR̃αβγδ − f2PeG̃αβγδ,

(iv) ∇εRαβγδ = f∇̃εR̃αβγδ,

(v) ∇εRαβγd = −fd2 R̃αβγε −
f2

2 PdG̃αβγε,

(vi) ∇εRabcδ = −1
2 g̃εδ(faTbc − fbTac) + 1

2f
dR̄abcdg̃εδ, f b = ḡabfa, (9.2)

and

(i) ∇eSab = ∇̄eS̄ab + (n− p)∇̄eTab,

(ii) ∇eSαβ = Qeg̃αβ −
fe
f

(S̃αβ −Qg̃αβ),

(iii) ∇εSαβ = ∇̃εS̃αβ ,

(iv) ∇εSαa = − 1
2f S̃αεfa + 1

2 g̃αε
[
f c(S̄ca + (n− p)Tca) + Q

f
fa

]
. (9.3)

Let M = M̄ ×f M̃ be a non-flat warped product manifold and also let M be
a G{MP (Kn)}. That is,

∇eMabcd = AeMabcd +BeGabcd, (9.4)

where Gabcd = {gbcgad − gacgbd}.
Using (1.2) in (9.4) we have

∇eRabcd −
1

2(n− 1) [∇eSbcgad −∇eSacgbd +∇eSadgbc −∇eSbdgac]

= Ae

[
Rabcd −

1
2(n− 1){Sbcgad − Sacgbd + Sadgbc − Sbdgac}

]
+Be{gbcgad − gacgbd}.

Now putting (9.1), (9.2) and (9.3) to the above equation we get

∇̄eR̄abcd −
1

2(n− 1) [{∇̄eS̄bc + (n− p)∇̄eTbc}ḡad

− {∇̄eS̄ac + (n− p)∇̄eTac}ḡbd + {∇̄eS̄ad + (n− p)∇̄eTad}ḡbc
− {∇̄eS̄bd + (n− p)∇̄eTbd}ḡac]

= Ae

[
R̄abcd −

1
2(n− 1)

[
{S̄bc + (n− p)Tbc}ḡad

− {S̄ac + (n− p)Tac}ḡbd + {S̄ad + (n− p)Tad}ḡbc
− {S̄bd + (n− p)Tbd}ḡac

]]
+Be{ḡbcḡad − ḡacḡbd},

which implies

∇̄eM̄abcd = ĀeM̄abcd + B̄eGabcd

+ (n− p)
2(n− 1) [{∇̄eTbcḡad − ∇̄eTacḡbd + ∇̄eTadḡbc − ∇̄eTbdḡac}

+Ae{−Tbcḡad + Tacḡbd − Tadḡbc + Tbdḡac}]
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This can be written as

∇̄eM̄abcd = ĀeM̄abcd + B̄eGabcd,

provided that

∇̄eTbc = AeTbc (9.5)

holds. Hence we can conclude that, ifM = M̄×f M̃ is a generalizedM -projectively
warped product manifold, then M̄ is also a G{MP (Kn)}, provided (9.5) holds.
Hence we have the following:

Theorem 9.1
If M = M̄ ×f M̃ is a G{MP (Kn)} warped product manifold, then, provided (9.5)
holds, M̄ is a G{MP (Kn)}.

10. Perfect fluid Ricci symmetric G{MP (Kn)} spacetime

This section is concerned with certain investigations in general relativity by
the coordinate free method of differential geometry. In this method of study the
spacetime of general relativity is regarded as a connected four-dimensional semi-
Riemannian manifold (R4, g) with Lorentz metric g with signature (+,+,+,−).
The geometry of the Lorentz manifold begins with the study of the casual character
of vectors of the manifold. It is due to this causality that the Lorentz manifold
becomes a convenient choice for the study of general relativity. Here we consider
a special type of spacetime. Perfect fluid model is a spacetime (M, g) together
with a triple (P, σ, p), where P is a timelike future-pointing unit vector field, and
σ and p are functions called the energy density function and the pressure function
respectively ([22, 31]). The energy momentum tensor of type (0, 2) for a perfect
fluid is given by

T (X,Y ) = (σ + p)A(X)A(Y ) + pg(X,Y ), (10.1)

where A is the 1-form metrically equivalent to P such that A(X) = g(X,P ) and
σ and p are the energy density and isotropic pressure of the fluid, respectively. As
every spacetime model in general relativity, the perfect fluid model is required to
obey the Einstein field equations. The Einstein field equations without cosmolog-
ical constant is as follows

S(X,Y )− r

2g(X,Y ) = kT (X,Y ), (10.2)

where k is the gravitational constant. A semi-Riemannian four-dimensional Ricci
symmetric generalizedM -projectively recurrent manifold may similarly be defined
by taking a Lorentz metric g with signature (+,+,+,−). In this case we consider
a Ricci symmetric generalized M -projectively recurrent spacetime with the time-
like velocity vector field P such that g(P, P ) = −1. So, Theorem 4.1 will also hold
in such a spacetime.
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Using (10.1) we can express (10.2) as

S(X,Y )− r

2g(X,Y ) = k[(σ + p)A(X)A(Y ) + pg(X,Y )]. (10.3)

Taking a frame field and contracting (10.3) over X and Y we get

r = k(σ − 3p). (10.4)

Since the spacetime is Ricci symmetric, it is Einstein as well. Putting S(X,Y ) =
r
4g(X,Y ) in (10.3) and using (10.4) we obtain

−k4 (σ + p)g(X,Y ) = k(σ + p)A(X)A(Y ). (10.5)

Since g is non-degenerate, it must be σ+p = 0. This implies that the fluid behaves
as a cosmological constant [35]. This is also termed as a phantom barrier [21]. Now
in the cosmology we know that the choice σ = −p leads to rapid expansion of the
spacetime which is now termed as inflation. Thus we can state the following:

Theorem 10.1
A perfect fluid Ricci symmetric G{MP (Kn)} spacetime represents inflation and
the fluid behaves as a cosmological constant. This is also termed as a phantom
barrier.

11. Example of a G{MP (Kn)}

This section deals with an example of a G{MP (Kn)}. First, on the real num-
ber space Rn (with coordinates x1, x2, . . . , xn) we define suitable semi-Riemannian
metric g such that Rn becomes a semi-Riemannian manifold (Mn, g). We calcu-
late the components of the curvature tensor, the Ricci tensor, the M -projective
curvature tensor and its covariant derivative and then we verify the defining rela-
tion (1.3).

Example 11.1
We define a semi-Riemannian metric on the 4-dimensional real number space R4

by the formula

ds2 = gijdx
idxj = f(dx1)2 + 2dx1dx2 + (dx3)2 + k(x1)2v(x4)(dx4)2, (11.1)

where i, j = 1, 2, . . . , 4. Here f = p0 + p1x
3 + p2(x3)2, p0, p1, p2 are non-constant

functions of x1 only, f > 0, v is a function of x4 and k < 0 is an arbitrary constant.
Moreover, we assume x1 > 0, x3 6= 0 and x4 > 0.

Since we want M to be connected, M ⊂ {x1 > 0} and M ⊂ {x4 > 0}. Then
the only non-vanishing components of the Christoffel symbols, the curvature tensor
and the Ricci tensor are respectively:

Γ2
11 = 1

2f.1, Γ2
13 = −Γ3

11 = 1
2f.3, Γ4

14 = 1
x1 , Γ2

44 = −kx1v, Γ4
44 = v.4

2v ,
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R1331 = 1
2f.33, S11 = 1

2f.33,

and the components which can be obtained from these by the symmetric properties.
Here ‘.’ denotes the partial differentiation with respect to the coordinates. Using
the above relations, it can be easily shown that the scalar curvature of the manifold
is zero. Therefore R4 with the considered metric is a semi-Riemannian manifold
M4 whose scalar curvature is zero. In the view of the above relations, (1.2) yields
that the non-zero components of the M -projective curvature tensor are

M1331 = 5
12f.33 = 5

6p2 6= 0, (11.2)

M1441 = − 1
12f.33k(x1)2v(x4) = −k(x1)2v(x4)

6 p2 6= 0, (11.3)

and the components which can be obtained from (11.2) and (11.3) by the sym-
metric properties. If, in particular, we take x1 = x4 and v(x4) = 1

(x4)2 = 1
(x1)2 ,

then (11.3) can be written as follows

M1441 = − 1
12f.33k(x1)2v(x4) = −k(x1)2v(x4)

6 p2 = −k6p2 6= 0. (11.4)

The non-zero covariant derivatives of theM -projective curvature tensorM are

M1331,1 = M1331,4 = 5
12f.331 = 5

6(p2).1 6= 0, (11.5)

M1441,1 = M1441,4 = −k6 (p2).1 6= 0 (11.6)

and the components which can be obtained from (11.5) and (11.6) by the sym-
metric properties, where ‘,’ denotes the covariant derivative with respect to the
metric tensor. Hence the Riemannian manifold (M4, g) is neither M -projectively
flat nor M -projectively symmetric.

We shall now show that this M4 is a MP (K4), that is a G{MP (K4)} with
the 1-forms A 6= 0 and B = 0 in (1.3) satisfying (1.3). Let us now consider the
following 1-forms Ai and Bi:

Ai(x) =
{

(p2).1
p2

, i = 1, 4
0, otherwise,

(11.7)

Bi(x) = 0 for i = 1, 2, 3, 4, (11.8)

at any point x ∈ R4. Now the equation (1.3) reduces to the equation

M1331,1 = M1331,4 = A1M1331 = A4M1331, (11.9)

M1441,1 = M1441,4 = A1M1441 = A4M1441, (11.10)
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since, for the other cases (1.3) holds trivially. Using (11.7) and (11.8) in (11.9) we
get

R.H.S. of (11.9) = A1M1331 +B1[g33g11 − g13g31]

= (p2).1
p2

5p2

6 + 0 = 5(p2).1
6

= L.H.S. of (11.9).

In all other cases the proof is trivial. Therefore, (R4, g) is a MP (K4).
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