

FOLIA 182

Annales Universitatis Paedagogicae Cracoviensis Studia Mathematica XV (2016)

Andrzej Walendziak
Strong ideals and horizontal ideals in pseudo-BCH-algebras

Abstract. In this paper we define strong ideals and horizontal ideals in pseudo-BCH-algebras and investigate the properties and characterizations of them.

1. Introduction

In 1966, Y. Imai and K. Iséki ([13, 14]) introduced BCK- and BCI-algebras. In 1983, Q.P. Hu and X. Li ([11]) introduced BCH-algebras. It is known that BCK- and BCI-algebras are contained in the class of BCH-algebras.

In 2001, G. Georgescu and A. Iorgulescu ([10]) introduced pseudo-BCK-algebras as an extension of BCK-algebras. In 2008, W.A. Dudek and Y.B. Jun ([2]) introduced pseudo-BCI-algebras as a natural generalization of BCI-algebras and of pseudo-BCK-algebras. These algebras have also connections with other algebras of logic such as pseudo-MV-algebras and pseudo-BL-algebras defined by G. Georgescu and A. Iorgulescu in [8] and [9], respectively. Those algebras were investigated by several authors in a number of papers (see for example [3, 5, 6, 7, 15, 17, 18, 19]). Recently, A. Walendziak ([20]) introduced pseudo-BCH-algebras as an extension of BCH-algebras and studied the set $\text{Cen}\,\mathfrak{X}$ of all minimal elements of a pseudo-BCH-algebra \mathfrak{X} , the so-called centre of \mathfrak{X} . He also considered ideals in pseudo-BCH-algebras and established a relationship between the ideals of a pseudo-BCH-algebra and the ideals of its centre.

In this paper we define strong ideals and horizontal ideals in pseudo-BCH-algebras and investigate the properties and characterizations of them.

AMS (2010) Subject Classification: 03G25, 06F35.

Keywords and phrases: (Pseudo-)BCK/BCI/BCH-algebra, closed ideal, strong ideal, horizontal ideal, centre.

[16] Andrzej Walendziak

2. Preliminaries

We recall that an algebra $\mathfrak{X}=(X;*,0)$ of type (2,0) is called a *BCH-algebra* if it satisfies the following axioms:

(BCH-1)
$$x * x = 0$$
;
(BCH-2) $(x * y) * z = (x * z) * y$;
(BCH-3) $x * y = y * x = 0 \implies x = y$.

A BCH-algebra \mathfrak{X} is said to be a *BCI-algebra* if it satisfies the identity

(BCI)
$$((x*y)*(x*z))*(z*y) = 0.$$

A BCK-algebra is a BCI-algebra \mathfrak{X} satisfying the law 0 * x = 0.

Definition 2.1 ([2])

A pseudo-BCI-algebra is a structure $\mathfrak{X} = (X; \leq, *, \diamond, 0)$, where \leq is a binary relation on the set X, * and \diamond are binary operations on X and 0 is an element of X, satisfying the axioms:

$$\begin{array}{ll} (\mathrm{pBCI-1}) & (x*y) \diamond (x*z) \leq z*y, & (x\diamond y)*(x\diamond z) \leq z \diamond y; \\ (\mathrm{pBCI-2}) & x*(x\diamond y) \leq y, & x\diamond (x*y) \leq y; \\ (\mathrm{pBCI-3}) & x \leq x; \\ (\mathrm{pBCI-4}) & x \leq y, \ y \leq x \Longrightarrow x = y; \\ (\mathrm{pBCI-5}) & x \leq y \Longleftrightarrow x*y = 0 \Longleftrightarrow x\diamond y = 0. \end{array}$$

A pseudo-BCI-algebra ${\mathfrak X}$ is called a pseudo-BCK-algebra if it satisfies the identities

(pBCK)
$$0 * x = 0 \diamond x = 0$$
.

Definition 2.2 ([20])

A pseudo-BCH-algebra is an algebra $\mathfrak{X} = (X; *, \diamond, 0)$ of type (2, 2, 0) satisfying the axioms:

```
(pBCH-1) x * x = x \diamond x = 0;

(pBCH-2) (x * y) \diamond z = (x \diamond z) * y;

(pBCH-3) x * y = y \diamond x = 0 \Longrightarrow x = y;

(pBCH-4) x * y = 0 \Longleftrightarrow x \diamond y = 0.
```

We define a binary relation \leq on X by

$$x \leqslant y \iff x * y = 0 \iff x \diamond y = 0.$$

Throughout this paper \mathfrak{X} will denote a pseudo-BCH-algebra.

Remark

Observe that if (X;*,0) is a BCH-algebra, then letting $x\diamond y:=x*y$, produces a pseudo-BCH-algebra $(X;*,\diamond,0)$. Therefore, every BCH-algebra is a pseudo-BCH-algebra in a natural way. It is easy to see that if $(X;*,\diamond,0)$ is a pseudo-BCH-algebra, then $(X;\diamond,*,0)$ is also a pseudo-BCH-algebra. From Proposition 3.2 of [2] we conclude that if $(X;\leq,*,\diamond,0)$ is a pseudo-BCI-algebra, then $(X;*,\diamond,0)$ is a pseudo-BCH-algebra.

Example 2.3 ([21])

Let $(G; \cdot, e)$ be a group. Define binary operations * and \diamond on G by

$$a * b = ab^{-1}$$
 and $a \diamond b = b^{-1}a$

for all $a, b \in G$. Then $\mathfrak{G} = (G; *, \diamond, e)$ is a pseudo-BCH-algebra.

We say that a pseudo-BCH-algebra $\mathfrak X$ is proper if $*\neq \diamond$ and $\mathfrak X$ is not a pseudo-BCI-algebra.

Example 2.4

Consider the set $X = \{0, a, b, c, d, e, f, g, h\}$ with the operations * and \diamond defined by the following tables:

					d				
0	0	0	0	0	d	e	f	h	g
a	a	0	c	c	d	e	f	h	g
b	b	0	0	b	d	e	f	h	g
c	c	0	0	0	d	e	f	h	g
d	d	d	d	d	0	h	g	e	f
e	e	e	e	e	g	0	h	f	d
f	f	f	f	f	h	g	0	d	e
g	$\mid g \mid$	g	g	g	e	f	d	0	h
h	$\mid h \mid$	h	h	h	f	d	e	g	0

and

Then $(X; *, \diamond, 0)$ is a proper pseudo-BCH-algebra (see [21]).

From [20] it follows that in any pseudo-BCH-algebra $\mathfrak X$ for all $x,y\in X$ we have:

- (a1) $x * (x \diamond y) \leqslant y$ and $x \diamond (x * y) \leqslant y$;
- (a2) $x * 0 = x \diamond 0 = x$;
- (a3) $0 * x = 0 \diamond x$;
- (a4) 0 * (0 * (0 * x)) = 0 * x;
- (a5) $0*(x*y) = (0*x) \diamond (0*y);$
- (a6) $0 * (x \diamond y) = (0 * x) * (0 * y).$

Following the terminology of [20], the set $\{a \in X : a = 0*(0*a)\}$ will be called the *centre* of \mathfrak{X} . W shall denote it by Cen \mathfrak{X} . By Proposition 4.1 of [20], Cen \mathfrak{X} is

[18] Andrzej Walendziak

the set of all minimal elements of \mathfrak{X} , that is, $\operatorname{Cen} \mathfrak{X} = \{a \in X : \forall_{x \in X} \ x \leqslant a \Longrightarrow x = a\}.$

Example 2.5

Let $\mathfrak{X} = (X; *, \diamond, 0)$ be the pseudo-BCH-algebra given in Example 2.4. It is easily seen that Cen $\mathfrak{X} = \{0, d, e, f, g, h\}$.

Proposition 2.6 ([20])

Let \mathfrak{X} be a pseudo-BCH-algebra, and let $a \in X$. Then the following conditions are equivalent:

- (i) $a \in \operatorname{Cen} \mathfrak{X}$.
- (ii) a * x = 0 * (x * a) for all $x \in X$.
- (iii) $a \diamond x = 0 * (x \diamond a)$ for all $x \in X$.

Proposition 2.7 ([20])

Cen \mathfrak{X} is a subalgebra of \mathfrak{X} .

Definition 2.8

A subset I of X is called an *ideal* of \mathfrak{X} if it satisfies for all $x, y \in X$:

- (I1) $0 \in I$;
- (I2) if $x * y \in I$ and $y \in I$, then $x \in I$.

We will denote by $\mathrm{Id}(\mathfrak{X})$ the set of all ideals of \mathfrak{X} . Obviously, $\{0\}, X \in \mathrm{Id}(\mathfrak{X})$.

Proposition 2.9 ([20])

Let I be an ideal of \mathfrak{X} . For any $x, y \in X$, if $y \in I$ and $x \leq y$, then $x \in I$.

Proposition 2.10 ([20])

Let \mathfrak{X} be a pseudo-BCH-algebra and I be a subset of X satisfying (I1). Then I is an ideal of \mathfrak{X} if and only if for all $x, y \in X$,

(I2') if
$$x \diamond y \in I$$
 and $y \in I$, then $x \in I$.

Proposition 2.11

Let I be an ideal of \mathfrak{X} and $x \in I$. Then $0 * (0 * x) \in I$.

Proof. Let $x \in X$. From (a3) and (a1) it follows that $0 * (0 * x) = 0 * (0 \diamond x) \leqslant x$. Since $x \in I$, by Proposition 2.9, $0 * (0 * x) \in I$.

Example 2.12

Consider the pseudo-BCH-algebra \mathfrak{G} , which is given in Example 2.3. Let a be an element of G. It is routine to verify that $\{a^n : n \in \mathbb{N} \cup \{0\}\}$ is an ideal of \mathfrak{G} .

Proposition 2.13 ([21])

Let \mathfrak{X} be a pseudo-BCH-algebra and I be a subset of X containing 0. The following statements are equivalent:

- (i) I is an ideal of \mathfrak{X} .
- (ii) $x \in I, y \in X I \Longrightarrow y * x \in X I$.
- (iii) $x \in I, y \in X I \Longrightarrow y \diamond x \in X I$.

For any pseudo-BCH-algebra \mathfrak{X} , we set

$$K(\mathfrak{X}) = \{ x \in X : 0 \leqslant x \}.$$

From ([20]) it follows that $K(\mathfrak{X})$ is a subalgebra of \mathfrak{X} . Observe that

$$\operatorname{Cen} \mathfrak{X} \cap K(\mathfrak{X}) = \{0\}. \tag{1}$$

Indeed, $0 \in \operatorname{Cen} \mathfrak{X} \cap \mathrm{K}(\mathfrak{X})$ and if $x \in \operatorname{Cen} \mathfrak{X} \cap \mathrm{K}(\mathfrak{X})$, then x = 0*(0*x) = 0*0 = 0.

3. Closed, strong, and horizontal ideals

An ideal I of \mathfrak{X} is said to be *closed* if $0 * x \in I$ for every $x \in I$.

Proposition 3.1 ([20])

An ideal I of \mathfrak{X} is closed if and only if I is a subalgebra of \mathfrak{X} .

Proposition 3.2 ([20])

Every ideal of a finite pseudo-BCH-algebra is closed.

Example 3.3

Let M be the set of all matrices of the form $A = \begin{bmatrix} x & y \\ 0 & 1 \end{bmatrix}$, where x and y are rational numbers such that x > 0. Evidently, $(M; \cdot, E)$, where \cdot is the usual multiplication of matrices and $E = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, is a group. We define the binary operations * and \diamond on M by

$$A * B = AB^{-1}$$
 and $A \diamond B = B^{-1}A$

for all $A,B\in M$. Then $\mathfrak{M}=(M;*,\diamond,E)$ is a pseudo-BCH-algebra (by Example 2.3). Let $C=\begin{bmatrix}2&0\\0&1\end{bmatrix}$. The set $I=\{C^n:\ n\in\mathbb{N}\cup\{0\}\}$ is an ideal of \mathfrak{M} (see Example 2.12). Observe that I is not closed. Indeed, $E*C=EC^{-1}=C^{-1}\notin I$.

Proposition 3.4~([20])

 $K(\mathfrak{X})$ is a closed ideal.

Definition 3.5

An ideal I of a pseudo-BCH-algebra $\mathfrak X$ is called *strong* if, for all $x,y\in X,\ x\in I$ and $y\in X-I$ imply $x*y\in X-I$.

It is clear that X is a strong ideal of \mathfrak{X} . Note that in BCI-algebras such ideals were investigated in [1] (see also [12]).

Theorem 3.6

Let I be an ideal of \mathfrak{X} . Then the following statements are equivalent:

- (i) I is strong.
- (ii) For any $x, y \in X$, $x * y \in I$ and $x \in I$ imply $y \in I$.

[20] Andrzej Walendziak

- (iii) For every $x \in X$ both x and 0 * x belong or not belong to I.
- (iv) For every $x \in X$, $0 * x \in I$ implies $x \in I$.

Proof. (i) \Longrightarrow (ii) Let I be a strong ideal. Let $x \in I$ and $x * y \in I$. Suppose that $y \notin I$. By the strongness of I, $x * y \in X - I$. This is a contradiction.

(ii) \Longrightarrow (iii) Let $x \in I$. Then, by Proposition 2.11, $0 * (0 * x) \in I$. Since $0 \in I$, according to (ii), we deduce $0 * x \in I$. Thus, if $x \in I$, then $0 * x \in I$. Suppose now that $x \notin I$ and $0 * x \in I$. Applying (pBCH-2) and (pBCH-1) we have

$$[(0*x)*x] \diamond (0*x) = ((0*x) \diamond (0*x)) * x = 0 * x \in I,$$

and from the definition of ideal we conclude that $(0 * x) * x \in I$. By (ii), $x \in I$, which is a contradiction. Thus, if $x \notin I$, then $0 * x \notin I$.

- $(iii) \Longrightarrow (iv)$ Obvious.
- (iv) \Longrightarrow (i) Any ideal I with the property that both x and 0*x belong or not belong to I, is obviously closed. To prove that I is strong, let $x \in I$ and $y \in X I$. On the contrary, assume that $x*y \in I$. Hence $0*(x*y) \in I$, and by (a5) we obtain $(0*x) \diamond (0*y) \in I$. Also $0*x \in I$. Since I is a subalgebra of \mathfrak{X} (by Proposition 3.1) it follows that $((0*x) \diamond (0*y)) * (0*x) \in I$. Then $0*(0*y) \in I$, because

$$0 * (0 * y) = 0 \diamond (0 * y)$$
 [by (a3)]
= $((0 * x) * (0 * x)) \diamond (0 * y)$ [by (pBCH-1)]
= $((0 * x) \diamond (0 * y)) * (0 * x)$. [by (pBCH-2)]

Using (iv) we conclude that $y \in I$, a contradiction.

From the proof of Theorem 3.6 we have the following corollaries.

Corollary 3.7

Every strong ideal of \mathfrak{X} is closed.

Corollary 3.8

Let I be an ideal of \mathfrak{X} . Then the following statements are equivalent:

- (i) I is strong.
- (ii) For any $x, y \in X$, $x \in I$ and $y \in X I$ imply $x \diamond y \in X I$.
- (iii) For any $x, y \in X$, $x \diamond y \in I$ and $x \in I$ imply $y \in I$.

Combining Proposition 2.13 and Corollary 3.8 we get

THEOREM 3.9

Let \mathfrak{X} be a pseudo-BCH-algebra and I be a subset of X containing 0. The following statements are equivalent:

- (i) I is a strong ideal of \mathfrak{X} .
- (ii) For any $x, y \in X$, $x \in I$ and $y \in X I$ imply x * y, $y * x \in X I$.
- (iii) For any $x, y \in X$, $x \in I$ and $y \in X I$ imply $x \diamond y$, $y \diamond x \in X I$.

THEOREM 3.10

Let I be a closed ideal of \mathfrak{X} . Then the following statements are equivalent:

- (i) I is strong.
- (ii) For all $x, y \in X$, $x \leq y$ and $x \in I$ imply $y \in I$.
- (iii) For every $x \in X$, $0 * (0 * x) \in I$ implies $x \in I$.

Proof. (i) \Longrightarrow (ii) Let I be a strong ideal. Let $x \leq y$ and $x \in I$. Then $x * y = 0 \in I$. As I satisfies (ii) of Theorem 3.6, we get $y \in I$.

- (ii) \Longrightarrow (iii) Let $0*(0*x) \in I$. Since $0*(0*x) \leqslant x$, applying (ii) we see that $x \in I$.
- (iii) \Longrightarrow (i) Let $0*x \in I$. Then $0*(0*x) \in I$, because I is closed. From (iii) it follows that $x \in I$. Thus condition (iv) of Theorem 3.6 holds. Consequently, I is a strong ideal.

As a consequence of Proposition 3.2 and Theorem 3.10 we get the following

Proposition 3.11

Let I be an ideal of a finite pseudo-BCH-algebra \mathfrak{X} . Then the following statements are equivalent:

- (i) I is strong.
- (ii) For all $x, y \in X$, $x \leq y$ and $x \in I$ imply $y \in I$.
- (iii) For every $x \in X$, $0 * (0 * x) \in I$ implies $x \in I$.

Proposition 3.12

 $K(\mathfrak{X})$ is a strong ideal.

Proof. By Proposition 3.4, $K(\mathfrak{X})$ is closed. Let $0*(0*x) \in K(\mathfrak{X})$. Then 0*(0*x) = 0. Since 0*(0*x) = 0 is closed. Let $0*(0*x) \in K(\mathfrak{X})$, we have 0*x = 0. Hence $x \in K(\mathfrak{X})$, and thus $K(\mathfrak{X})$ satisfies condition (iii) of Theorem 3.10. Therefore $K(\mathfrak{X})$ is strong.

Proposition 3.13

Let $I \in \mathrm{Id}(\mathfrak{X})$. If $I \subset \mathrm{K}(\mathfrak{X})$, then I is not a strong ideal.

Proof. Let $a \in K(\mathfrak{X}) - I$. Then $0 * (0 * a) = 0 * 0 = 0 \in I$ but $a \notin I$.

Example 3.14

Let $\mathfrak{X}=(X;*,\diamond,0)$ be the pseudo-BCH-algebra given in Example 2.4. \mathfrak{X} has six strong ideals, namely: $I=\{0,a,b,c\},\ I\cup\{d\},\ I\cup\{e\},\ I\cup\{f\},\ I\cup\{g,h\},\ X.$ In $\mathfrak{X},\ \{0\}$ is not a strong ideal by Proposition 3.13.

In [16], K.H. Kim and E.H. Roh introduced the notion of H-ideal in BCH-algebras. Similarly, we define horizontal ideals in pseudo-BCH-algebras.

Let $I \in \mathrm{Id}(\mathfrak{X})$. We say that I is a horizontal ideal of \mathfrak{X} if $I \cap \mathrm{K}(\mathfrak{X}) = \{0\}$. Obviously, $\{0\}$ is a horizontal ideal of \mathfrak{X} .

Remark

In pseudo-BCI-algebras, horizontal ideals were considered by G. Dymek in [4].

[22] Andrzej Walendziak

Example 3.15

Let \mathfrak{M} and I be given as in Example 3.3. It is not difficult to verify that I is a horizontal ideal of \mathfrak{M} .

Proposition 3.16

If \mathfrak{X} is a pseudo-BCH-algebra, then $K(\mathfrak{X}) = \{0\}$ if and only if every ideal of \mathfrak{X} is horizontal.

Proof. The proof is straightforward.

Theorem 3.17

Let I be a closed ideal of \mathfrak{X} . Then I is horizontal if and only if $I \subseteq \operatorname{Cen} \mathfrak{X}$.

Proof. Let I be a closed horizontal ideal and $x \in I$. By Proposition 2.11, $0 * (0 * x) \in I$. Since I is a closed ideal, from Proposition 3.1 it follows that I is a subalgebra of \mathfrak{X} . Then

$$x * (0 * (0 * x)) \in I. \tag{2}$$

Observe that $x * (0 * (0 * x)) \in K(\mathfrak{X})$. By (a5) and (a4), $0 * [x * (0 * (0 * x))] = (0 * x) \diamond (0 * (0 * (0 * x))) = (0 * x) \diamond (0 * x) = 0$, and hence

$$x * (0 * (0 * x)) \in K(\mathfrak{X}). \tag{3}$$

From (2) and (3) it follows that $x * (0 * (0 * x)) \in I \cap K(\mathfrak{X}) = \{0\}$. Therefore x * (0 * (0 * x)) = 0, that is, $x \le 0 * (0 * x)$. By (a3) and (a1) we have $0 * (0 * x) = 0 * (0 * x) \le x$. Thus x = 0 * (0 * x). Consequently, $x \in \text{Cen } \mathfrak{X}$.

Conversely, let $I \subseteq \operatorname{Cen} \mathfrak{X}$. Then $I \cap \operatorname{K}(\mathfrak{X}) \subseteq \operatorname{Cen} \mathfrak{X} \cap \operatorname{K}(\mathfrak{X}) = \{0\}$ (see (1)). From this $I \cap \operatorname{K}(\mathfrak{X}) = \{0\}$, so I is a horizontal ideal.

Corollary 3.18

If $\operatorname{Cen} \mathfrak{X}$ is an ideal of \mathfrak{X} , then it is horizontal.

Proof. Let Cen \mathfrak{X} be an ideal of \mathfrak{X} . Since Cen \mathfrak{X} is a subalgebra of \mathfrak{X} (see Proposition 2.7), Cen \mathfrak{X} is closed by Proposition 3.1. From Theorem 3.17 we deduce that Cen \mathfrak{X} is horizontal.

Theorem 3.19

Let I be a closed ideal of \mathfrak{X} . Then the following statements are equivalent:

- (i) I is horizontal.
- (ii) x = (x * a) * (0 * a) for $x \in X$, $a \in I$.
- (iii) For all $x \in X$, $a \in I$, x * a = 0 * a implies x = 0.
- (iv) For all $x \in K(\mathfrak{X})$, $a \in I$, x * a = 0 * a implies x = 0.

Proof. (i) \Longrightarrow (ii) Let I be a horizontal ideal of \mathfrak{X} . From Theorem 3.17 it follows that $I \subseteq \operatorname{Cen} \mathfrak{X}$. Let $x \in X$ and $a \in I$. By (pBCH-2) and (pBCH-1),

$$((x*a)*(0*a)) \diamond x = ((x*a) \diamond x) * (0*a) = ((x \diamond x) * a)) * (0*a) = (0*a) * (0*a) = 0,$$

and hence

$$(x*a)*(0*a) \leqslant x. \tag{4}$$

Using (pBCH-2) and (a1), we obtain

$$(x \diamond ((x*a)*(0*a))) * a = (x*a) \diamond ((x*a)*(0*a)) \le 0*a.$$
 (5)

Since $a \in I$ and $0 * a \in I$, from (5) we see that

$$x \diamond ((x*a)*(0*a)) \in I. \tag{6}$$

Applying (a5) and Proposition 2.6 we get

$$0*((x*a)*(0*a)) = (0*(x*a)) \diamond (0*(0*a)) = (a*x) \diamond a = (a \diamond a) * x = 0*x.$$

Then by (a6), $0 * (x \diamond ((x * a) * (0 * a))) = (0 * x) * (0 * x) = 0$, and hence $x \diamond ((x * a) * (0 * a)) \in K(\mathfrak{X})$. From this and (6) we have $x \diamond ((x * a) * (0 * a)) \in I \cap K(\mathfrak{X}) = \{0\}$, that is, $x \diamond ((x * a) * (0 * a)) = 0$. Therefore

$$x \leqslant (x*a)*(0*a). \tag{7}$$

Using (4), (7) and (pBCH-3) we obtain x = (x * a) * (0 * a).

- (ii) \Longrightarrow (iii) Let $x \in X$, $a \in I$, and x*a = 0*a. Then x = (x*a)*(0*a) = (x*a)*(x*a) = 0.
 - $(iii) \Longrightarrow (iv)$ is obvious.
- (iv) \Longrightarrow (i) Let $x \in I \cap K(\mathfrak{X})$. Hence x * x = 0 = 0 * x, and by (iv) we obtain x = 0. So $I \cap K(\mathfrak{X}) = \{0\}$, and consequently, I is a horizontal ideal of \mathfrak{X} .

We also have theorem analogus to Theorem 3.19.

THEOREM 3.20

Let I be a closed ideal of \mathfrak{X} . Then the following statements are equivalent:

- (i) I is horizontal.
- (ii) $x = (x \diamond a) \diamond (0 \diamond a)$ for $x \in X$, $a \in I$.
- (iii) For all $x \in X$, $a \in I$, $x \diamond a = 0 \diamond a$ implies x = 0.
- (iv) For all $x \in K(\mathfrak{X})$, $a \in I$, $x \diamond a = 0 \diamond a$ implies x = 0.

Proposition 3.21

Let \mathfrak{X} be a pseudo-BCH-algebra. Then:

- (i) If \mathfrak{X} satisfies the condition (pBCK), then the only $\{0\}$ is a horizontal ideal of \mathfrak{X} and the only X is a strong ideal of \mathfrak{X} .
- (ii) If 0*x = x for all $x \in X$, then every ideal of \mathfrak{X} is both strong and horizontal.

Proof. The proof is straightforward.

Corollary 3.22

If \mathfrak{X} is a pseudo-BCK-algebra, then the only $\{0\}$ is a horizontal ideal of \mathfrak{X} and the only X is a strong ideal of \mathfrak{X} .

[24] Andrzej Walendziak

References

 Bhatti, Shaban, and Xiao Hong Zhang. "Strong ideals, associative ideals and pideals in BCI-algebras." Punjab Univ. J. Math. (Lahore) 27 (1994): 113-120. Cited on 19.

- [2] Dudek, Wiesław A., and Young-Bae Jun. "Pseudo-BCI-algebras." East Asian Math. J. 24, no. 2 (2008): 187-190. Cited on 15 and 16.
- [3] Dymek, Grzegorz. "On two classes of pseudo-BCI-algebras." Discuss. Math. Gen. Algebra Appl. 31, no. 2 (2011): 217-230. Cited on 15.
- [4] Dymek, Grzegorz. "Atoms and ideals of pseudo-BCI-algebras." Comment. Math. 52, no. 1 (2012): 73-90. Cited on 21.
- [5] Dymek, Grzegorz. "p-semisimple pseudo-BCI-algebras." J. Mult.-Valued Logic Soft Comput. 19, no. 5-6 (2012): 461-474. Cited on 15.
- [6] Dymek, Grzegorz. "On the category of pseudo-BCI-algebras." Demonstratio Math. 46, no. 4 (2013): 631-644. Cited on 15.
- [7] Dymek, Grzegorz. "On pseudo-BCI-algebras." Ann. Univ. Mariae Curie-Skłodowska Sect. A 69, no. 1 (2015): 59-71. Cited on 15.
- [8] Georgescu, George, and Afrodita Iorgulescu. "Pseudo-MV algebras: a noncommutative extension of MV algebras." In *Information technology (Bucharest, 1999)*, 961-968. Bucharest: Inforec, 1999. Cited on 15.
- [9] Georgescu, George, and Afrodita Iorgulescu. "Pseudo-BL algebras: a noncommutative extension of BL algebras." In Abstracts of the Fifth International Conference FSTA 2000, Liptovský Ján, The Slovak Republic. January 31 February 4, 2000, 90-92. Cited on 15.
- [10] Georgescu, George, and Afrodita Iorgulescu. "Pseudo-BCK algebras: an extension of BCK algebras." In Combinatorics, computability and logic: Proceedings of the Third International Conference on Combinatorics, Computability and Logic, edited by C.S Calude et al. Discrete Math. Theor. Comput. Sci., 97-114. London: Springer, 2001. Cited on 15.
- [11] Hu, Qing Ping, and Xin Li. "On BCH-algebras." Math. Sem. Notes Kobe Univ. 11, no. 2 (1983): 313-320. Cited on 15.
- [12] Huang Yisheng. BCI-algebra. Beijing: Science Press, 2006. Cited on 19.
- [13] Imai, Yasuyuki, and Kiyoshi Iséki. "On axiom systems of propositional calculi. XIV." Proc. Japan Acad. 42 (1966): 19-22. Cited on 15.
- [14] Iséki, Kiyoshi. "An algebra related with a propositional calculus." Proc. Japan Acad. 42 (1966): 26-29. Cited on 15.
- [15] Jun, Young Bae, Hee Sik Kim, and Joseph Neggers. "On pseudo-BCI ideals of pseudo-BCI algebras." *Mat. Vesnik* 58, no. 1-2 (2006): 39-46. Cited on 15.
- [16] Kim, Kyung Ho, and Eun Hwan Roh. "The role of A^+ and A(X) in BCH-algebras." Math. Japon. 52, no. 2 (2000): 317-321. Cited on 21.
- [17] Kim, Young Hee, and Keum Sook So. "On minimality in pseudo-BCI-algebras." Commun. Korean Math. Soc. 27, no. 1 (2012): 7-13. Cited on 15.
- [18] Lee, Kyoung Ja, and Chul Hwan Park. "Some ideals of pseudo-BCI-algebras." J. Appl. Math. & Informatics 27 (2009): 217-231. Cited on 15.

- [19] Lu Yin-Feng, and Xiao-Hong Zhang, "Q-type pseudo-BCI algebras and 2-type pseudo-q filters." Journal of Ningbo University 24, no. 2 (2011): 56-60. Cited on 15.
- [20] Walendziak, Andrzej. "Pseudo-BCH-algebras." Discuss. Math. Gen. Algebra Appl. 35, no. 1 (2015): 5-19. Cited on 15, 16, 17, 18 and 19.
- [21] Walendziak, Andrzej. "On ideals of pseudo-BCH-algebras." Ann. Univ. Mariae Curie-Skłodowska, Sect. A (in press). Cited on 17 and 18.

Siedlee University of Natural Sciences and Humanities Faculty of Science
Institute of Mathematics and Physics
3 Maja 54, PL-08110 Siedlee
Poland
E-mail: walent@interia.pl

Received: January 22, 2016; final version: March 24, 2016; available online: April 22, 2016.