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Abstract. For two-dimensional manifold M with locally symmetric connec-
tion ∇ and with ∇-parallel volume element vol one can construct a flat
connection on the vector bundle T M ⊕ E, where E is a trivial bundle.
The metrizable case, when M is a Riemannian manifold of constant cur-
vature, together with its higher dimension generalizations, was studied by
A.V. Shchepetilov [J. Phys. A: 36 (2003), 3893-3898]. This paper deals
with the case of non-metrizable locally symmetric connection. Two flat con-
nections on T M ⊕ (R ×M) and two on T M ⊕ (R2 ×M) are constructed.
It is shown that two of those connections – one from each pair – may be
identified with the standard flat connection in RN , after suitable local affine
embedding of (M,∇) into RN .

1. Introduction

In the article [9] R. Sasaki proposed to add the property of describing pseudo-
spherical surfaces to other remarkable properties – such as applicability of the
inverse scattering method, infinite number of conservation laws and Bäcklund
transformations – which characterize soliton equations in 1 + 1 dimensions. He
expressed the sl(2,R)-valued 1-form Ω, which arises in the corresponding linear
scattering problem dv = Ωv, v = ( v1

v2 ), by 1-forms ω1, ω2 and ω2
1
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in such a way, that the integrability condition dΩ − Ω ∧ Ω = 0 is equivalent to
the structural equations dω1 = ω2

1 ∧ ω2, dω2 = −ω2
1 ∧ ω1 and dω2

1 = ω1 ∧ ω2

of a pseudospherical surface (K = −1). This sl(2,R)-valued 1-form Ω itself can
be interpreted as the connection form of a connection on some principal SL(2,R)-
bundle. The condition dΩ−Ω∧Ω = 0 means that the curvature of this connection
vanishes. In this respect the connection Ω differs from the Levi-Civita connection
of the considered pseudospherical metric. On the other hand, Ω appeared to be
somehow related to the Levi-Civita connection, because the Levi-Civita connection
form

(
0 −ω2

1
ω2

1 0

)
”is contained“ in Ω. As might be expected, the question of finding

the geometric interpretation of Ω occurred.
In the paper [10] A.V. Shchepetilov explained the geometric meaning of the

Sasaki connection. Using an equivalent representation of Ω, so(2, 1)-valued, he
constructed a flat connection ∇̂ on the vector bundle TM ⊕ E, where TM is the
tangent bundle and E = R ×M is a trivial one-dimensional vector bundle (our
notation is slightly different from that in [10])

∇̂X(Y ⊕ f) =
(
∇XY + fX

)
⊕
(
X(f) + g(X,Y )

)
. (1)

Here g is a metric on M , ∇ is its Levi-Civita connection, f ∈ C∞(M) is a section
of E and X, Y are vector fields on M .

Shchepetilov considered also manifolds with metric of constant positive curva-
ture K = +1. The corresponding flat connection ∇̂ on TM ⊕ E is

∇̂X(Y ⊕ f) =
(
∇XY + fX

)
⊕
(
X(f)− g(X,Y )

)
. (2)

The aim of this paper is to construct a similar flat connection ∇̂ for a two-
dimensional manifold with non-metrizable locally symmetric connection ∇ and
with ∇-parallel volume element. Our main motivation for research is as follows.
Firstly, manifold with locally symmetric linear connection can be thought of as
a generalization of a constant sectional curvature Riemannian manifold. Secondly,
sometimes more important than (M, g) or (M,∇) alone is an embedding of M
into R3. For example, every isometric embedding of a pseudospherical surface
(M, g) into R3 corresponds to some particular solution of the sine-Gordon equa-
tion. Therefore restriction to those non-flat locally symmetric connections which
are induced on hypersurfaces in Rn+1 is legitimated. If such hypersurface f is
degenerate and its type number r is greater than 1, then around each generic
point of M there exists a local cylinder decomposition which contains as a part
a non-degenerate hypersurface in Rr+1 with some locally symmetric connection
(see [4]). On the other hand, if f is non-degenerate and n > 2, then ∇ is the
Blaschke connection, ∇h = 0, S = ρ id, ρ = const, ρ 6= 0 and f(M) is an open
part of a quadric with center [4]. Similarly as in the second proof of Berwald
theorem in [3] one can then define a pseudo-scalar product G in Rn+1 such that
G(f∗X, f∗Y ) = h(X,Y ), G(f∗X, ξ) = 0 and G(ξ, ξ) = ρ, where ξ is the affine
normal. It is easy to check that relative to this pseudo-scalar product f is a hy-
persurface of constant sectional curvature ρ. If f is non-degenerate, n = 2 and the
induced locally symmetric connection satisfies the condition dim imR = 2, then
there also exists a pseudo-scalar product on Rn+1 = R3 relative to which f has
constant Gaussian curvature and ξ is perpendicular to f [6].
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On the contrary, if f : M → Rn+1 is of type number 1 or if f : M → R3

is nondegenerate and dim imR = 1, then the connection as a connection of
1-codimensional nullity (dim kerR = n − 1) is not metrizable [7], therefore we
have reason for generalizing Shchepetilov’s construction. The present paper deals
with the case n = 2.

2. Preliminaries

Let M be a connected two-dimensional real manifold and let ∇ be a locally
symmetric connection on M , satisfying the condition dim imR = 1, where for
p ∈M

imR|p := span{R(X,Y )Z : X,Y, Z ∈ TpM}

and R is the curvature tensor of ∇. Such connections were studied by B. Opozda
in [5]. Opozda proved that for every p ∈ M there is a coordinate system (u, v)
around p such that

∇∂u∂u = ∇∂u∂v = 0 and ∇∂v∂v = εu∂u, (3)

where ε ∈ {1,−1}. A local coordinate system in which a locally symmetric con-
nection ∇ is expressed by (3) will be called a canonical coordinate system for ∇ [5].
It is not unique. It is easy to check that if u, v and u, v are canonical coordinate
systems then on each connected component of the intersection of their domains
we have u = Au + χ(v), v = δv + B, where A, B, δ are constants, δ2 = 1, and χ
satisfies the differential equation χ′′ + εχ = 0.

The Ricci tensor Ric(X,Y ) := trace[V 7→ R(V,X)Y ] of such a connection is
symmetric and for every p ∈M there exists a ∇-parallel volume element around p.
Here we assume that a ∇-parallel volume element vol exists on the whole M .

It follows, that for every p ∈ M we can find around p a local basis (X1, X2)
of TM , satisfying the conditions:

X1 ∈ ker Ric, Ric(X2, X2) = ε and vol(X1, X2) = 1. (4)

For example, on the domain of canonical coordinates (u, v) as in (3) we may
take X1 = 1

c∂u and X2 = ∂v, where c is the non-zero constant such that vol =
c du∧ dv. Let ω1, ω2 be the dual basis for (X1, X2). The local connection form is
(ωij) =

( 0 ω1
2

0 0

)
and the structural equations are dω1 = −ω1

2 ∧ ω2, dω2 = 0 and
dω1

2 = εω1 ∧ ω2.
The following proposition is easy to check.

Proposition 2.1
Let M be a two-dimensional manifold with locally symmetric connection ∇ satis-
fying condition dim imR = 1. Let ω1, ω2 and ωij be the dual basis and the local
connection forms for some local basis of TM satisfying the condition (4). Then
each of the following four 1-forms Ωi

Ω1 =

0 −ω1
2 ω1

0 0 ω2

0 −εω2 0

 , Ω2 =

 0 −ω1
2 εω2

0 0 0
−ω2 ω1 0

 ,
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Ω3 =


0 −ω1

2 ω1 ω2

0 0 ω2 0
0 −εω2 0 0
0 0 0 0

 , Ω4 =


0 −ω1

2 εω2 0
0 0 0 0
−ω2 ω1 0 0

0 ω2 0 0


satisfies the condition dΩi − Ωi ∧ Ωi = 0.

Those gl(N,R)-valued (N = 3 or N = 4) 1-forms were obtained in [8] as the
local connection forms of connections on some principal GL(N,R)-bundle P and
seem to be analogous to the Sasaki connection form. The bundle P (M,G), G =
GL(N,R), is an extension of the bundle Q(M,H) consisting of all linear frames
onM which satisfy (4). The structure group is H := {( 1 t

0 1 ) : t ∈ R}∪{(−1 t
0 −1 ) :

t ∈ R}. Here we need not explain what the bundle P (M,G) is. It suffices to know
that there exists f : Q → P such that the triple (f, idM , ι) is a homomorphism
of principal fibre bundles Q(M,H) and P (M,G). The homomorphism ι : H →
G of structure groups is given by ι(a) := ( a 0

0 IN−2 ), where IN−2 is the identity
(N − 2) × (N − 2) matrix. Each of the forms Ωi is a local connection form
associated with a local section f ◦ σ of P , where σ is some local section of Q.

In the construction of P and Ω in [8] and in the present paper we consider the
left action ofH on Q: a∗q := qa−1, where (v1, v2)h := (h1

1v1+h2
1v2, h

1
2v1+h2

2v2)
for h =

(
h1

1 h1
2

h2
1 h2

2

)
∈ H, and some left action of G on P . Another possible way is

to consider traditionally a right action, but we have then −Ω instead of Ω.

3. The connections on the vector bundle T M ⊕ E

We will use the definition of the covariant derivative of a section of an asso-
ciated bundle which comes from [1], and is described for example in [2]. Since
we consider here the left action of G on P and the right action of G on RN ,
z ∗ c := c−1z, some details may be different from that of [1] and [2].

Let TM be the tangent bundle of M and let E be the trivial bundle, E =
RN−2 ×M .

Proposition 3.1
The bundle TM ⊕ E is a vector bundle associated to P with fibre RN

P ×G RN = (P × RN )/ ∼,

with the equivalence relation ∼ given by (cp, z ∗ c−1) ∼ (p, z).

Proof. For x ∈ M we take a basis q = (v1, v2) ∈ Q of TxM and identify (z1v1 +
z2v2) ⊕ (z3, . . . , zN ) from (TM ⊕ E)|x with [(f(q), z)] ∈ (P × RN )/ ∼. This
identification is correct, because if we take another basis q′ = (v′1, v′2) ∈ Qx, then
q′ = a ∗ q = qa−1 for some a ∈ H and z1v1 + z2v2 = z′1v′1 + z′2v′2 with z′1 =
a1

1z
1 + a1

2z
2, z′2 = a2

1z
1 + a2

2z
2. It follows that (z′1v′1 + z′2v′2)⊕ (z′3, . . . , z′N ) =

(z1v1 + z2v2)⊕ (z3, . . . , zN ) for z′ = ι(a)z = z ∗ (ι(a))−1. We obtain [(f(q′), z′)] =
[(f(a ∗ q), z ∗ (ι(a))−1)] = [(ι(a)f(q), z ∗ (ι(a))−1)] = [(f(q), z)].

Let [(p, z)] ∈ P ×G RN and let π(p) = x, where π : P →M . Let q = (v1, v2) ∈
Qx, then f(q) ∈ Px. Since G acts transitively on fibres of P , there exists b ∈ G
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such that p = bf(q). It follows that [(p, z)] = [(bf(q), z)] = [(bf(q), (z ∗ b) ∗
b−1)] = [(f(q), z ∗ b)] = [(f(q), b−1z)], therefore we have to identify [(p, z)] with
(y1v1 + y2v2)⊕ (y3, . . . , yN ), where y = b−1z.

To each local section η of an associated vector bundle P ×G RN corresponds
some mapping η̃ : P |U → RN – called the Crittenden mapping – which satisfies
the condition η̃(bp) = η̃(p) ∗ b−1. Since we have actually defined the right action
of G on RN using the left action, x ∗ c := c−1x, we can write this condition simply
as η̃(bp) = bη̃(p). By definition of the Crittenden mapping, [(p, η̃(p))] = η(π(p)).
Conversely, to each mapping η̃ : P |U → RN satisfying the condition η̃(b ∗ p) =
η̃(p) ∗ b−1 corresponds a local section of the associated bundle.

Let X be a vector field on M . For every connection form Ωi from Proposi-
tion 2.1 we will find the covariant derivative ∇̂Xη of a local section η of TM⊕E.

Theorem 3.2
Let η = Y ⊕ Ψ, with a vector field Y on U ⊂ M and Ψ: U → RN(i), be a local
section of TM ⊕ E. Here N(1) = N(2) = 1 and N(3) = N(4) = 2. Let ∇̂iXη
denote the covariant derivative of η with respect to the connection corresponding
to local connection form Ωi from Proposition 2.1. Then

∇̂1
X(Y ⊕Ψ) =

(
∇XY −ΨX

)
⊕
(
X(Ψ) + Ric(X,Y )

)
,

∇̂2
X(Y ⊕Ψ) =

(
∇XY −ΨLX

)
⊕
(
X(Ψ)− vol(X,Y )

)
,

∇̂3
X(Y ⊕ (Ψ1,Ψ2))

=
(
∇XY −Ψ1X − εΨ2LX

)
⊕
(
X(Ψ1) + Ric(X,Y ), X(Ψ2)

)
and

∇̂4
X(Y ⊕ (Ψ1,Ψ2))

=
(
∇XY −Ψ1LX

)
⊕
(
X(Ψ1)− vol(X,Y ), X(Ψ2)− εRic(X,Y )

)
,

with the (1, 1) tensor field L such that vol(LX, Y ) = Ric(X,Y ) for every X, Y .

Proof. By definition of the covariant derivative, the Crittenden mapping corre-
sponding to ∇̂Xη is equal to XH(η̃), where XH is the horizontal lift of X to P |U .

We use a local section τ = f ◦ σ of P , where σ = (V1, V2) is a local section
of Q. Let Y = Y 1V1 + Y 2V2, then η̃ ◦ τ = (Y 1, Y 2,Ψ).

Let Ω̃ be the connection form on P . The local connection form is τ∗Ω̃ = Ωσ.
We have

˜̂∇Xη(τ(x)) = XH
τ(x)(η̃), XH

τ(x) = dxτ(Xx) +B∗τ(x),

where the right-invariant vector field B = −Ωσ(Xx), which we easily obtain from
the condition Ω̃(XH

τ(x)) = 0:

0 = Ω̃τ(x)(dxτ(Xx)) + Ω̃τ(x)(B∗τ(x)) = (τ∗Ω̃)x(Xx) +B = Ωσ(Xx) +B.

The first part of XH
τ(x)(η̃) is equal to

(dxτ(Xx

)
)(η̃) = Xx(η̃ ◦ τ) = (Xx(Y 1), Xx(Y 2), Xx(Ψ)).
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The second part is

B∗τ(x)(η̃) = d

dt
η̃(btτ(x))

∣∣∣∣
t=0

= d

dt
btη̃(τ(x))

∣∣∣∣
t=0

= d

dt
bt

∣∣∣∣
t=0

η̃(τ(x)) = Bη̃(τ(x)).

Here (bt) is 1-parameter subgroup of G generated by B. It follows that

˜̂∇Xη(τ(x)) =

Xx(Y 1)
Xx(Y 2)
Xx(Ψ)

− Ωσ(Xx)

Y 1(x)
Y 2(x)
Ψ(x)

 . (5)

For Ωσ = Ω1 we obtain

˜̂∇Xη ◦ τ =

X(Y 1)
X(Y 2)
X(Ψ)

−
0 −ω1

2(X) ω1(X)
0 0 ω2(X)
0 −εω2(X) 0

Y 1

Y 2

Ψ


and

∇̂Xη =
(
(X(Y 1) + ω1

2(X)Y 2 − ω1(X)Ψ)V1 + (X(Y 2)− ω2(X)Ψ)V2
)

⊕
(
X(Ψ) + εω2(X)Y 2).

Since ∇XV1 = 0, we have

∇XY = ∇X(Y 1V1 + Y 2V2)
= X(Y 1)V1 + Y 1∇XV1 +X(Y 2)V2 + Y 2∇XV2

= X(Y 1)V1 +X(Y 2)V2 + Y 2ω1
2(X)V1.

We have also

Ric(X,Y ) = Ric(ω1(X)V1 + ω2(X)V2, Y
1V1 + Y 2V2)

= ω2(X)Y 2 Ric(V2, V2)
= ω2(X)Y 2ε,

because V1 is a local section of ker Ric.
We obtain finally

∇̂X(Y ⊕Ψ) =
(
∇XY −ΨX

)
⊕
(
X(Ψ) + Ric(X,Y )

)
. (6)

If we take Ωσ = Ω2, then we obtain from (5)

˜̂∇Xη ◦ τ =

X(Y 1)
X(Y 2)
X(Ψ)

−
 0 −ω1

2(X) εω2(X)
0 0 0

−ω2(X) ω1(X) 0

Y 1

Y 2

Ψ

 ,

which gives

∇̂X(Y ⊕Ψ) =
(
(X(Y 1) + ω1

2(X)Y 2 − εω2(X)Ψ)V1 +X(Y 2)V2
)

⊕
(
X(Ψ) + ω2(X)Y 1 − ω1(X)Y 2)
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=
(
∇XY −Ψεω2(X)V1

)
⊕
(
X(Ψ)− vol(X,Y )

)
,

because vol(V1, V2) = 1.
Let (Ṽ1, Ṽ2) be another local basis of TM satisfying (4). Then in the inter-

section of the corresponding domains we have Ṽ1 = δV1, Ṽ2 = tV1 + δV2 with
δ ∈ {1,−1}. For the new dual basis we obtain ω̃1 = δω1 − tω2, ω̃2 = δω2. It
follows that ω̃2Ṽ1 = ω2V1, therefore the vector field LX := εω2(X)V1 is defined
on the whole M and L is a (1, 1) tensor field.

Note that for every Z we have

vol(LX,Z) = vol(εω2(X)V1, Z) = εω2(X)ω2(Z) vol(V1, V2) = εω2(X)ω2(Z)
= Ric(X,Z).

(7)

For the second connection we finally obtain the global formula

∇̂X
(
Y ⊕Ψ

)
=
(
∇XY −ΨLX

)
⊕
(
X(Ψ)− vol(X,Y )

)
. (8)

For Ωσ = Ω3 we have

˜̂∇Xη ◦ τ =


X(Y 1)
X(Y 2)
X(Ψ1)
X(Ψ2)

−


0 −ω1
2(X) ω1(X) ω2(X)

0 0 ω2(X) 0
0 −εω2(X) 0 0
0 0 0 0



Y 1

Y 2

Ψ1

Ψ2

 ,

hence

∇̂X(Y ⊕ (Ψ1,Ψ2))
=
(
(X(Y 1) + ω1

2(X)Y 2 − ω1(X)Ψ1 − ω2(X)Ψ2)V1 + (X(Y 2)− ω2(X)Ψ1)V2
)

⊕
(
X(Ψ1) + εω2(X)Y 2, X(Ψ2)

)
,

which gives

∇̂X(Y ⊕ (Ψ1,Ψ2))
=
(
∇XY −Ψ1X − εΨ2LX

)
⊕
(
X(Ψ1) + Ric(X,Y ), X(Ψ2)

)
.

(9)

For Ωσ = Ω4 we obtain

˜̂∇Xη ◦ τ =


X(Y 1)
X(Y 2)
X(Ψ1)
X(Ψ2)

−


0 −ω1
2(X) εω2(X) 0

0 0 0 0
−ω2(X) ω1(X) 0 0

0 ω2(X) 0 0



Y 1

Y 2

Ψ1

Ψ2


and

∇̂X(Y ⊕ (Ψ1,Ψ2))
=
(
∇XY −Ψ1LX

)
⊕
(
X(Ψ1)− vol(X,Y ), X(Ψ2)− εRic(X,Y )

)
.

(10)
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4. Flatness of ∇̂

Theorem 4.1
Each of four connections ∇̂i in Theorem 3.2 is flat.

Proof. We will compute

R̂(X,Y )(Z ⊕Ψ) = (∇̂X∇̂Y − ∇̂Y ∇̂X − ∇̂[X,Y ])(Z ⊕Ψ)

for each of four connections (6), (8), (9) and (10).
If we use ∇XY − ∇YX − [X,Y ] = T (X,Y ) = 0, then for the connection (6)

we obtain

R̂(X,Y )(Z ⊕Ψ)
=
(
R(X,Y )Z − (Ric(Y,Z)X − Ric(X,Z)Y )

)
⊕
(
(∇X Ric)(Y, Z)− (∇Y Ric)(X,Z)−Ψ(Ric(X,Y )− Ric(Y,X))

)
But Ric is symmetric, ∇R = 0 implies ∇Ric = 0, and for each two-dimensional
manifold

R(X,Y )Z = Ric(Y,Z)X − Ric(X,Z)Y. (11)

Therefore R̂(X,Y )(Z ⊕Ψ) = 0⊕ 0.
For the connection (8) we obtain

R̂(X,Y )(Z ⊕Ψ)
=
(
R(X,Y )Z + vol(Y,Z)LX − vol(X,Z)LY −Ψ((∇XL)Y − (∇Y L)X)

)
⊕
(
(∇Y vol)(X,Z)− (∇X vol)(Y,Z) + Ψ(vol(X,LY )− vol(Y,LX))

)
.

From ∇ vol = 0 it follows that R · vol = 0, therefore

0 = (R(X,Y ) · vol)(Z,W ) = − vol(R(X,Y )Z,W )− vol(Z,R(X,Y )W )
= − vol(R(X,Y )Z,W ) + vol(R(X,Y )W,Z),

hence
vol(R(X,Y )Z,W ) = vol(R(X,Y )W,Z). (12)

For an arbitrary vector field W using (12), (7) and (11) we obtain

vol(R(X,Y )Z + vol(Y,Z)LX − vol(X,Z)LY,W )
= vol(R(X,Y )W,Z) + vol(Y,Z) Ric(X,W )− vol(X,Z) Ric(Y,W )
= vol(R(X,Y )W + Ric(X,W )Y − Ric(Y,W )X,Z)
= 0.

From the non-degeneracy of vol it follows that

R(X,Y )Z + vol(Y, Z)LX − vol(X,Z)LY = 0. (13)

Moreover, ∇Ric = 0, ∇ vol = 0 and (7) imply ∇L = 0. We have also vol(X,LY )−
vol(Y,LX) = − vol(LY,X) + vol(LX, Y ) = −Ric(Y,X) + Ric(X,Y ) = 0. Hence
R̂(X,Y )(Z ⊕Ψ) = 0⊕ 0 for ∇̂ given by (8).
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For the connection (9) we obtain

R̂(X,Y )(Z ⊕ (Ψ1,Ψ2))
=
(
R(X,Y )Z − Ric(Y, Z)X + Ric(X,Z)Y − εΨ2((∇XL)(Y )− (∇Y L)(X))

)
⊕
(
(∇X Ric)(Y, Z)− (∇Y Ric)(X,Z)−Ψ1(Ric(X,Y )− Ric(Y,X))

+ εΨ2(Ric(Y,LX)− Ric(X,LY )), 0
)

= 0⊕ (0, 0).

Note that imL ⊂ ker Ric.
For (10) we have

R̂(X,Y )(Z ⊕ (Ψ1,Ψ2))
=
(
R(X,Y )Z + vol(Y,Z)LX − vol(X,Z)LY −Ψ1((∇XL)(Y )− (∇Y L)(X))

)
⊕
(
(∇Y vol)(X,Z)− (∇X vol)(Y,Z) + Ψ1(vol(X,LY )− vol(Y, LX)),

ε(∇Y Ric)(X,Z)− ε(∇X Ric)(Y,Z) + εΨ1(Ric(X,LY )− Ric(Y, LX))
)

= 0⊕ (0, 0).

5. Some remarks about interpretation of ∇̂

As is shown in [10], in the metric case using (at least local) embedding of
(M, g) with K = ±1 into Euclidean or pseudoeuclidean space E we may identify
∇̂ with the restriction of the flat connection on TE = E×E to E×M and identify
the trivial one-dimensional summand E with the normal bundle of the surface.

We consider now the case of non-metrizable locally symmetric connection
on M , dimM = 2. Let f : M → R3 be an immersion and let ∇ be the con-
nection induced on M by f and the transversal vector field ξ. If we identify the
bundle f∗(TM)⊕R ξ with TM⊕E, then to the vector field f∗(Y )+Ψξ corresponds
the section Y ⊕Ψ of TM ⊕E. The Gauss and Weingarten formulae yield that to
DX(f∗Y + Ψξ) corresponds

D̂X(Y ⊕Ψ) =
(
∇XY −ΨSX

)
⊕
(
X(Ψ) + h(X,Y ) + Ψτ(X)

)
, (14)

where h is the affine fundamental form, S is the shape operator and τ is the
transversal connection form (see [3] for the definitions). We look for f and ξ such
that D̂ = ∇̂. Comparing the right-hand side of (14) with that of (6) and (8) for the
section 0⊕ 1 gives τ = 0, which means that we may restrict ourselves to equiaffine
transversal vector fields.

Furthermore, since h is always symmetric and vol is anti-symmetric, we see
that there are no f and ξ which allow to identify in the above described way the
connection (8) with the standard connection D on the bundle R3 ×M .

As concerns (6), it should be h = Ric, which implies that we should consider
some realization of∇ on a degenerate surface f with the type number tf equal to 1.
Such realizations were described by B. Opozda in [7]. Using a general description
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given in Proposition 6.2 of [7] and claiming that ξ = −f , we easily obtain the
following particular local realizations of ∇

f(u, v) = (u, cos v, sin v) ∈ R3 for ε = 1 (15)

and
f(u, v) =

(
u,

√
2

2 e−v,

√
2

2 ev
)
∈ R3 for ε = −1. (16)

Here u, v is some fixed local canonical coordinate system for ∇. The volume
element vol = du ∧ dv is the element induced by (f, ξ) from R3.

For a centro-affine immersion (f, ξ = −f) and n = 2 we have SX = X and
Ric(X,Y ) = h(X,Y )trS − h(SX, Y ) = (n − 1)h(X,Y ) = h(X,Y ). It follows
that using the immersion (15) or (16) we may identify (6) with the standard
connection D.

To obtain ∇̂ = D̂ for ∇̂ given by (9) we also choose and fix some local canonical
coordinate system u, v for ∇ and use for example the immersion f : M → R4,
f(u, v) = (u, cos v, sin v, 0) if ε = 1 and f(u, v) = (u,

√
2

2 e
−v,

√
2

2 e
v, 0) if ε = −1,

and the two-dimensional transversal bundle spanned by ξ1(u, v) = −f(u, v) and
ξ2(u, v) = (−v, 0, 0, 1). The induced connection (which is equal to ∇), the affine
fundamental forms h1, h2, the shape operators S1, S2, and the normal connection
forms τ ij are defined by the following decompositions (cf [3])

DXf∗Y = f∗∇XY + h1(X,Y )ξ1 + h2(X,Y )ξ2,

DXξ1 = −f∗S1X + τ1
1(X)ξ1 + τ2

1(X)ξ2,

DXξ2 = −f∗S2X + τ1
2(X)ξ1 + τ2

2(X)ξ2.

We obtain τ ij = 0, S1X = X, S2 = dv(·)∂u = εL, h2 = 0 and h1(∂u, ∂u) =
h1(∂u, ∂v) = 0, h1(∂v, ∂v) = ε. The volume element vol = du ∧ dv is induced
from R4, vol(X,Y ) = det(f∗X, f∗Y, ξ1, ξ2). Identifying the vector field f∗(Y ) +
Ψ1ξ1 +Ψ2ξ2 with the section Y ⊕(Ψ1,Ψ2) of TM⊕E we obtain ∇̂X(Y ⊕(Ψ1,Ψ2))
as in (9) from DX(f∗Y + Ψ1ξ1 + Ψ2ξ2).

Similarly as it was for (6), the above immersion f is degenerate. By definition
(see [3]), an immersion f : M2 → R4 is non-degenerate if the symmetric bilinear
function Gσ is non-degenerate. For a local frame field σ = (X1, X2) the function
Gσ is defined by the formula (cf [3])

Gσ(Y,Z) = 1
2
(

det(f∗(X1), f∗(X2), DY f∗(X1), DZf∗(X2))

+ det(f∗(X1), f∗(X2), DZf∗(X1), DY f∗(X2))
)
.

For σ = (∂u, ∂v) we obtain Gσ = 0.
It is impossible to obtain in a similar way the connection (10), because vol is

anti-symmetric.
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6. Some further remarks

In general, to each immersion (f, ξ) and to each local basis σ = (X1, X2) of
TM corresponds some GL(3,R)-valued 1-form Ωσ

Ωσ =

 −ω1
1 −ω1

2 S1(·)
−ω2

1 −ω2
2 S2(·)

−h(·, X1) −h(·, X2) −τ

 .

Here ωij are local connection forms of the induced connection and S = S1(·)X1 +
S2(·)X2 is the shape operator. The condition dΩσ −Ωσ ∧Ωσ = 0 is equivalent to
the fundamental Gauss, Codazzi and Ricci equations. The formula (5) gives on
TM ⊕ E a flat connection D̂ described by formula (14).

The considered in the present paper 1-forms Ωi were constructed as satisfying
additional condition Ωi = Aω1 + Bω2 + Cωij with constant A, B and C. For
given Ωσ such constant A, B and C may not exist, in such a case the connection
D̂ is always different from ∇̂. For example, (M,∇) can be affinely immersed
also as a non-degenerate surface in R3. Such immersions and transversal fields
are described in [5]. If we use one of them, then we obtain D̂ different from (6)
and (8).

For each given connection ∇ on M , for each (1, 1) tensor field A and (0, 2)
tensor field α we can define some connection ∇̂A,α on TM ⊕ E by the formula

∇̂A,α(Y ⊕Ψ) = (∇XY + ΨAX)⊕ (X(Ψ) + α(X,Y )).

We may look for such connections ∇ for which there exist A and α such that ∇̂A,α
is flat.

It is easy to compute

R̂A,α(X,Y )(Y ⊕Ψ)
=
(
R(X,Y )Z + α(Y, Z)AX − α(X,Z)AY + Ψ((∇XA)(Y )− (∇YA)(X))

)
⊕
(
(∇Xα)(Y, Z)− (∇Y α)(X,Z) + Ψ(α(X,AY )− α(Y,AX))

)
7. The case of indefinite metric

To complete the description we consider now a two-dimensional manifold with
indefinite metric g of constant curvature κ. We can assume, by replacing g by
−g if necessary, that κ > 0. Let κ = 1

ρ2 . We take a local basis X1, X2 such
that g(X1, X1) = 1 = −g(X2, X2), g(X1, X2) = 0. The local connection forms are
ω1

1 = ω2
2 = 0, ω1

2 = ω2
1 =: ω. The structural equations are dω1 = −ω ∧ ω2,

dω2 = −ω ∧ ω1, dω = −κω1 ∧ ω2 and the 1-form

Ωσ =

 0 −ω − 1
ρω

1

−ω 0 − 1
ρω

2

1
ρω

1 − 1
ρω

2 0
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satisfies the condition dΩσ − Ωσ ∧ Ωσ = 0 [8]. Using (5) we obtain

∇̂X(Y ⊕Ψ) =
((
X(Y 1) + ω(X)Y 2 + 1

ρ
ω1(X)Ψ

)
X1 +

(
X(Y 2) + ω(X)Y 1

+ 1
ρ
ω2(X)Ψ

)
X2

)
⊕
(
X(Ψ)− 1

ρ
(ω1(X)Y 1 − ω2(X)Y 2)

)
(17)

=
(
∇XY + 1

ρ
ΨX

)
⊕
(
X(Ψ)− 1

ρ
g(X,Y )

)
.

Let R2,1 = R3 with the scalar product 〈(v1, v2, v3), (w1, w2, w3)〉 = v1w1 + v2w2−
v3w3. Let Q = {x ∈ R3 : 〈x, x〉 = ρ2}. Let f : M → Q ⊂ R2,1 be a local
isometric immersion. Then g(X,Y ) = 〈f∗(X), f∗(Y )〉 and the connection induced
by f and the normal vector field ξ = 1

ρf is the Levi-Civita connection of g. We
have h(X,Y ) = g(SX, Y ) and SX = − 1

ρX. From (14) we obtain

D̂X(Y ⊕Ψ) =
(
∇XY + 1

ρ
Ψ(X)

)
⊕
(
X(Ψ)− 1

ρ
g(X,Y )

)
and we see that D̂ = ∇̂.

If κ = − 1
ρ2 , then to −g corresponds the positive curvature −κ = 1

ρ2 and the
formula (17) gives the flat connection

∇̂X(Y ⊕Ψ) =
(
∇XY + 1

ρ
ΨX

)
⊕
(
X(Ψ)− 1

ρ
(−g)(X,Y )

)
=
(
∇XY + 1

ρ
ΨX

)
⊕
(
X(Ψ) + 1

ρ
g(X,Y )

)
.

(18)

If ρ = 1, then from (18) we obtain (1) and from (17) we obtain (2). It follows that
Shchepetilov’s formulae hold also for indefinite metric g.

8. Summary

For a locally symmetric connection ∇ with one-dimensional imR we have
constructed two flat connections on the vector bundle TM ⊕ (R ×M) and two
flat connections on TM ⊕ (R2 ×M). From each pair only one connection may be
identified with the standard connection in RN , N = 3 or N = 4, after suitable
local embedding of (M,∇) into RN . Those embeddings are degenerate.
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