

FOLIA 182

Annales Universitatis Paedagogicae Cracoviensis Studia Mathematica XV (2016)

Maria Robaszewska Affine analogues of the Sasaki-Shchepetilov connection

Abstract. For two-dimensional manifold *M* with locally symmetric connection ∇ and with ∇-parallel volume element vol one can construct a flat connection on the vector bundle $TM \oplus E$, where *E* is a trivial bundle. The metrizable case, when *M* is a Riemannian manifold of constant curvature, together with its higher dimension generalizations, was studied by A.V. Shchepetilov [J. Phys. A: **36** (2003), 3893-3898]. This paper deals with the case of non-metrizable locally symmetric connection. Two flat connections on $TM \oplus (\mathbb{R} \times M)$ and two on $TM \oplus (\mathbb{R}^2 \times M)$ are constructed. It is shown that two of those connections – one from each pair – may be identified with the standard flat connection in \mathbb{R}^N , after suitable local affine embedding of (M, ∇) into \mathbb{R}^N .

1. Introduction

In the article [\[9\]](#page-12-0) R. Sasaki proposed to add the property of describing pseudospherical surfaces to other remarkable properties – such as applicability of the inverse scattering method, infinite number of conservation laws and Bäcklund transformations – which characterize soliton equations in $1 + 1$ dimensions. He expressed the $sl(2, \mathbb{R})$ -valued 1-form Ω , which arises in the corresponding linear scattering problem $dv = \Omega v$, $v = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$, by 1-forms ω^1 , ω^2 and ω_1^2

$$
\Omega=\begin{pmatrix}-\frac{1}{2}\omega^2 & \frac{1}{2}(\omega_1^2+\omega^1)\\\frac{1}{2}(-\omega_1^2+\omega^1) & \frac{1}{2}\omega^2\end{pmatrix}
$$

AMS (2010) Subject Classification: 53C07, 53B05, 53B15.

Keywords and phrases: connection on a vector bundle, associated vector bundle, connection form, locally symmetric connection.

in such a way, that the integrability condition $d\Omega - \Omega \wedge \Omega = 0$ is equivalent to the structural equations $d\omega^1 = \omega^2_{1} \wedge \omega^2$, $d\omega^2 = -\omega^2_{1} \wedge \omega^1$ and $d\omega^2_{1} = \omega^1 \wedge \omega^2$ of a pseudospherical surface $(K = -1)$. This **sl**(2, R)-valued 1-form Ω itself can be interpreted as the connection form of a connection on some principal *SL*(2*,* R) bundle. The condition $d\Omega$ – $\Omega \wedge \Omega = 0$ means that the curvature of this connection vanishes. In this respect the connection Ω differs from the Levi-Civita connection of the considered pseudospherical metric. On the other hand, Ω appeared to be somehow related to the Levi-Civita connection, because the Levi-Civita connection form $\begin{pmatrix} 0 & -\omega^2 \\ \omega^2 & 0 \end{pmatrix}$ "is contained" in Ω . As might be expected, the question of finding the geometric interpretation of Ω occurred.

In the paper [\[10\]](#page-12-1) A.V. Shchepetilov explained the geometric meaning of the Sasaki connection. Using an equivalent representation of $Ω$, **so** $(2, 1)$ -valued, he constructed a flat connection $\hat{\nabla}$ on the vector bundle $TM \oplus E$, where TM is the tangent bundle and $E = \mathbb{R} \times M$ is a trivial one-dimensional vector bundle (our notation is slightly different from that in [\[10\]](#page-12-1))

$$
\widehat{\nabla}_X(Y \oplus f) = (\nabla_X Y + fX) \oplus (X(f) + g(X, Y)). \tag{1}
$$

Here *q* is a metric on *M*, ∇ is its Levi-Civita connection, $f \in C^{\infty}(M)$ is a section of *E* and *X*, *Y* are vector fields on *M*.

Shchepetilov considered also manifolds with metric of constant positive curvature $K = +1$. The corresponding flat connection $\widehat{\nabla}$ on $TM \oplus E$ is

$$
\widehat{\nabla}_X(Y \oplus f) = (\nabla_X Y + fX) \oplus (X(f) - g(X, Y)). \tag{2}
$$

The aim of this paper is to construct a similar flat connection $\hat{\nabla}$ for a twodimensional manifold with non-metrizable locally symmetric connection ∇ and with ∇-parallel volume element. Our main motivation for research is as follows. Firstly, manifold with locally symmetric linear connection can be thought of as a generalization of a constant sectional curvature Riemannian manifold. Secondly, sometimes more important than (M, g) or (M, ∇) alone is an embedding of M into \mathbb{R}^3 . For example, every isometric embedding of a pseudospherical surface (M, g) into \mathbb{R}^3 corresponds to some particular solution of the sine-Gordon equation. Therefore restriction to those non-flat locally symmetric connections which are induced on hypersurfaces in \mathbb{R}^{n+1} is legitimated. If such hypersurface f is degenerate and its type number r is greater than 1, then around each generic point of *M* there exists a local cylinder decomposition which contains as a part a non-degenerate hypersurface in \mathbb{R}^{r+1} with some locally symmetric connection (see [\[4\]](#page-12-2)). On the other hand, if *f* is non-degenerate and $n > 2$, then ∇ is the Blaschke connection, $\nabla h = 0$, $S = \rho \text{id}$, $\rho = \text{const}$, $\rho \neq 0$ and $f(M)$ is an open part of a quadric with center [\[4\]](#page-12-2). Similarly as in the second proof of Berwald theorem in [\[3\]](#page-11-0) one can then define a pseudo-scalar product G in \mathbb{R}^{n+1} such that $G(f_*X, f_*Y) = h(X, Y), G(f_*X, \xi) = 0$ and $G(\xi, \xi) = \rho$, where ξ is the affine normal. It is easy to check that relative to this pseudo-scalar product *f* is a hypersurface of constant sectional curvature ρ . If f is non-degenerate, $n = 2$ and the induced locally symmetric connection satisfies the condition dim $R = 2$, then there also exists a pseudo-scalar product on $\mathbb{R}^{n+1} = \mathbb{R}^3$ relative to which f has constant Gaussian curvature and ξ is perpendicular to f [\[6\]](#page-12-3).

On the contrary, if $f: M \to \mathbb{R}^{n+1}$ is of type number 1 or if $f: M \to \mathbb{R}^3$ is nondegenerate and dim $\overline{R} = 1$, then the connection as a connection of 1-codimensional nullity (dim ker $R = n - 1$) is not metrizable [\[7\]](#page-12-4), therefore we have reason for generalizing Shchepetilov's construction. The present paper deals with the case $n = 2$.

2. Preliminaries

Let *M* be a connected two-dimensional real manifold and let ∇ be a locally symmetric connection on M , satisfying the condition dim $\mathbf{R} = 1$, where for $p \in M$

$$
\operatorname{im} R|_p := \operatorname{span} \{ R(X, Y)Z : X, Y, Z \in T_pM \}
$$

and *R* is the curvature tensor of ∇ . Such connections were studied by B. Opozda in [\[5\]](#page-12-5). Opozda proved that for every $p \in M$ there is a coordinate system (u, v) around *p* such that

$$
\nabla_{\partial_u} \partial_u = \nabla_{\partial_u} \partial_v = 0 \quad \text{and} \quad \nabla_{\partial_v} \partial_v = \varepsilon u \partial_u,
$$
\n(3)

where $\varepsilon \in \{1, -1\}$. A local coordinate system in which a locally symmetric connection ∇ is expressed by [\(3\)](#page-2-0) will be called a canonical coordinate system for ∇ [\[5\]](#page-12-5). It is not unique. It is easy to check that if u, v and $\overline{u}, \overline{v}$ are canonical coordinate systems then on each connected component of the intersection of their domains we have $\overline{u} = Au + \chi(v)$, $\overline{v} = \delta v + B$, where A, B, δ are constants, $\delta^2 = 1$, and χ satisfies the differential equation $\chi'' + \varepsilon \chi = 0$.

The Ricci tensor $\text{Ric}(X, Y) := \text{trace}[V \mapsto R(V, X)Y]$ of such a connection is symmetric and for every $p \in M$ there exists a ∇ -parallel volume element around p. Here we assume that a ∇-parallel volume element vol exists on the whole *M*.

It follows, that for every $p \in M$ we can find around p a local basis (X_1, X_2) of *TM*, satisfying the conditions:

$$
X_1 \in \text{ker Ric}, \qquad \text{Ric}(X_2, X_2) = \varepsilon \qquad \text{and} \qquad \text{vol}(X_1, X_2) = 1. \tag{4}
$$

For example, on the domain of canonical coordinates (u, v) as in [\(3\)](#page-2-0) we may take $X_1 = \frac{1}{c}\partial_u$ and $X_2 = \partial_v$, where *c* is the non-zero constant such that vol = $c du \wedge dv$. Let ω^1 , ω^2 be the dual basis for (X_1, X_2) . The local connection form is $(\omega^i_{\ j}) = \begin{pmatrix} 0 & \omega^1_{\ 2} \\ 0 & 0 \end{pmatrix}$ and the structural equations are $d\omega^1 = -\omega^1_{\ 2} \wedge \omega^2$, $d\omega^2 = 0$ and $d\omega_2^1 = \varepsilon \omega_1^1 \wedge \omega_2^2$.

The following proposition is easy to check.

PROPOSITION 2.1

Let *M* be a two-dimensional manifold with locally symmetric connection ∇ satis*fying condition* dim im $R = 1$ *. Let* ω^1 , ω^2 *and* ω^i _{*j*} *be the dual basis and the local connection forms for some local basis of TM satisfying the condition* [\(4\)](#page-2-1)*. Then each of the following four* 1-forms Ω_i

$$
\Omega_1 = \begin{pmatrix} 0 & -\omega^1{}_2 & \omega^1 \\ 0 & 0 & \omega^2 \\ 0 & -\varepsilon\omega^2 & 0 \end{pmatrix}, \qquad \Omega_2 = \begin{pmatrix} 0 & -\omega^1{}_2 & \varepsilon\omega^2 \\ 0 & 0 & 0 \\ -\omega^2 & \omega^1 & 0 \end{pmatrix},
$$

[40] Maria Robaszewska

$$
\Omega_3 = \begin{pmatrix} 0 & -\omega_{2}^1 & \omega_{2}^1 & \omega_{2}^2 \\ 0 & 0 & \omega_{2}^2 & 0 \\ 0 & -\varepsilon\omega_{2}^2 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \qquad \Omega_4 = \begin{pmatrix} 0 & -\omega_{2}^1 & \varepsilon\omega_{2}^2 & 0 \\ 0 & 0 & 0 & 0 \\ -\omega_{2}^2 & \omega_{2}^1 & 0 & 0 \\ 0 & \omega_{2}^2 & 0 & 0 \end{pmatrix}
$$

satisfies the condition $d\Omega_i - \Omega_i \wedge \Omega_i = 0$.

Those $\mathbf{gl}(N,\mathbb{R})$ -valued $(N=3 \text{ or } N=4)$ 1-forms were obtained in [\[8\]](#page-12-6) as the local connection forms of connections on some principal *GL*(*N,* R)-bundle *P* and seem to be analogous to the Sasaki connection form. The bundle $P(M, G)$, $G =$ $GL(N, \mathbb{R})$, is an extension of the bundle $Q(M, H)$ consisting of all linear frames on *M* which satisfy [\(4\)](#page-2-1). The structure group is $H := \{(\begin{smallmatrix} 1 & t \\ 0 & 1 \end{smallmatrix}) : t \in \mathbb{R}\} \cup \{(\begin{smallmatrix} -1 & t \\ 0 & -1 \end{smallmatrix}) :$ $t \in \mathbb{R}$. Here we need not explain what the bundle $P(M, G)$ is. It suffices to know that there exists $f: Q \to P$ such that the triple (f, id_M, ι) is a homomorphism of principal fibre bundles $Q(M, H)$ and $P(M, G)$. The homomorphism $\iota: H \to$ *G* of structure groups is given by $\iota(a) := \left(\begin{smallmatrix} a & 0 \\ 0 & I_{N-2} \end{smallmatrix} \right)$, where I_{N-2} is the identity $(N-2) \times (N-2)$ matrix. Each of the forms Ω_i is a local connection form associated with a local section $f \circ \sigma$ of P , where σ is some local section of Q .

In the construction of *P* and Ω in [\[8\]](#page-12-6) and in the present paper we consider the left action of *H* on *Q*: $a * q := q a^{-1}$, where $(v_1, v_2)h := (h_1^1 v_1 + h_1^2 v_2, h_2^1 v_1 + h_2^2 v_2)$ for $h = \begin{pmatrix} h_{11}^1 & h_{12}^1 \\ h_{21}^2 & h_{12}^2 \end{pmatrix}$ $\Big) \in H$, and some left action of *G* on *P*. Another possible way is to consider traditionally a right action, but we have then $-\Omega$ instead of Ω .

3. The connections on the vector bundle *TM* **⊕** *E*

We will use the definition of the covariant derivative of a section of an associated bundle which comes from [\[1\]](#page-11-1), and is described for example in [\[2\]](#page-11-2). Since we consider here the left action of *G* on *P* and the right action of \tilde{G} on \mathbb{R}^N , $z * c := c^{-1}z$, some details may be different from that of [\[1\]](#page-11-1) and [\[2\]](#page-11-2).

Let *TM* be the tangent bundle of *M* and let *E* be the trivial bundle, $E =$ $\mathbb{R}^{N-2}\times M$.

PROPOSITION 3.1 *The bundle* $TM \oplus E$ *is a vector bundle associated to* P *with fibre* \mathbb{R}^N

$$
P \times_G \mathbb{R}^N = (P \times \mathbb{R}^N) / \sim,
$$

with the equivalence relation \sim *given by* $(cp, z * c^{-1}) \sim (p, z)$ *.*

Proof. For $x \in M$ we take a basis $q = (v_1, v_2) \in Q$ of T_xM and identify $(z^1v_1 + z^2v_2)$ z^2v_2) \oplus (z^3, \ldots, z^N) from $(TM \oplus E)|_x$ with $[(f(q), z)] \in (P \times \mathbb{R}^N)/ \sim$. This identification is correct, because if we take another basis $q' = (v'_1, v'_2) \in Q_x$, then $q' = a * q = qa^{-1}$ for some $a \in H$ and $z^1v_1 + z^2v_2 = z'^1v'_1 + z'^2v'_2$ with $z'^1 =$ $a_{1}^{1}z^{1}+a_{2}^{1}z^{2}, z'^{2}=a_{1}^{2}z^{1}+a_{2}^{2}z^{2}$. It follows that $(z'^{1}v'_{1}+z'^{2}v'_{2})\oplus (z'^{3}, \ldots, z'^{N})=$ $(z^1v_1 + z^2v_2) \oplus (z^3, \ldots, z^N)$ for $z' = \iota(a)z = z * (\iota(a))^{-1}$. We obtain $[(f(q'), z')]$ $[(f(a * q), z * (\iota(a))^{-1})] = [(\iota(a)f(q), z * (\iota(a))^{-1})] = [(f(q), z)].$

Let $[(p, z)] \in P \times_G \mathbb{R}^N$ and let $\pi(p) = x$, where $\pi \colon P \to M$. Let $q = (v_1, v_2) \in$ Q_x , then $f(q) \in P_x$. Since *G* acts transitively on fibres of *P*, there exists $b \in G$

such that $p = bf(q)$. It follows that $[(p, z)] = [(bf(q), z)] = [(bf(q), (z * b) *$ (b^{-1}) = $[(f(q), z * b)] = [(f(q), b^{-1}z)]$, therefore we have to identify $[(p, z)]$ with $(y^{1}v_{1} + y^{2}v_{2}) \oplus (y^{3}, \ldots, y^{N}),$ where $y = b^{-1}z$.

To each local section η of an associated vector bundle $P \times_G \mathbb{R}^N$ corresponds some mapping $\tilde{\eta}: P|_U \to \mathbb{R}^N$ – called the Crittenden mapping – which satisfies
the condition $\tilde{\phi}(h) = \tilde{\phi}(h) * h^{-1}$. Since we have actually defined the right action the condition $\tilde{\eta}(bp) = \tilde{\eta}(p) * b^{-1}$. Since we have actually defined the right action
of $C \text{ on } \mathbb{R}^N$ using the left action $x * c = c^{-1}x$ we can write this condition simply of *G* on \mathbb{R}^N using the left action, $x * c := c^{-1}x$, we can write this condition simply as $\tilde{\eta}(bp) = b\tilde{\eta}(p)$. By definition of the Crittenden mapping, $[(p, \tilde{\eta}(p))] = \eta(\pi(p))$. Conversely, to each mapping $\tilde{\eta}: P|_U \to \mathbb{R}^N$ satisfying the condition $\tilde{\eta}(b * p) = \tilde{p}(p) * b^{-1}$ corresponds a local section of the associated bundle $\widetilde{\eta}(p) * b^{-1}$ corresponds a local section of the associated bundle.

Let *X* be a vector field on *M*. For every connection form Ω_i from Proposi-tion [2.1](#page-2-2) we will find the covariant derivative $\hat{\nabla}_X \eta$ of a local section η of $TM \oplus E$.

THEOREM 3.2

Let $\eta = Y \oplus \Psi$, with a vector field Y on $U \subset M$ and $\Psi: U \to \mathbb{R}^{N(i)}$, be a local $\text{section of } TM \oplus E$ *.* Here $N(1) = N(2) = 1$ and $N(3) = N(4) = 2$ *. Let* $\widehat{\nabla}^i_X \eta$ *denote the covariant derivative of η with respect to the connection corresponding to local connection form* Ω*ⁱ from Proposition [2.1.](#page-2-2) Then*

$$
\widehat{\nabla}^1_X(Y \oplus \Psi) = (\nabla_X Y - \Psi X) \oplus (X(\Psi) + \text{Ric}(X, Y)),
$$

\n
$$
\widehat{\nabla}^2_X(Y \oplus \Psi) = (\nabla_X Y - \Psi LX) \oplus (X(\Psi) - \text{vol}(X, Y)),
$$

\n
$$
\widehat{\nabla}^3_X(Y \oplus (\Psi^1, \Psi^2))
$$

\n
$$
= (\nabla_X Y - \Psi^1 X - \varepsilon \Psi^2 LX) \oplus (X(\Psi^1) + \text{Ric}(X, Y), X(\Psi^2))
$$

and

$$
\widehat{\nabla}^4_X(Y \oplus (\Psi^1, \Psi^2))
$$

= $(\nabla_X Y - \Psi^1 LX) \oplus (X(\Psi^1) - \text{vol}(X, Y), X(\Psi^2) - \varepsilon \text{Ric}(X, Y)),$

with the $(1,1)$ *tensor field L such that* $vol(LX, Y) = Ric(X, Y)$ *for every X*, *Y .*

Proof. By definition of the covariant derivative, the Crittenden mapping corresponding to $\hat{\nabla}_X \eta$ is equal to $X^H(\tilde{\eta})$, where X^H is the horizontal lift of X to $P|_U$.

We use a local section $\tau = f \circ \sigma$ of *P*, where $\sigma = (V_1, V_2)$ is a local section of *Q*. Let $Y = Y^1V_1 + Y^2V_2$, then $\widetilde{\eta} \circ \tau = (Y^1, Y^2, \Psi)$.

Let $\tilde{\Omega}$ be the connection form on *P*. The local connection form is $\tau^* \tilde{\Omega} = \Omega_{\sigma}$. We have

$$
\widetilde{\widehat{\nabla}_X \eta}(\tau(x)) = X^H_{\tau(x)}(\widetilde{\eta}), \qquad X^H_{\tau(x)} = d_x \tau(X_x) + B^*_{\tau(x)},
$$

where the right-invariant vector field $B = -\Omega_{\sigma}(X_x)$, which we easily obtain from the condition $\widetilde{\Omega}(X_{\tau(x)}^H) = 0$:

$$
0 = \widetilde{\Omega}_{\tau(x)}(d_x \tau(X_x)) + \widetilde{\Omega}_{\tau(x)}(B_{\tau(x)}^*) = (\tau^* \widetilde{\Omega})_x(X_x) + B = \Omega_{\sigma}(X_x) + B.
$$

The first part of $X_{\tau(x)}^H(\tilde{\eta})$ is equal to

$$
(d_x \tau(X_x))(\tilde{\eta}) = X_x(\tilde{\eta} \circ \tau) = (X_x(Y^1), X_x(Y^2), X_x(\Psi)).
$$

The second part is

$$
B^*_{\tau(x)}(\widetilde{\eta}) = \frac{d}{dt} \widetilde{\eta}(b_t \tau(x)) \Big|_{t=0} = \frac{d}{dt} b_t \widetilde{\eta}(\tau(x)) \Big|_{t=0} = \frac{d}{dt} b_t \Big|_{t=0} \widetilde{\eta}(\tau(x)) = B \widetilde{\eta}(\tau(x)).
$$

Here (b_t) is 1-parameter subgroup of *G* generated by *B*. It follows that

$$
\widetilde{\nabla}_X \eta(\tau(x)) = \begin{pmatrix} X_x(Y^1) \\ X_x(Y^2) \\ X_x(\Psi) \end{pmatrix} - \Omega_{\sigma}(X_x) \begin{pmatrix} Y^1(x) \\ Y^2(x) \\ \Psi(x) \end{pmatrix} . \tag{5}
$$

For $\Omega_{\sigma} = \Omega_1$ we obtain

$$
\widetilde{\nabla}_X \eta \circ \tau = \begin{pmatrix} X(Y^1) \\ X(Y^2) \\ X(\Psi) \end{pmatrix} - \begin{pmatrix} 0 & -\omega^1_2(X) & \omega^1(X) \\ 0 & 0 & \omega^2(X) \\ 0 & -\varepsilon \omega^2(X) & 0 \end{pmatrix} \begin{pmatrix} Y^1 \\ Y^2 \\ \Psi \end{pmatrix}
$$

and

$$
\widehat{\nabla}_X \eta = \left((X(Y^1) + \omega^1_2(X)Y^2 - \omega^1(X)\Psi)V_1 + (X(Y^2) - \omega^2(X)\Psi)V_2 \right) \n\oplus \left(X(\Psi) + \varepsilon \omega^2(X)Y^2 \right).
$$

Since $\nabla_X V_1 = 0$, we have

$$
\nabla_X Y = \nabla_X (Y^1 V_1 + Y^2 V_2)
$$

= $X(Y^1) V_1 + Y^1 \nabla_X V_1 + X(Y^2) V_2 + Y^2 \nabla_X V_2$
= $X(Y^1) V_1 + X(Y^2) V_2 + Y^2 \omega^1_{2}(X) V_1.$

We have also

$$
Ric(X, Y) = Ric(\omega^1(X)V_1 + \omega^2(X)V_2, Y^1V_1 + Y^2V_2)
$$

= $\omega^2(X)Y^2 Ric(V_2, V_2)$
= $\omega^2(X)Y^2\varepsilon$,

because V_1 is a local section of ker Ric.

We obtain finally

$$
\widehat{\nabla}_X(Y \oplus \Psi) = (\nabla_X Y - \Psi X) \oplus (X(\Psi) + \text{Ric}(X, Y)).
$$
\n(6)

If we take $\Omega_{\sigma} = \Omega_2$, then we obtain from [\(5\)](#page-5-0)

$$
\widetilde{\nabla}_X \eta \circ \tau = \begin{pmatrix} X(Y^1) \\ X(Y^2) \\ X(\Psi) \end{pmatrix} - \begin{pmatrix} 0 & -\omega^1_2(X) & \varepsilon \omega^2(X) \\ 0 & 0 & 0 \\ -\omega^2(X) & \omega^1(X) & 0 \end{pmatrix} \begin{pmatrix} Y^1 \\ Y^2 \\ \Psi \end{pmatrix},
$$

which gives

$$
\widehat{\nabla}_X(Y \oplus \Psi) = ((X(Y^1) + \omega^1{}_2(X)Y^2 - \varepsilon \omega^2(X)\Psi)V_1 + X(Y^2)V_2)
$$

$$
\oplus (X(\Psi) + \omega^2(X)Y^1 - \omega^1(X)Y^2)
$$

Affine analogues of the Sasaki-Shchepetilov connection **[43]**

$$
= (\nabla_X Y - \Psi \varepsilon \omega^2(X) V_1) \oplus (X(\Psi) - \text{vol}(X, Y)),
$$

because $vol(V_1, V_2) = 1$.

Let $(\widetilde{V}_1, \widetilde{V}_2)$ be another local basis of TM satisfying [\(4\)](#page-2-1). Then in the intersection of the corresponding domains we have $V_1 = \delta V_1$, $V_2 = tV_1 + \delta V_2$ with $\delta \in \{1, -1\}$. For the new dual basis we obtain $\tilde{\omega}^1 = \delta \omega^1 - t \omega^2$, $\tilde{\omega}^2 = \delta \omega^2$. It follows that $\tilde{\omega}^2 \tilde{V}_1 = \omega^2 V_1$, therefore the vector field $LX := \varepsilon \omega^2(X) V_1$ is defined on the whole M and L is a $(1, 1)$ tensor field.

Note that for every *Z* we have

$$
\text{vol}(LX, Z) = \text{vol}(\varepsilon \omega^2(X)V_1, Z) = \varepsilon \omega^2(X)\omega^2(Z) \text{ vol}(V_1, V_2) = \varepsilon \omega^2(X)\omega^2(Z)
$$

= Ric(X, Z). (7)

For the second connection we finally obtain the global formula

$$
\widehat{\nabla}_X(Y \oplus \Psi) = (\nabla_X Y - \Psi LX) \oplus (X(\Psi) - \text{vol}(X, Y)).
$$
\n(8)

For $\Omega_{\sigma} = \Omega_3$ we have

$$
\widetilde{\widehat{\nabla}_X \eta} \circ \tau = \begin{pmatrix} X(Y^1) \\ X(Y^2) \\ X(\Psi^1) \\ X(\Psi^2) \end{pmatrix} - \begin{pmatrix} 0 & -\omega^1_2(X) & \omega^1(X) & \omega^2(X) \\ 0 & 0 & \omega^2(X) & 0 \\ 0 & -\varepsilon \omega^2(X) & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} Y^1 \\ Y^2 \\ \Psi^1 \\ \Psi^2 \end{pmatrix},
$$

hence

$$
\hat{\nabla}_X(Y \oplus (\Psi^1, \Psi^2))
$$
\n
$$
= ((X(Y^1) + \omega^1_2(X)Y^2 - \omega^1(X)\Psi^1 - \omega^2(X)\Psi^2)V_1 + (X(Y^2) - \omega^2(X)\Psi^1)V_2)
$$
\n
$$
\oplus (X(\Psi^1) + \varepsilon\omega^2(X)Y^2, X(\Psi^2)),
$$

which gives

$$
\widehat{\nabla}_X(Y \oplus (\Psi^1, \Psi^2))
$$

= $(\nabla_X Y - \Psi^1 X - \varepsilon \Psi^2 LX) \oplus (X(\Psi^1) + \text{Ric}(X, Y), X(\Psi^2)).$ (9)

For $\Omega_{\sigma} = \Omega_4$ we obtain

$$
\widetilde{\widehat{\nabla}_X \eta} \circ \tau = \begin{pmatrix} X(Y^1) \\ X(Y^2) \\ X(\Psi^1) \\ X(\Psi^2) \end{pmatrix} - \begin{pmatrix} 0 & -\omega^1_2(X) & \varepsilon \omega^2(X) & 0 \\ 0 & 0 & 0 & 0 \\ -\omega^2(X) & \omega^1(X) & 0 & 0 \\ 0 & \omega^2(X) & 0 & 0 \end{pmatrix} \begin{pmatrix} Y^1 \\ Y^2 \\ \Psi^1 \\ \Psi^2 \end{pmatrix}
$$

and

$$
\widehat{\nabla}_X(Y \oplus (\Psi^1, \Psi^2))
$$

= $(\nabla_X Y - \Psi^1 LX) \oplus (X(\Psi^1) - \text{vol}(X, Y), X(\Psi^2) - \varepsilon \text{Ric}(X, Y)).$ (10)

4. Flatness of $\widehat{\nabla}$

THEOREM 4.1

Each of four connections $\widehat{\nabla}^i$ *in Theorem [3.2](#page-4-0) is flat.*

Proof. We will compute

$$
\widehat{R}(X,Y)(Z \oplus \Psi) = (\widehat{\nabla}_X \widehat{\nabla}_Y - \widehat{\nabla}_Y \widehat{\nabla}_X - \widehat{\nabla}_{[X,Y]})(Z \oplus \Psi)
$$

for each of four connections (6) , (8) , (9) and (10) .

If we use $\nabla_X Y - \nabla_Y X - [X, Y] = T(X, Y) = 0$, then for the connection [\(6\)](#page-5-1) we obtain

$$
\begin{aligned} \widehat{R}(X,Y)(Z \oplus \Psi) \\ &= \big(R(X,Y)Z - (\text{Ric}(Y,Z)X - \text{Ric}(X,Z)Y) \big) \\ &\quad \oplus \big((\nabla_X \text{Ric})(Y,Z) - (\nabla_Y \text{Ric})(X,Z) - \Psi(\text{Ric}(X,Y) - \text{Ric}(Y,X)) \big) \end{aligned}
$$

But Ric is symmetric, $\nabla R = 0$ implies $\nabla \text{Ric} = 0$, and for each two-dimensional manifold

$$
R(X,Y)Z = \text{Ric}(Y,Z)X - \text{Ric}(X,Z)Y.
$$
\n⁽¹¹⁾

Therefore $\widehat{R}(X, Y)(Z \oplus \Psi) = 0 \oplus 0.$

For the connection [\(8\)](#page-6-0) we obtain

$$
\begin{aligned} \widehat{R}(X,Y)(Z \oplus \Psi) \\ &= \big(R(X,Y)Z + \text{vol}(Y,Z)LX - \text{vol}(X,Z)LY - \Psi((\nabla_X L)Y - (\nabla_Y L)X) \big) \\ \oplus \big((\nabla_Y \text{ vol})(X,Z) - (\nabla_X \text{ vol})(Y,Z) + \Psi(\text{vol}(X,LY) - \text{vol}(Y, LX)) \big). \end{aligned}
$$

From ∇ vol = 0 it follows that $R \cdot \text{vol} = 0$, therefore

$$
0 = (R(X, Y) \cdot \text{vol})(Z, W) = -\text{vol}(R(X, Y)Z, W) - \text{vol}(Z, R(X, Y)W)
$$

=
$$
-\text{vol}(R(X, Y)Z, W) + \text{vol}(R(X, Y)W, Z),
$$

hence

 \overline{a}

$$
vol(R(X,Y)Z,W) = vol(R(X,Y)W,Z).
$$
\n(12)

For an arbitrary vector field *W* using [\(12\)](#page-7-0), [\(7\)](#page-6-3) and [\(11\)](#page-7-1) we obtain

$$
\text{vol}(R(X, Y)Z + \text{vol}(Y, Z)LX - \text{vol}(X, Z)LY, W)
$$
\n
$$
= \text{vol}(R(X, Y)W, Z) + \text{vol}(Y, Z)\,\text{Ric}(X, W) - \text{vol}(X, Z)\,\text{Ric}(Y, W)
$$
\n
$$
= \text{vol}(R(X, Y)W + \text{Ric}(X, W)Y - \text{Ric}(Y, W)X, Z)
$$
\n
$$
= 0.
$$

From the non-degeneracy of vol it follows that

$$
R(X,Y)Z + vol(Y,Z)LX - vol(X,Z)LY = 0.
$$
\n⁽¹³⁾

Moreover, ∇ Ric = 0, ∇ vol = 0 and [\(7\)](#page-6-3) imply $\nabla L = 0$. We have also vol(*X*, *LY*) – $vol(Y, LX) = -vol(LY, X) + vol(LX, Y) = -Ric(Y, X) + Ric(X, Y) = 0.$ Hence $\widehat{R}(X, Y)(Z \oplus \Psi) = 0 \oplus 0$ for $\widehat{\nabla}$ given by [\(8\)](#page-6-0).

For the connection [\(9\)](#page-6-1) we obtain

$$
\hat{R}(X,Y)(Z \oplus (\Psi^1, \Psi^2))
$$
\n
$$
= (R(X,Y)Z - \text{Ric}(Y,Z)X + \text{Ric}(X,Z)Y - \varepsilon\Psi^2((\nabla_X L)(Y) - (\nabla_Y L)(X)))
$$
\n
$$
\oplus ((\nabla_X \text{Ric})(Y,Z) - (\nabla_Y \text{Ric})(X,Z) - \Psi^1(\text{Ric}(X,Y) - \text{Ric}(Y,X))
$$
\n
$$
+ \varepsilon\Psi^2(\text{Ric}(Y, LX) - \text{Ric}(X,LY)),0)
$$
\n
$$
= 0 \oplus (0,0).
$$

Note that $\text{im } L \subset \text{ker } R$ ic. For [\(10\)](#page-6-2) we have

$$
\hat{R}(X,Y)(Z \oplus (\Psi^1, \Psi^2))
$$
\n
$$
= (R(X,Y)Z + vol(Y,Z)LX - vol(X,Z)LY - \Psi^1((\nabla_X L)(Y) - (\nabla_Y L)(X)))
$$
\n
$$
\oplus ((\nabla_Y vol)(X,Z) - (\nabla_X vol)(Y,Z) + \Psi^1(vol(X,LY) - vol(Y,LY)),
$$
\n
$$
\varepsilon(\nabla_Y Ric)(X,Z) - \varepsilon(\nabla_X Ric)(Y,Z) + \varepsilon \Psi^1(Ric(X,LY) - Ric(Y,LY))
$$
\n
$$
= 0 \oplus (0,0).
$$

5. Some remarks about interpretation of $\widehat{\nabla}$

As is shown in [\[10\]](#page-12-1), in the metric case using (at least local) embedding of (M, g) with $K = \pm 1$ into Euclidean or pseudoeuclidean space **E** we may identify $\hat{\nabla}$ with the restriction of the flat connection on $T\mathbf{E} = \mathbf{E} \times \mathbf{E}$ to $\mathbf{E} \times M$ and identify the trivial one-dimensional summand *E* with the normal bundle of the surface.

We consider now the case of non-metrizable locally symmetric connection on *M*, dim $M = 2$. Let $f: M \to \mathbb{R}^3$ be an immersion and let ∇ be the connection induced on *M* by *f* and the transversal vector field ξ . If we identify the bundle $f_*(TM) \oplus \mathbb{R} \xi$ with $TM \oplus E$, then to the vector field $f_*(Y) + \Psi \xi$ corresponds the section $Y \oplus \Psi$ of $TM \oplus E$. The Gauss and Weingarten formulae yield that to $D_X(f_*Y + \Psi \xi)$ corresponds

$$
\widehat{D}_X(Y \oplus \Psi) = (\nabla_X Y - \Psi S X) \oplus (X(\Psi) + h(X, Y) + \Psi \tau(X)), \tag{14}
$$

where *h* is the affine fundamental form, *S* is the shape operator and τ is the transversal connection form (see [\[3\]](#page-11-0) for the definitions). We look for *f* and *ξ* such that $\hat{D} = \hat{\nabla}$. Comparing the right-hand side of [\(14\)](#page-8-0) with that of [\(6\)](#page-5-1) and [\(8\)](#page-6-0) for the section $0 \oplus 1$ gives $\tau = 0$, which means that we may restrict ourselves to equiaffine transversal vector fields.

Furthermore, since *h* is always symmetric and vol is anti-symmetric, we see that there are no f and ξ which allow to identify in the above described way the connection [\(8\)](#page-6-0) with the standard connection *D* on the bundle $\mathbb{R}^3 \times M$.

As concerns (6) , it should be $h = \text{Ric}$, which implies that we should consider some realization of ∇ on a degenerate surface f with the type number tf equal to 1. Such realizations were described by B. Opozda in [\[7\]](#page-12-4). Using a general description

given in Proposition 6.2 of [\[7\]](#page-12-4) and claiming that $\xi = -f$, we easily obtain the following particular local realizations of ∇

$$
f(u, v) = (u, \cos v, \sin v) \in \mathbb{R}^3 \quad \text{for } \varepsilon = 1 \tag{15}
$$

and

$$
f(u,v) = \left(u, \frac{\sqrt{2}}{2}e^{-v}, \frac{\sqrt{2}}{2}e^v\right) \in \mathbb{R}^3 \quad \text{for } \varepsilon = -1.
$$
 (16)

Here u, v is some fixed local canonical coordinate system for ∇ . The volume element vol = $du \wedge dv$ is the element induced by (f, ξ) from \mathbb{R}^3 .

For a centro-affine immersion $(f, \xi = -f)$ and $n = 2$ we have $SX = X$ and $Ric(X, Y) = h(X, Y)$ tr $S - h(SX, Y) = (n-1)h(X, Y) = h(X, Y)$. It follows that using the immersion (15) or (16) we may identify (6) with the standard connection *D*.

To obtain $\hat{\nabla} = \hat{D}$ for $\hat{\nabla}$ given by [\(9\)](#page-6-1) we also choose and fix some local canonical coordinate system *u*, *v* for ∇ and use for example the immersion $f: M \to \mathbb{R}^4$, $f(u, v) = (u, \cos v, \sin v, 0)$ if $\varepsilon = 1$ and $f(u, v) = (u, \frac{\sqrt{2}}{2}e^{-v}, \frac{\sqrt{2}}{2}e^{v}, 0)$ if $\varepsilon = -1$, and the two-dimensional transversal bundle spanned by $\xi_1(u, v) = -f(u, v)$ and $\xi_2(u, v) = (-v, 0, 0, 1)$. The induced connection (which is equal to ∇), the affine fundamental forms h^1 , h^2 , the shape operators S_1 , S_2 , and the normal connection forms τ^i_j are defined by the following decompositions (cf [\[3\]](#page-11-0))

$$
D_X f_* Y = f_* \nabla_X Y + h^1(X, Y) \xi_1 + h^2(X, Y) \xi_2,
$$

\n
$$
D_X \xi_1 = -f_* S_1 X + \tau^1_1(X) \xi_1 + \tau^2_1(X) \xi_2,
$$

\n
$$
D_X \xi_2 = -f_* S_2 X + \tau^1_2(X) \xi_1 + \tau^2_2(X) \xi_2.
$$

We obtain $\tau^i_j = 0$, $S_1 X = X$, $S_2 = dv(\cdot)\partial_u = \varepsilon L$, $h^2 = 0$ and $h^1(\partial_u, \partial_u) =$ $h^1(\partial_u, \partial_v) = 0$, $h^1(\partial_v, \partial_v) = \varepsilon$. The volume element vol = *du* ∧ *dv* is induced from \mathbb{R}^4 , vol $(X, Y) = \det(f_*X, f_*Y, \xi_1, \xi_2)$. Identifying the vector field $f_*(Y)$ + $\Psi^1 \xi_1 + \Psi^2 \xi_2$ with the section $Y \oplus (\Psi^1, \Psi^2)$ of $TM \oplus E$ we obtain $\widehat{\nabla}_X(Y \oplus (\Psi^1, \Psi^2))$ as in [\(9\)](#page-6-1) from $D_X(f_*Y + \Psi^1 \xi_1 + \Psi^2 \xi_2)$.

Similarly as it was for (6) , the above immersion f is degenerate. By definition (see [\[3\]](#page-11-0)), an immersion $f: M^2 \to \mathbb{R}^4$ is non-degenerate if the symmetric bilinear function G_{σ} is non-degenerate. For a local frame field $\sigma = (X_1, X_2)$ the function G_{σ} is defined by the formula (cf [\[3\]](#page-11-0))

$$
G_{\sigma}(Y, Z) = \frac{1}{2} \big(\det(f_*(X_1), f_*(X_2), D_Y f_*(X_1), D_Z f_*(X_2)) + \det(f_*(X_1), f_*(X_2), D_Z f_*(X_1), D_Y f_*(X_2)) \big).
$$

For $\sigma = (\partial_u, \partial_v)$ we obtain $G_{\sigma} = 0$.

It is impossible to obtain in a similar way the connection [\(10\)](#page-6-2), because vol is anti-symmetric.

6. Some further remarks

In general, to each immersion (f,ξ) and to each local basis $\sigma = (X_1, X_2)$ of *TM* corresponds some $GL(3, \mathbb{R})$ -valued 1-form Ω_{σ}

$$
\Omega_{\sigma} = \begin{pmatrix} -\omega_{1}^{1} & -\omega_{2}^{1} & S^{1}(\cdot) \\ -\omega_{1}^{2} & -\omega_{2}^{2} & S^{2}(\cdot) \\ -h(\cdot, X_{1}) & -h(\cdot, X_{2}) & -\tau \end{pmatrix}.
$$

Here ω^i_j are local connection forms of the induced connection and $S = S^1(\cdot)X_1 +$ $S^2(\cdot)X_2$ is the shape operator. The condition $d\Omega_{\sigma} - \Omega_{\sigma} \wedge \Omega_{\sigma} = 0$ is equivalent to the fundamental Gauss, Codazzi and Ricci equations. The formula [\(5\)](#page-5-0) gives on $TM \oplus E$ a flat connection \widehat{D} described by formula [\(14\)](#page-8-0).

The considered in the present paper 1-forms Ω_i were constructed as satisfying additional condition $\Omega_i = A\omega^1 + B\omega^2 + C\omega^i_{\ j}$ with constant *A*, *B* and *C*. For given Ω_{σ} such constant *A*, *B* and *C* may not exist, in such a case the connection \hat{D} is always different from $\hat{\nabla}$. For example, (M, ∇) can be affinely immersed also as a non-degenerate surface in \mathbb{R}^3 . Such immersions and transversal fields are described in $[5]$. If we use one of them, then we obtain *D* different from (6) and [\(8\)](#page-6-0).

For each given connection ∇ on *M*, for each (1, 1) tensor field *A* and (0, 2) tensor field α we can define some connection $\hat{\nabla}^{A,\alpha}$ on $TM \oplus E$ by the formula

$$
\widehat{\nabla}^{A,\alpha}(Y \oplus \Psi) = (\nabla_X Y + \Psi AX) \oplus (X(\Psi) + \alpha(X,Y)).
$$

We may look for such connections ∇ for which there exist *A* and α such that $\widehat{\nabla}^{A,\alpha}$ is flat.

It is easy to compute

$$
\widehat{R}^{A,\alpha}(X,Y)(Y \oplus \Psi)
$$
\n
$$
= (R(X,Y)Z + \alpha(Y,Z)AX - \alpha(X,Z)AY + \Psi((\nabla_X A)(Y) - (\nabla_Y A)(X)))
$$
\n
$$
\oplus ((\nabla_X \alpha)(Y,Z) - (\nabla_Y \alpha)(X,Z) + \Psi(\alpha(X,AY) - \alpha(Y,AX)))
$$

7. The case of indefinite metric

To complete the description we consider now a two-dimensional manifold with indefinite metric *g* of constant curvature κ . We can assume, by replacing *g* by $−g$ if necessary, that $κ > 0$. Let $κ = \frac{1}{ρ^2}$. We take a local basis X_1 , X_2 such that $g(X_1, X_1) = 1 = -g(X_2, X_2), g(X_1, X_2) = 0$. The local connection forms are $\omega_1^1 = \omega_2^2 = 0, \omega_2^1 = \omega_1^2 =: \omega.$ The structural equations are $d\omega_1^1 = -\omega \wedge \omega_2^2$, $d\omega^2 = -\omega \wedge \omega^1$, $d\omega = -\kappa \omega^1 \wedge \omega^2$ and the 1-form

$$
\Omega_\sigma=\begin{pmatrix}0&-\omega&-\frac{1}{\rho}\omega^1\\-\omega&0&-\frac{1}{\rho}\omega^2\\\frac{1}{\rho}\omega^1&-\frac{1}{\rho}\omega^2&0\end{pmatrix}
$$

satisfies the condition $d\Omega_{\sigma} - \Omega_{\sigma} \wedge \Omega_{\sigma} = 0$ [\[8\]](#page-12-6). Using [\(5\)](#page-5-0) we obtain

$$
\widehat{\nabla}_X(Y \oplus \Psi) = \left(\left(X(Y^1) + \omega(X)Y^2 + \frac{1}{\rho} \omega^1(X)\Psi \right) X_1 + \left(X(Y^2) + \omega(X)Y^1 + \frac{1}{\rho} \omega^2(X)\Psi \right) X_2 \right) \oplus \left(X(\Psi) - \frac{1}{\rho} (\omega^1(X)Y^1 - \omega^2(X)Y^2) \right) \tag{17}
$$
\n
$$
= \left(\nabla_X Y + \frac{1}{\rho} \Psi X \right) \oplus \left(X(\Psi) - \frac{1}{\rho} g(X, Y) \right).
$$

Let $\mathbb{R}^{2,1} = \mathbb{R}^3$ with the scalar product $\langle (v^1, v^2, v^3), (w^1, w^2, w^3) \rangle = v^1 w^1 + v^2 w^2$ v^3w^3 . Let $Q = \{x \in \mathbb{R}^3 : \langle x, x \rangle = \rho^2\}$. Let $f: M \to Q \subset \mathbb{R}^{2,1}$ be a local isometric immersion. Then $g(X, Y) = \langle f_*(X), f_*(Y) \rangle$ and the connection induced by *f* and the normal vector field $\xi = \frac{1}{\rho} f$ is the Levi-Civita connection of *g*. We have $h(X, Y) = g(SX, Y)$ and $SX = -\frac{1}{\rho}X$. From [\(14\)](#page-8-0) we obtain

$$
\widehat{D}_X(Y \oplus \Psi) = \left(\nabla_X Y + \frac{1}{\rho} \Psi(X)\right) \oplus \left(X(\Psi) - \frac{1}{\rho} g(X, Y)\right)
$$

and we see that $\widehat{D} = \widehat{\nabla}$.

If $\kappa = -\frac{1}{\rho^2}$, then to $-g$ corresponds the positive curvature $-\kappa = \frac{1}{\rho^2}$ and the formula [\(17\)](#page-11-3) gives the flat connection

$$
\widehat{\nabla}_X(Y \oplus \Psi) = \left(\nabla_X Y + \frac{1}{\rho} \Psi X\right) \oplus \left(X(\Psi) - \frac{1}{\rho}(-g)(X, Y)\right)
$$
\n
$$
= \left(\nabla_X Y + \frac{1}{\rho} \Psi X\right) \oplus \left(X(\Psi) + \frac{1}{\rho} g(X, Y)\right). \tag{18}
$$

If $\rho = 1$, then from [\(18\)](#page-11-4) we obtain [\(1\)](#page-1-0) and from [\(17\)](#page-11-3) we obtain [\(2\)](#page-1-1). It follows that Shchepetilov's formulae hold also for indefinite metric *g*.

8. Summary

For a locally symmetric connection ∇ with one-dimensional im *R* we have constructed two flat connections on the vector bundle $TM \oplus (\mathbb{R} \times M)$ and two flat connections on $TM \oplus (\mathbb{R}^2 \times M)$. From each pair only one connection may be identified with the standard connection in \mathbb{R}^N , $N = 3$ or $N = 4$, after suitable local embedding of (M, ∇) into \mathbb{R}^N . Those embeddings are degenerate.

References

- [1] Crittenden, Richard J. "Covariant differentiation." *Quart. J. Math. Oxford Ser. (2)* 13 (1962): 285-298. Cited on [40.](#page-3-0)
- [2] Gancarzewicz, Jacek. *Zarys współczesnej geometrii różniczkowej*. Warszawa: Script, 2010. Cited on [40.](#page-3-0)
- [3] Nomizu, Katsumi and Takeshi Sasaki. "Affine differential geometry. Geometry of affine immersions." Vol. 111 of *Cambridge Tracts in Mathematics*. Cambridge: Cambridge University Press, 1994. Cited on [38,](#page-1-2) [45](#page-8-1) and [46.](#page-9-2)
- [4] Nomizu, Katsumi and Barbara Opozda. "Locally symmetric connections on possibly degenerate affine hypersurfaces." *Bull. Polish Acad. Sci. Math.* 40, no. 2 (1992): 143-150. Cited on [38.](#page-1-2)
- [5] Opozda, Barbara. "Locally symmetric connections on surfaces." *Results Math.* 20, no. 3-4 (1991): 725-743. Cited on [39](#page-2-3) and [47.](#page-10-0)
- [6] Opozda, Barbara. "Some relations between Riemannian and affine geometry." *Geom. Dedicata* 47, no. 2, (1993): 225-236. Cited on [38.](#page-1-2)
- [7] Opozda, Barbara. "A characterization of affine cylinders." *Monatsh. Math.* 121, no. 1-2 (1996): 113-124. Cited on [39,](#page-2-3) [45](#page-8-1) and [46.](#page-9-2)
- [8] Robaszewska, Maria. "On some flat connection associated with locally symmetric surface." *Ann. Univ. Paedagog. Crac. Stud. Math.* 13 (2014): 19-44. Cited on [40](#page-3-0) and [48.](#page-11-5)
- [9] Sasaki, Ryu. "Soliton equations and pseudospherical surfaces." *Nuclear Phys. B* 154, no. 2 (1979): 343-357. Cited on [37.](#page-0-0)
- [10] Shchepetilov, Alexey V. "The geometric sense of the Sasaki connection." *J. Phys. A* 36, no. 13 (2003): 3893-3898. Cited on [38](#page-1-2) and [45.](#page-8-1)

Institute of Mathematics Pedagogical University of Cracow Podchorążych 2 30-084 Kraków Poland E-mail: robaszew@up.krakow.pl

Received: July 25, 2015; final version: July 8, 2016; available online: July 22, 2016.