

FOLIA 182

Annales Universitatis Paedagogicae Cracoviensis Studia Mathematica XV (2016)

Maria Robaszewska Affine analogues of the Sasaki-Shchepetilov connection

Abstract. For two-dimensional manifold M with locally symmetric connection ∇ and with ∇ -parallel volume element vol one can construct a flat connection on the vector bundle $TM \oplus E$, where E is a trivial bundle. The metrizable case, when M is a Riemannian manifold of constant curvature, together with its higher dimension generalizations, was studied by A.V. Shchepetilov [J. Phys. A: **36** (2003), 3893-3898]. This paper deals with the case of non-metrizable locally symmetric connection. Two flat connections on $TM \oplus (\mathbb{R} \times M)$ and two on $TM \oplus (\mathbb{R}^2 \times M)$ are constructed. It is shown that two of those connections – one from each pair – may be identified with the standard flat connection in \mathbb{R}^N , after suitable local affine embedding of (M, ∇) into \mathbb{R}^N .

1. Introduction

In the article [9] R. Sasaki proposed to add the property of describing pseudospherical surfaces to other remarkable properties – such as applicability of the inverse scattering method, infinite number of conservation laws and Bäcklund transformations – which characterize soliton equations in 1 + 1 dimensions. He expressed the $\mathbf{sl}(2, \mathbb{R})$ -valued 1-form Ω , which arises in the corresponding linear scattering problem $dv = \Omega v$, $v = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$, by 1-forms ω^1 , ω^2 and ω^2_1

$$\Omega = \begin{pmatrix} -\frac{1}{2}\omega^2 & \frac{1}{2}(\omega_1^2 + \omega^1) \\ \frac{1}{2}(-\omega_1^2 + \omega^1) & \frac{1}{2}\omega^2 \end{pmatrix}$$

AMS (2010) Subject Classification: 53C07, 53B05, 53B15.

Keywords and phrases: connection on a vector bundle, associated vector bundle, connection form, locally symmetric connection.

in such a way, that the integrability condition $d\Omega - \Omega \wedge \Omega = 0$ is equivalent to the structural equations $d\omega^1 = \omega_1^2 \wedge \omega^2$, $d\omega^2 = -\omega_1^2 \wedge \omega^1$ and $d\omega_1^2 = \omega^1 \wedge \omega^2$ of a pseudospherical surface (K = -1). This $\mathbf{sl}(2, \mathbb{R})$ -valued 1-form Ω itself can be interpreted as the connection form of a connection on some principal $SL(2, \mathbb{R})$ bundle. The condition $d\Omega - \Omega \wedge \Omega = 0$ means that the curvature of this connection vanishes. In this respect the connection Ω differs from the Levi-Civita connection of the considered pseudospherical metric. On the other hand, Ω appeared to be somehow related to the Levi-Civita connection, because the Levi-Civita connection form $\begin{pmatrix} 0 & -\omega_1^2 \\ \omega_1^2 & 0 \end{pmatrix}$ "is contained" in Ω . As might be expected, the question of finding the geometric interpretation of Ω occurred.

In the paper [10] A.V. Shchepetilov explained the geometric meaning of the Sasaki connection. Using an equivalent representation of Ω , $\mathbf{so}(2, 1)$ -valued, he constructed a flat connection $\widehat{\nabla}$ on the vector bundle $TM \oplus E$, where TM is the tangent bundle and $E = \mathbb{R} \times M$ is a trivial one-dimensional vector bundle (our notation is slightly different from that in [10])

$$\widehat{\nabla}_X(Y \oplus f) = \left(\nabla_X Y + fX\right) \oplus \left(X(f) + g(X,Y)\right). \tag{1}$$

Here g is a metric on M, ∇ is its Levi-Civita connection, $f \in \mathcal{C}^{\infty}(M)$ is a section of E and X, Y are vector fields on M.

Shchepetilov considered also manifolds with metric of constant positive curvature K = +1. The corresponding flat connection $\widehat{\nabla}$ on $TM \oplus E$ is

$$\widehat{\nabla}_X(Y \oplus f) = \left(\nabla_X Y + fX\right) \oplus \left(X(f) - g(X,Y)\right).$$
(2)

The aim of this paper is to construct a similar flat connection $\widehat{\nabla}$ for a twodimensional manifold with non-metrizable locally symmetric connection ∇ and with ∇ -parallel volume element. Our main motivation for research is as follows. Firstly, manifold with locally symmetric linear connection can be thought of as a generalization of a constant sectional curvature Riemannian manifold. Secondly, sometimes more important than (M,q) or (M,∇) alone is an embedding of M into \mathbb{R}^3 . For example, every isometric embedding of a pseudospherical surface (M,q) into \mathbb{R}^3 corresponds to some particular solution of the sine-Gordon equation. Therefore restriction to those non-flat locally symmetric connections which are induced on hypersurfaces in \mathbb{R}^{n+1} is legitimated. If such hypersurface f is degenerate and its type number r is greater than 1, then around each generic point of M there exists a local cylinder decomposition which contains as a part a non-degenerate hypersurface in \mathbb{R}^{r+1} with some locally symmetric connection (see [4]). On the other hand, if f is non-degenerate and n > 2, then ∇ is the Blaschke connection, $\nabla h = 0$, $S = \rho$ id, $\rho = \text{const}, \rho \neq 0$ and f(M) is an open part of a quadric with center [4]. Similarly as in the second proof of Berwald theorem in [3] one can then define a pseudo-scalar product G in \mathbb{R}^{n+1} such that $G(f_*X, f_*Y) = h(X, Y), G(f_*X, \xi) = 0$ and $G(\xi, \xi) = \rho$, where ξ is the affine normal. It is easy to check that relative to this pseudo-scalar product f is a hypersurface of constant sectional curvature ρ . If f is non-degenerate, n = 2 and the induced locally symmetric connection satisfies the condition dim im R = 2, then there also exists a pseudo-scalar product on $\mathbb{R}^{n+1} = \mathbb{R}^3$ relative to which f has constant Gaussian curvature and ξ is perpendicular to f [6].

On the contrary, if $f: M \to \mathbb{R}^{n+1}$ is of type number 1 or if $f: M \to \mathbb{R}^3$ is nondegenerate and dim im R = 1, then the connection as a connection of 1-codimensional nullity (dim ker R = n - 1) is not metrizable [7], therefore we have reason for generalizing Shchepetilov's construction. The present paper deals with the case n = 2.

2. Preliminaries

Let M be a connected two-dimensional real manifold and let ∇ be a locally symmetric connection on M, satisfying the condition dim im R = 1, where for $p \in M$

$$\operatorname{im} R|_p := \operatorname{span} \{ R(X, Y)Z : X, Y, Z \in T_p M \}$$

and R is the curvature tensor of ∇ . Such connections were studied by B. Opozda in [5]. Opozda proved that for every $p \in M$ there is a coordinate system (u, v) around p such that

$$\nabla_{\partial_u} \partial_u = \nabla_{\partial_u} \partial_v = 0 \quad \text{and} \quad \nabla_{\partial_v} \partial_v = \varepsilon u \partial_u, \tag{3}$$

where $\varepsilon \in \{1, -1\}$. A local coordinate system in which a locally symmetric connection ∇ is expressed by (3) will be called a canonical coordinate system for ∇ [5]. It is not unique. It is easy to check that if u, v and $\overline{u}, \overline{v}$ are canonical coordinate systems then on each connected component of the intersection of their domains we have $\overline{u} = Au + \chi(v), \ \overline{v} = \delta v + B$, where A, B, δ are constants, $\delta^2 = 1$, and χ satisfies the differential equation $\chi'' + \varepsilon \chi = 0$.

The Ricci tensor $\operatorname{Ric}(X, Y) := \operatorname{trace}[V \mapsto R(V, X)Y]$ of such a connection is symmetric and for every $p \in M$ there exists a ∇ -parallel volume element around p. Here we assume that a ∇ -parallel volume element vol exists on the whole M.

It follows, that for every $p \in M$ we can find around p a local basis (X_1, X_2) of TM, satisfying the conditions:

$$X_1 \in \ker \operatorname{Ric}, \quad \operatorname{Ric}(X_2, X_2) = \varepsilon \quad \text{and} \quad \operatorname{vol}(X_1, X_2) = 1.$$
 (4)

For example, on the domain of canonical coordinates (u, v) as in (3) we may take $X_1 = \frac{1}{c}\partial_u$ and $X_2 = \partial_v$, where c is the non-zero constant such that vol = $c \, du \wedge dv$. Let $\omega^1, \, \omega^2$ be the dual basis for (X_1, X_2) . The local connection form is $(\omega^i_{\ j}) = \begin{pmatrix} 0 & \omega^1_2 \\ 0 & 0 \end{pmatrix}$ and the structural equations are $d\omega^1 = -\omega^1_2 \wedge \omega^2, \, d\omega^2 = 0$ and $d\omega^1_2 = \varepsilon \omega^1 \wedge \omega^2$.

The following proposition is easy to check.

Proposition 2.1

Let M be a two-dimensional manifold with locally symmetric connection ∇ satisfying condition dim im R = 1. Let ω^1 , ω^2 and ω^i_j be the dual basis and the local connection forms for some local basis of TM satisfying the condition (4). Then each of the following four 1-forms Ω_i

$$\Omega_1 = \begin{pmatrix} 0 & -\omega_2^1 & \omega_1^1 \\ 0 & 0 & \omega_2^2 \\ 0 & -\varepsilon\omega^2 & 0 \end{pmatrix}, \qquad \Omega_2 = \begin{pmatrix} 0 & -\omega_2^1 & \varepsilon\omega^2 \\ 0 & 0 & 0 \\ -\omega^2 & \omega^1 & 0 \end{pmatrix},$$

Maria Robaszewska

$$\Omega_3 = \begin{pmatrix} 0 & -\omega_2^1 & \omega^1 & \omega^2 \\ 0 & 0 & \omega^2 & 0 \\ 0 & -\varepsilon\omega^2 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \qquad \Omega_4 = \begin{pmatrix} 0 & -\omega_2^1 & \varepsilon\omega^2 & 0 \\ 0 & 0 & 0 & 0 \\ -\omega^2 & \omega^1 & 0 & 0 \\ 0 & \omega^2 & 0 & 0 \end{pmatrix}$$

satisfies the condition $d\Omega_i - \Omega_i \wedge \Omega_i = 0$.

Those $\mathbf{gl}(N, \mathbb{R})$ -valued (N = 3 or N = 4) 1-forms were obtained in [8] as the local connection forms of connections on some principal $GL(N, \mathbb{R})$ -bundle P and seem to be analogous to the Sasaki connection form. The bundle P(M, G), $G = GL(N, \mathbb{R})$, is an extension of the bundle Q(M, H) consisting of all linear frames on M which satisfy (4). The structure group is $H := \{ \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} : t \in \mathbb{R} \} \cup \{ \begin{pmatrix} -1 & t \\ 0 & -1 \end{pmatrix} : t \in \mathbb{R} \} \cup \{ \begin{pmatrix} 0 & t \\ -1 & -1 \end{pmatrix} : t \in \mathbb{R} \}$. Here we need not explain what the bundle P(M, G) is. It suffices to know that there exists $f : Q \to P$ such that the triple $(f, \operatorname{id}_M, \iota)$ is a homomorphism of principal fibre bundles Q(M, H) and P(M, G). The homomorphism $\iota : H \to G$ of structure groups is given by $\iota(a) := \begin{pmatrix} a & 0 \\ 0 & I_{N-2} \end{pmatrix}$, where I_{N-2} is the identity $(N-2) \times (N-2)$ matrix. Each of the forms Ω_i is a local connection form associated with a local section $f \circ \sigma$ of P, where σ is some local section of Q.

In the construction of P and Ω in [8] and in the present paper we consider the left action of H on Q: $a * q := qa^{-1}$, where $(v_1, v_2)h := (h_1^1 v_1 + h_1^2 v_2, h_2^1 v_1 + h_2^2 v_2)$ for $h = \begin{pmatrix} h_1^{i_1} & h_2^{i_2} \\ h_1^{i_1} & h_2^{i_2} \end{pmatrix} \in H$, and some left action of G on P. Another possible way is to consider traditionally a right action, but we have then $-\Omega$ instead of Ω .

3. The connections on the vector bundle $TM \oplus E$

We will use the definition of the covariant derivative of a section of an associated bundle which comes from [1], and is described for example in [2]. Since we consider here the left action of G on P and the right action of G on \mathbb{R}^N , $z * c := c^{-1}z$, some details may be different from that of [1] and [2].

Let TM be the tangent bundle of M and let E be the trivial bundle, $E = \mathbb{R}^{N-2} \times M$.

PROPOSITION 3.1 The bundle $TM \oplus E$ is a vector bundle associated to P with fibre \mathbb{R}^N

$$P \times_G \mathbb{R}^N = (P \times \mathbb{R}^N) / \sim_{\mathbb{R}}$$

with the equivalence relation ~ given by $(cp, z * c^{-1}) \sim (p, z)$.

Proof. For $x \in M$ we take a basis $q = (v_1, v_2) \in Q$ of $T_x M$ and identify $(z^1 v_1 + z^2 v_2) \oplus (z^3, ..., z^N)$ from $(TM \oplus E)|_x$ with $[(f(q), z)] \in (P \times \mathbb{R}^N)/\sim$. This identification is correct, because if we take another basis $q' = (v'_1, v'_2) \in Q_x$, then $q' = a * q = qa^{-1}$ for some $a \in H$ and $z^1v_1 + z^2v_2 = z'^1v'_1 + z'^2v'_2$ with $z'^1 = a^1_1z^1 + a^1_2z^2$, $z'^2 = a^2_1z^1 + a^2_2z^2$. It follows that $(z'^1v'_1 + z'^2v'_2) \oplus (z'^3, ..., z'^N) = (z^1v_1 + z^2v_2) \oplus (z^3, ..., z^N)$ for $z' = \iota(a)z = z * (\iota(a))^{-1}$. We obtain $[(f(q'), z')] = [(f(a * q), z * (\iota(a))^{-1})] = [(\iota(a)f(q), z * (\iota(a))^{-1})] = [(f(q), z)]$.

Let $[(p, z)] \in P \times_G \mathbb{R}^N$ and let $\pi(p) = x$, where $\pi \colon P \to M$. Let $q = (v_1, v_2) \in Q_x$, then $f(q) \in P_x$. Since G acts transitively on fibres of P, there exists $b \in G$

[40]

such that p = bf(q). It follows that $[(p, z)] = [(bf(q), z)] = [(bf(q), (z * b) * b^{-1})] = [(f(q), z * b)] = [(f(q), b^{-1}z)]$, therefore we have to identify [(p, z)] with $(y^1v_1 + y^2v_2) \oplus (y^3, \ldots, y^N)$, where $y = b^{-1}z$.

To each local section η of an associated vector bundle $P \times_G \mathbb{R}^N$ corresponds some mapping $\tilde{\eta} \colon P|_U \to \mathbb{R}^N$ – called the Crittenden mapping – which satisfies the condition $\tilde{\eta}(bp) = \tilde{\eta}(p) * b^{-1}$. Since we have actually defined the right action of G on \mathbb{R}^N using the left action, $x * c := c^{-1}x$, we can write this condition simply as $\tilde{\eta}(bp) = b\tilde{\eta}(p)$. By definition of the Crittenden mapping, $[(p, \tilde{\eta}(p))] = \eta(\pi(p))$. Conversely, to each mapping $\tilde{\eta} \colon P|_U \to \mathbb{R}^N$ satisfying the condition $\tilde{\eta}(b * p) =$ $\tilde{\eta}(p) * b^{-1}$ corresponds a local section of the associated bundle.

Let X be a vector field on M. For every connection form Ω_i from Proposition 2.1 we will find the covariant derivative $\widehat{\nabla}_X \eta$ of a local section η of $TM \oplus E$.

Theorem 3.2

Let $\eta = Y \oplus \Psi$, with a vector field Y on $U \subset M$ and $\Psi: U \to \mathbb{R}^{N(i)}$, be a local section of $TM \oplus E$. Here N(1) = N(2) = 1 and N(3) = N(4) = 2. Let $\widehat{\nabla}_X^i \eta$ denote the covariant derivative of η with respect to the connection corresponding to local connection form Ω_i from Proposition 2.1. Then

$$\begin{aligned} \widehat{\nabla}_X^1(Y \oplus \Psi) &= \left(\nabla_X Y - \Psi X \right) \oplus \left(X(\Psi) + \operatorname{Ric}(X, Y) \right), \\ \widehat{\nabla}_X^2(Y \oplus \Psi) &= \left(\nabla_X Y - \Psi L X \right) \oplus \left(X(\Psi) - \operatorname{vol}(X, Y) \right), \\ \widehat{\nabla}_X^3(Y \oplus (\Psi^1, \Psi^2)) \\ &= \left(\nabla_X Y - \Psi^1 X - \varepsilon \Psi^2 L X \right) \oplus \left(X(\Psi^1) + \operatorname{Ric}(X, Y), X(\Psi^2) \right) \end{aligned}$$

and

$$\widehat{\nabla}_X^4(Y \oplus (\Psi^1, \Psi^2)) = (\nabla_X Y - \Psi^1 L X) \oplus (X(\Psi^1) - \operatorname{vol}(X, Y), X(\Psi^2) - \varepsilon \operatorname{Ric}(X, Y)),$$

with the (1,1) tensor field L such that vol(LX, Y) = Ric(X, Y) for every X, Y.

Proof. By definition of the covariant derivative, the Crittenden mapping corresponding to $\widehat{\nabla}_X \eta$ is equal to $X^H(\widetilde{\eta})$, where X^H is the horizontal lift of X to $P|_U$.

We use a local section $\tau = f \circ \sigma$ of P, where $\sigma = (V_1, V_2)$ is a local section of Q. Let $Y = Y^1 V_1 + Y^2 V_2$, then $\tilde{\eta} \circ \tau = (Y^1, Y^2, \Psi)$.

Let $\widetilde{\Omega}$ be the connection form on P. The local connection form is $\tau^*\widetilde{\Omega} = \Omega_{\sigma}$. We have

$$\widehat{\nabla}_X \eta(\tau(x)) = X^H_{\tau(x)}(\widetilde{\eta}), \qquad X^H_{\tau(x)} = d_x \tau(X_x) + B^*_{\tau(x)}$$

where the right-invariant vector field $B = -\Omega_{\sigma}(X_x)$, which we easily obtain from the condition $\widetilde{\Omega}(X_{\tau(x)}^H) = 0$:

$$0 = \widetilde{\Omega}_{\tau(x)}(d_x\tau(X_x)) + \widetilde{\Omega}_{\tau(x)}(B^*_{\tau(x)}) = (\tau^*\widetilde{\Omega})_x(X_x) + B = \Omega_{\sigma}(X_x) + B.$$

The first part of $X^{H}_{\tau(x)}(\tilde{\eta})$ is equal to

$$(d_x\tau(X_x))(\widetilde{\eta}) = X_x(\widetilde{\eta}\circ\tau) = (X_x(Y^1), X_x(Y^2), X_x(\Psi)).$$

The second part is

$$B^*_{\tau(x)}(\tilde{\eta}) = \frac{d}{dt}\tilde{\eta}(b_t\tau(x))\Big|_{t=0} = \frac{d}{dt}b_t\tilde{\eta}(\tau(x))\Big|_{t=0} = \frac{d}{dt}b_t\Big|_{t=0}\tilde{\eta}(\tau(x)) = B\tilde{\eta}(\tau(x)).$$

Here (b_t) is 1-parameter subgroup of G generated by B. It follows that

$$\widetilde{\widehat{\nabla}_X \eta}(\tau(x)) = \begin{pmatrix} X_x(Y^1) \\ X_x(Y^2) \\ X_x(\Psi) \end{pmatrix} - \Omega_\sigma(X_x) \begin{pmatrix} Y^1(x) \\ Y^2(x) \\ \Psi(x) \end{pmatrix}.$$
(5)

For $\Omega_{\sigma} = \Omega_1$ we obtain

$$\widetilde{\widehat{\nabla}_X \eta} \circ \tau = \begin{pmatrix} X(Y^1) \\ X(Y^2) \\ X(\Psi) \end{pmatrix} - \begin{pmatrix} 0 & -\omega_2^1(X) & \omega^1(X) \\ 0 & 0 & \omega^2(X) \\ 0 & -\varepsilon\omega^2(X) & 0 \end{pmatrix} \begin{pmatrix} Y^1 \\ Y^2 \\ \Psi \end{pmatrix}$$

and

$$\widehat{\nabla}_X \eta = \left((X(Y^1) + \omega_2^1(X)Y^2 - \omega^1(X)\Psi)V_1 + (X(Y^2) - \omega^2(X)\Psi)V_2 \right) \\ \oplus \left(X(\Psi) + \varepsilon \omega^2(X)Y^2 \right).$$

Since $\nabla_X V_1 = 0$, we have

$$\nabla_X Y = \nabla_X (Y^1 V_1 + Y^2 V_2)$$

= $X(Y^1)V_1 + Y^1 \nabla_X V_1 + X(Y^2)V_2 + Y^2 \nabla_X V_2$
= $X(Y^1)V_1 + X(Y^2)V_2 + Y^2 \omega_2^1(X)V_1.$

We have also

$$\operatorname{Ric}(X,Y) = \operatorname{Ric}(\omega^{1}(X)V_{1} + \omega^{2}(X)V_{2}, Y^{1}V_{1} + Y^{2}V_{2})$$
$$= \omega^{2}(X)Y^{2}\operatorname{Ric}(V_{2}, V_{2})$$
$$= \omega^{2}(X)Y^{2}\varepsilon,$$

because V_1 is a local section of ker Ric.

We obtain finally

$$\widehat{\nabla}_X(Y \oplus \Psi) = \left(\nabla_X Y - \Psi X\right) \oplus \left(X(\Psi) + \operatorname{Ric}(X, Y)\right).$$
(6)

If we take $\Omega_{\sigma} = \Omega_2$, then we obtain from (5)

$$\widetilde{\nabla}_X \eta \circ \tau = \begin{pmatrix} X(Y^1) \\ X(Y^2) \\ X(\Psi) \end{pmatrix} - \begin{pmatrix} 0 & -\omega_2^1(X) & \varepsilon \omega^2(X) \\ 0 & 0 & 0 \\ -\omega^2(X) & \omega^1(X) & 0 \end{pmatrix} \begin{pmatrix} Y^1 \\ Y^2 \\ \Psi \end{pmatrix},$$

which gives

$$\widehat{\nabla}_X(Y \oplus \Psi) = \left((X(Y^1) + \omega_2^1(X)Y^2 - \varepsilon\omega^2(X)\Psi)V_1 + X(Y^2)V_2 \right)$$
$$\oplus \left(X(\Psi) + \omega^2(X)Y^1 - \omega^1(X)Y^2 \right)$$

Affine analogues of the Sasaki-Shchepetilov connection

$$= \left(\nabla_X Y - \Psi \varepsilon \omega^2(X) V_1\right) \oplus \left(X(\Psi) - \operatorname{vol}(X, Y)\right),$$

because $\operatorname{vol}(V_1, V_2) = 1$.

Let $(\widetilde{V}_1, \widetilde{V}_2)$ be another local basis of TM satisfying (4). Then in the intersection of the corresponding domains we have $\widetilde{V}_1 = \delta V_1$, $\widetilde{V}_2 = tV_1 + \delta V_2$ with $\delta \in \{1, -1\}$. For the new dual basis we obtain $\widetilde{\omega}^1 = \delta \omega^1 - t\omega^2$, $\widetilde{\omega}^2 = \delta \omega^2$. It follows that $\widetilde{\omega}^2 \widetilde{V}_1 = \omega^2 V_1$, therefore the vector field $LX := \varepsilon \omega^2(X)V_1$ is defined on the whole M and L is a (1, 1) tensor field.

Note that for every Z we have

$$\operatorname{vol}(LX, Z) = \operatorname{vol}(\varepsilon\omega^{2}(X)V_{1}, Z) = \varepsilon\omega^{2}(X)\omega^{2}(Z)\operatorname{vol}(V_{1}, V_{2}) = \varepsilon\omega^{2}(X)\omega^{2}(Z)$$

= Ric(X, Z). (7)

For the second connection we finally obtain the global formula

$$\widehat{\nabla}_X (Y \oplus \Psi) = (\nabla_X Y - \Psi L X) \oplus (X(\Psi) - \operatorname{vol}(X, Y)).$$
(8)

For $\Omega_{\sigma} = \Omega_3$ we have

$$\widetilde{\nabla_X \eta} \circ \tau = \begin{pmatrix} X(Y^1) \\ X(Y^2) \\ X(\Psi^1) \\ X(\Psi^2) \end{pmatrix} - \begin{pmatrix} 0 & -\omega_2^1(X) & \omega^1(X) & \omega^2(X) \\ 0 & 0 & \omega^2(X) & 0 \\ 0 & -\varepsilon\omega^2(X) & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} Y^1 \\ Y^2 \\ \Psi^1 \\ \Psi^2 \end{pmatrix},$$

hence

$$\begin{aligned} \widehat{\nabla}_X(Y \oplus (\Psi^1, \Psi^2)) \\ &= \left((X(Y^1) + \omega_2^1(X)Y^2 - \omega^1(X)\Psi^1 - \omega^2(X)\Psi^2)V_1 + (X(Y^2) - \omega^2(X)\Psi^1)V_2 \right) \\ &\oplus \left(X(\Psi^1) + \varepsilon\omega^2(X)Y^2, X(\Psi^2) \right), \end{aligned}$$

which gives

$$\widehat{\nabla}_X(Y \oplus (\Psi^1, \Psi^2)) = \left(\nabla_X Y - \Psi^1 X - \varepsilon \Psi^2 L X\right) \oplus \left(X(\Psi^1) + \operatorname{Ric}(X, Y), X(\Psi^2)\right).$$
(9)

For $\Omega_{\sigma} = \Omega_4$ we obtain

$$\widetilde{\nabla}_X \eta \circ \tau = \begin{pmatrix} X(Y^1) \\ X(Y^2) \\ X(\Psi^1) \\ X(\Psi^2) \end{pmatrix} - \begin{pmatrix} 0 & -\omega_2^1(X) & \varepsilon \omega^2(X) & 0 \\ 0 & 0 & 0 & 0 \\ -\omega^2(X) & \omega^1(X) & 0 & 0 \\ 0 & \omega^2(X) & 0 & 0 \end{pmatrix} \begin{pmatrix} Y^1 \\ Y^2 \\ \Psi^1 \\ \Psi^2 \end{pmatrix}$$

and

$$\widehat{\nabla}_X(Y \oplus (\Psi^1, \Psi^2)) = (\nabla_X Y - \Psi^1 L X) \oplus (X(\Psi^1) - \operatorname{vol}(X, Y), X(\Psi^2) - \varepsilon \operatorname{Ric}(X, Y)).$$
(10)

4. Flatness of $\widehat{\nabla}$

THEOREM 4.1 Each of four connections $\widehat{\nabla}^i$ in Theorem 3.2 is flat.

Proof. We will compute

$$\widehat{R}(X,Y)(Z\oplus\Psi) = (\widehat{\nabla}_X\widehat{\nabla}_Y - \widehat{\nabla}_Y\widehat{\nabla}_X - \widehat{\nabla}_{[X,Y]})(Z\oplus\Psi)$$

for each of four connections (6), (8), (9) and (10).

If we use $\nabla_X Y - \nabla_Y X - [X, Y] = T(X, Y) = 0$, then for the connection (6) we obtain

$$\widehat{R}(X,Y)(Z \oplus \Psi)$$

= $(R(X,Y)Z - (\operatorname{Ric}(Y,Z)X - \operatorname{Ric}(X,Z)Y))$
 $\oplus ((\nabla_X \operatorname{Ric})(Y,Z) - (\nabla_Y \operatorname{Ric})(X,Z) - \Psi(\operatorname{Ric}(X,Y) - \operatorname{Ric}(Y,X)))$

But Ric is symmetric, $\nabla R = 0$ implies $\nabla \text{Ric} = 0$, and for each two-dimensional manifold

$$R(X,Y)Z = \operatorname{Ric}(Y,Z)X - \operatorname{Ric}(X,Z)Y.$$
(11)

Therefore $\widehat{R}(X,Y)(Z \oplus \Psi) = 0 \oplus 0$.

For the connection (8) we obtain

$$\widehat{R}(X,Y)(Z \oplus \Psi) = (R(X,Y)Z + \operatorname{vol}(Y,Z)LX - \operatorname{vol}(X,Z)LY - \Psi((\nabla_X L)Y - (\nabla_Y L)X)) \\ \oplus ((\nabla_Y \operatorname{vol})(X,Z) - (\nabla_X \operatorname{vol})(Y,Z) + \Psi(\operatorname{vol}(X,LY) - \operatorname{vol}(Y,LX))).$$

From $\nabla \operatorname{vol} = 0$ it follows that $R \cdot \operatorname{vol} = 0$, therefore

$$0 = (R(X, Y) \cdot \text{vol})(Z, W) = -\text{vol}(R(X, Y)Z, W) - \text{vol}(Z, R(X, Y)W) = -\text{vol}(R(X, Y)Z, W) + \text{vol}(R(X, Y)W, Z),$$

hence

$$\operatorname{vol}(R(X,Y)Z,W) = \operatorname{vol}(R(X,Y)W,Z).$$
(12)

For an arbitrary vector field W using (12), (7) and (11) we obtain

$$\operatorname{vol}(R(X,Y)Z + \operatorname{vol}(Y,Z)LX - \operatorname{vol}(X,Z)LY,W)$$

= $\operatorname{vol}(R(X,Y)W,Z) + \operatorname{vol}(Y,Z)\operatorname{Ric}(X,W) - \operatorname{vol}(X,Z)\operatorname{Ric}(Y,W)$
= $\operatorname{vol}(R(X,Y)W + \operatorname{Ric}(X,W)Y - \operatorname{Ric}(Y,W)X,Z)$
= 0.

From the non-degeneracy of vol it follows that

$$R(X,Y)Z + \operatorname{vol}(Y,Z)LX - \operatorname{vol}(X,Z)LY = 0.$$
(13)

Moreover, $\nabla \operatorname{Ric} = 0$, $\nabla \operatorname{vol} = 0$ and (7) imply $\nabla L = 0$. We have also $\operatorname{vol}(X, LY) - \operatorname{vol}(Y, LX) = -\operatorname{vol}(LY, X) + \operatorname{vol}(LX, Y) = -\operatorname{Ric}(Y, X) + \operatorname{Ric}(X, Y) = 0$. Hence $\widehat{R}(X, Y)(Z \oplus \Psi) = 0 \oplus 0$ for $\widehat{\nabla}$ given by (8).

For the connection (9) we obtain

$$\begin{aligned} \widehat{R}(X,Y)(Z \oplus (\Psi^1, \Psi^2)) \\ &= \left(R(X,Y)Z - \operatorname{Ric}(Y,Z)X + \operatorname{Ric}(X,Z)Y - \varepsilon \Psi^2((\nabla_X L)(Y) - (\nabla_Y L)(X)) \right) \\ &\oplus \left((\nabla_X \operatorname{Ric})(Y,Z) - (\nabla_Y \operatorname{Ric})(X,Z) - \Psi^1(\operatorname{Ric}(X,Y) - \operatorname{Ric}(Y,X)) \right. \\ &+ \varepsilon \Psi^2(\operatorname{Ric}(Y,LX) - \operatorname{Ric}(X,LY)), 0 \end{aligned}$$
$$\begin{aligned} &= 0 \oplus (0,0). \end{aligned}$$

Note that im $L \subset \ker \operatorname{Ric}$.

For (10) we have

$$\begin{aligned} \widehat{R}(X,Y)(Z \oplus (\Psi^1, \Psi^2)) \\ &= \left(R(X,Y)Z + \operatorname{vol}(Y,Z)LX - \operatorname{vol}(X,Z)LY - \Psi^1((\nabla_X L)(Y) - (\nabla_Y L)(X)) \right) \\ &\oplus \left((\nabla_Y \operatorname{vol})(X,Z) - (\nabla_X \operatorname{vol})(Y,Z) + \Psi^1(\operatorname{vol}(X,LY) - \operatorname{vol}(Y,LX)), \right. \\ &\left. \varepsilon(\nabla_Y \operatorname{Ric})(X,Z) - \varepsilon(\nabla_X \operatorname{Ric})(Y,Z) + \varepsilon \Psi^1(\operatorname{Ric}(X,LY) - \operatorname{Ric}(Y,LX)) \right) \\ &= 0 \oplus (0,0). \end{aligned}$$

5. Some remarks about interpretation of $\widehat{\nabla}$

As is shown in [10], in the metric case using (at least local) embedding of (M, g) with $K = \pm 1$ into Euclidean or pseudoeuclidean space **E** we may identify $\widehat{\nabla}$ with the restriction of the flat connection on $T\mathbf{E} = \mathbf{E} \times \mathbf{E}$ to $\mathbf{E} \times M$ and identify the trivial one-dimensional summand E with the normal bundle of the surface.

We consider now the case of non-metrizable locally symmetric connection on M, dim M = 2. Let $f: M \to \mathbb{R}^3$ be an immersion and let ∇ be the connection induced on M by f and the transversal vector field ξ . If we identify the bundle $f_*(TM) \oplus \mathbb{R}\xi$ with $TM \oplus E$, then to the vector field $f_*(Y) + \Psi\xi$ corresponds the section $Y \oplus \Psi$ of $TM \oplus E$. The Gauss and Weingarten formulae yield that to $D_X(f_*Y + \Psi\xi)$ corresponds

$$\widehat{D}_X(Y \oplus \Psi) = \left(\nabla_X Y - \Psi S X\right) \oplus \left(X(\Psi) + h(X,Y) + \Psi \tau(X)\right), \tag{14}$$

where h is the affine fundamental form, S is the shape operator and τ is the transversal connection form (see [3] for the definitions). We look for f and ξ such that $\widehat{D} = \widehat{\nabla}$. Comparing the right-hand side of (14) with that of (6) and (8) for the section $0 \oplus 1$ gives $\tau = 0$, which means that we may restrict ourselves to equiaffine transversal vector fields.

Furthermore, since h is always symmetric and vol is anti-symmetric, we see that there are no f and ξ which allow to identify in the above described way the connection (8) with the standard connection D on the bundle $\mathbb{R}^3 \times M$.

As concerns (6), it should be h = Ric, which implies that we should consider some realization of ∇ on a degenerate surface f with the type number tf equal to 1. Such realizations were described by B. Opozda in [7]. Using a general description given in Proposition 6.2 of [7] and claiming that $\xi = -f$, we easily obtain the following particular local realizations of ∇

$$f(u, v) = (u, \cos v, \sin v) \in \mathbb{R}^3$$
 for $\varepsilon = 1$ (15)

and

$$f(u,v) = \left(u, \frac{\sqrt{2}}{2}e^{-v}, \frac{\sqrt{2}}{2}e^{v}\right) \in \mathbb{R}^3 \quad \text{for } \varepsilon = -1.$$
(16)

Here u, v is some fixed local canonical coordinate system for ∇ . The volume element vol = $du \wedge dv$ is the element induced by (f, ξ) from \mathbb{R}^3 .

For a centro-affine immersion $(f, \xi = -f)$ and n = 2 we have SX = X and $\operatorname{Ric}(X, Y) = h(X, Y)\operatorname{tr} S - h(SX, Y) = (n - 1)h(X, Y) = h(X, Y)$. It follows that using the immersion (15) or (16) we may identify (6) with the standard connection D.

To obtain $\widehat{\nabla} = \widehat{D}$ for $\widehat{\nabla}$ given by (9) we also choose and fix some local canonical coordinate system u, v for ∇ and use for example the immersion $f: M \to \mathbb{R}^4$, $f(u,v) = (u, \cos v, \sin v, 0)$ if $\varepsilon = 1$ and $f(u,v) = (u, \frac{\sqrt{2}}{2}e^{-v}, \frac{\sqrt{2}}{2}e^{v}, 0)$ if $\varepsilon = -1$, and the two-dimensional transversal bundle spanned by $\xi_1(u,v) = -f(u,v)$ and $\xi_2(u,v) = (-v, 0, 0, 1)$. The induced connection (which is equal to ∇), the affine fundamental forms h^1, h^2 , the shape operators S_1, S_2 , and the normal connection forms τ_i^i are defined by the following decompositions (cf [3])

$$D_X f_* Y = f_* \nabla_X Y + h^1(X, Y)\xi_1 + h^2(X, Y)\xi_2,$$

$$D_X \xi_1 = -f_* S_1 X + \tau_1^1(X)\xi_1 + \tau_1^2(X)\xi_2,$$

$$D_X \xi_2 = -f_* S_2 X + \tau_2^1(X)\xi_1 + \tau_2^2(X)\xi_2.$$

We obtain $\tau^i_j = 0$, $S_1X = X$, $S_2 = dv(\cdot)\partial_u = \varepsilon L$, $h^2 = 0$ and $h^1(\partial_u, \partial_u) = h^1(\partial_u, \partial_v) = 0$, $h^1(\partial_v, \partial_v) = \varepsilon$. The volume element vol $= du \wedge dv$ is induced from \mathbb{R}^4 , $vol(X, Y) = det(f_*X, f_*Y, \xi_1, \xi_2)$. Identifying the vector field $f_*(Y) + \Psi^1\xi_1 + \Psi^2\xi_2$ with the section $Y \oplus (\Psi^1, \Psi^2)$ of $TM \oplus E$ we obtain $\widehat{\nabla}_X(Y \oplus (\Psi^1, \Psi^2))$ as in (9) from $D_X(f_*Y + \Psi^1\xi_1 + \Psi^2\xi_2)$.

Similarly as it was for (6), the above immersion f is degenerate. By definition (see [3]), an immersion $f: M^2 \to \mathbb{R}^4$ is non-degenerate if the symmetric bilinear function G_{σ} is non-degenerate. For a local frame field $\sigma = (X_1, X_2)$ the function G_{σ} is defined by the formula (cf [3])

$$G_{\sigma}(Y,Z) = \frac{1}{2} \Big(\det(f_*(X_1), f_*(X_2), D_Y f_*(X_1), D_Z f_*(X_2)) \\ + \det(f_*(X_1), f_*(X_2), D_Z f_*(X_1), D_Y f_*(X_2)) \Big).$$

For $\sigma = (\partial_u, \partial_v)$ we obtain $G_{\sigma} = 0$.

It is impossible to obtain in a similar way the connection (10), because vol is anti-symmetric.

6. Some further remarks

In general, to each immersion (f,ξ) and to each local basis $\sigma = (X_1, X_2)$ of TM corresponds some $GL(3,\mathbb{R})$ -valued 1-form Ω_{σ}

$$\Omega_{\sigma} = \begin{pmatrix} -\omega_{1}^{1} & -\omega_{2}^{1} & S^{1}(\cdot) \\ -\omega_{1}^{2} & -\omega_{2}^{2} & S^{2}(\cdot) \\ -h(\cdot, X_{1}) & -h(\cdot, X_{2}) & -\tau \end{pmatrix}.$$

Here ω_j^i are local connection forms of the induced connection and $S = S^1(\cdot)X_1 + S^2(\cdot)X_2$ is the shape operator. The condition $d\Omega_{\sigma} - \Omega_{\sigma} \wedge \Omega_{\sigma} = 0$ is equivalent to the fundamental Gauss, Codazzi and Ricci equations. The formula (5) gives on $TM \oplus E$ a flat connection \hat{D} described by formula (14).

The considered in the present paper 1-forms Ω_i were constructed as satisfying additional condition $\Omega_i = A\omega^1 + B\omega^2 + C\omega^i{}_j$ with constant A, B and C. For given Ω_{σ} such constant A, B and C may not exist, in such a case the connection \widehat{D} is always different from $\widehat{\nabla}$. For example, (M, ∇) can be affinely immersed also as a non-degenerate surface in \mathbb{R}^3 . Such immersions and transversal fields are described in [5]. If we use one of them, then we obtain \widehat{D} different from (6) and (8).

For each given connection ∇ on M, for each (1,1) tensor field A and (0,2) tensor field α we can define some connection $\widehat{\nabla}^{A,\alpha}$ on $TM \oplus E$ by the formula

$$\widehat{\nabla}^{A,\alpha}(Y \oplus \Psi) = (\nabla_X Y + \Psi A X) \oplus (X(\Psi) + \alpha(X,Y)).$$

We may look for such connections ∇ for which there exist A and α such that $\widehat{\nabla}^{A,\alpha}$ is flat.

It is easy to compute

$$\widehat{R}^{A,\alpha}(X,Y)(Y \oplus \Psi) = \left(R(X,Y)Z + \alpha(Y,Z)AX - \alpha(X,Z)AY + \Psi((\nabla_X A)(Y) - (\nabla_Y A)(X)) \right) \\ \oplus \left((\nabla_X \alpha)(Y,Z) - (\nabla_Y \alpha)(X,Z) + \Psi(\alpha(X,AY) - \alpha(Y,AX)) \right)$$

7. The case of indefinite metric

To complete the description we consider now a two-dimensional manifold with indefinite metric g of constant curvature κ . We can assume, by replacing g by -g if necessary, that $\kappa > 0$. Let $\kappa = \frac{1}{\rho^2}$. We take a local basis X_1, X_2 such that $g(X_1, X_1) = 1 = -g(X_2, X_2), g(X_1, X_2) = 0$. The local connection forms are $\omega_1^1 = \omega_2^2 = 0, \ \omega_1^2 = \omega_1^2 = \omega$. The structural equations are $d\omega^1 = -\omega \wedge \omega^2, \ d\omega^2 = -\omega \wedge \omega^1, \ d\omega = -\kappa \omega^1 \wedge \omega^2$ and the 1-form

$$\Omega_{\sigma} = \begin{pmatrix} 0 & -\omega & -\frac{1}{\rho}\omega^{1} \\ -\omega & 0 & -\frac{1}{\rho}\omega^{2} \\ \frac{1}{\rho}\omega^{1} & -\frac{1}{\rho}\omega^{2} & 0 \end{pmatrix}$$

satisfies the condition $d\Omega_{\sigma} - \Omega_{\sigma} \wedge \Omega_{\sigma} = 0$ [8]. Using (5) we obtain

$$\widehat{\nabla}_X(Y \oplus \Psi) = \left(\left(X(Y^1) + \omega(X)Y^2 + \frac{1}{\rho}\omega^1(X)\Psi \right) X_1 + \left(X(Y^2) + \omega(X)Y^1 + \frac{1}{\rho}\omega^2(X)\Psi \right) X_2 \right) \oplus \left(X(\Psi) - \frac{1}{\rho}(\omega^1(X)Y^1 - \omega^2(X)Y^2) \right) \quad (17)$$
$$= \left(\nabla_X Y + \frac{1}{\rho}\Psi X \right) \oplus \left(X(\Psi) - \frac{1}{\rho}g(X,Y) \right).$$

Let $\mathbb{R}^{2,1} = \mathbb{R}^3$ with the scalar product $\langle (v^1, v^2, v^3), (w^1, w^2, w^3) \rangle = v^1 w^1 + v^2 w^2 - v^3 w^3$. Let $Q = \{x \in \mathbb{R}^3 : \langle x, x \rangle = \rho^2\}$. Let $f \colon M \to Q \subset \mathbb{R}^{2,1}$ be a local isometric immersion. Then $g(X, Y) = \langle f_*(X), f_*(Y) \rangle$ and the connection induced by f and the normal vector field $\xi = \frac{1}{\rho} f$ is the Levi-Civita connection of g. We have h(X, Y) = g(SX, Y) and $SX = -\frac{1}{\rho}X$. From (14) we obtain

$$\widehat{D}_X(Y \oplus \Psi) = \left(\nabla_X Y + \frac{1}{\rho}\Psi(X)\right) \oplus \left(X(\Psi) - \frac{1}{\rho}g(X,Y)\right)$$

and we see that $\widehat{D} = \widehat{\nabla}$.

If $\kappa = -\frac{1}{\rho^2}$, then to -g corresponds the positive curvature $-\kappa = \frac{1}{\rho^2}$ and the formula (17) gives the flat connection

$$\widehat{\nabla}_X(Y \oplus \Psi) = \left(\nabla_X Y + \frac{1}{\rho}\Psi X\right) \oplus \left(X(\Psi) - \frac{1}{\rho}(-g)(X,Y)\right)$$

$$= \left(\nabla_X Y + \frac{1}{\rho}\Psi X\right) \oplus \left(X(\Psi) + \frac{1}{\rho}g(X,Y)\right).$$
(18)

If $\rho = 1$, then from (18) we obtain (1) and from (17) we obtain (2). It follows that Shchepetilov's formulae hold also for indefinite metric g.

8. Summary

For a locally symmetric connection ∇ with one-dimensional im R we have constructed two flat connections on the vector bundle $TM \oplus (\mathbb{R} \times M)$ and two flat connections on $TM \oplus (\mathbb{R}^2 \times M)$. From each pair only one connection may be identified with the standard connection in \mathbb{R}^N , N = 3 or N = 4, after suitable local embedding of (M, ∇) into \mathbb{R}^N . Those embeddings are degenerate.

References

- Crittenden, Richard J. "Covariant differentiation." Quart. J. Math. Oxford Ser. (2) 13 (1962): 285-298. Cited on 40.
- [2] Gancarzewicz, Jacek. Zarys współczesnej geometrii różniczkowej. Warszawa: Script, 2010. Cited on 40.
- [3] Nomizu, Katsumi and Takeshi Sasaki. "Affine differential geometry. Geometry of affine immersions." Vol. 111 of *Cambridge Tracts in Mathematics*. Cambridge: Cambridge University Press, 1994. Cited on 38, 45 and 46.

- [4] Nomizu, Katsumi and Barbara Opozda. "Locally symmetric connections on possibly degenerate affine hypersurfaces." *Bull. Polish Acad. Sci. Math.* 40, no. 2 (1992): 143-150. Cited on 38.
- [5] Opozda, Barbara. "Locally symmetric connections on surfaces." *Results Math.* 20, no. 3-4 (1991): 725-743. Cited on 39 and 47.
- [6] Opozda, Barbara. "Some relations between Riemannian and affine geometry." Geom. Dedicata 47, no. 2, (1993): 225-236. Cited on 38.
- [7] Opozda, Barbara. "A characterization of affine cylinders." Monatsh. Math. 121, no. 1-2 (1996): 113-124. Cited on 39, 45 and 46.
- [8] Robaszewska, Maria. "On some flat connection associated with locally symmetric surface." Ann. Univ. Paedagog. Crac. Stud. Math. 13 (2014): 19-44. Cited on 40 and 48.
- [9] Sasaki, Ryu. "Soliton equations and pseudospherical surfaces." Nuclear Phys. B 154, no. 2 (1979): 343-357. Cited on 37.
- [10] Shchepetilov, Alexey V. "The geometric sense of the Sasaki connection." J. Phys. A 36, no. 13 (2003): 3893-3898. Cited on 38 and 45.

Institute of Mathematics Pedagogical University of Cracow Podchorążych 2 30-084 Kraków Poland E-mail: robaszew@up.krakow.pl

Received: July 25, 2015; final version: July 8, 2016; available online: July 22, 2016.