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Abstract. For two-dimensional manifold M with locally symmetric connec-
tion V and with V-parallel volume element vol one can construct a flat
connection on the vector bundle TM @ E, where F is a trivial bundle.
The metrizable case, when M is a Riemannian manifold of constant cur-
vature, together with its higher dimension generalizations, was studied by
A.V. Shchepetilov [J. Phys. A: 36 (2003), 3893-3898]. This paper deals
with the case of non-metrizable locally symmetric connection. Two flat con-
nections on TM @ (R x M) and two on TM @ (R? x M) are constructed.
It is shown that two of those connections — one from each pair — may be
identified with the standard flat connection in R”, after suitable local affine
embedding of (M, V) into RY.

1. Introduction

In the article [9] R. Sasaki proposed to add the property of describing pseudo-
spherical surfaces to other remarkable properties — such as applicability of the
inverse scattering method, infinite number of conservation laws and Bécklund
transformations — which characterize soliton equations in 1 + 1 dimensions. He
expressed the sl(2,R)-valued 1-form €2, which arises in the corresponding linear
scattering problem dv = Qu, v = (1} ), by 1-forms w!, w? and w?
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in such a way, that the integrability condition d2 — Q A Q = 0 is equivalent to
the structural equations dw! = w? A w?, dw? = —w?% Aw! and dw? = w! A w?
of a pseudospherical surface (K = —1). This s1(2,R)-valued 1-form  itself can
be interpreted as the connection form of a connection on some principal SL(2,R)-
bundle. The condition d2 —Q A€ = 0 means that the curvature of this connection
vanishes. In this respect the connection 2 differs from the Levi-Civita connection
of the considered pseudospherical metric. On the other hand, 2 appeared to be
somehow related to the Levi-Civita connection, because the Levi-Civita connection

2
form (w‘; 7: ! ) ”is contained® in €2. As might be expected, the question of finding
1

the geometric interpretation of €2 occurred.

In the paper [I0] A.V. Shchepetilov explained the geometric meaning of the
Sasaki connection. Using an equivalent representation of 2, so(2,1)-valued, he
constructed a flat connection V on the vector bundle TM & E, where T M is the
tangent bundle and £ = R x M is a trivial one-dimensional vector bundle (our
notation is slightly different from that in [10])

Vx(Y @ f) = (VxY + fX) @ (X(f) + g(X,Y)). (1)

Here g is a metric on M, V is its Levi-Civita connection, f € C>°(M) is a section
of F and X, Y are vector fields on M.

Shchepetilov considered also manifolds with metric of constant positive curva-
ture K = +1. The corresponding flat connection V on TM & E is

Vx(Y & f) = (VxY + fX) @ (X(f) - g(X,Y)). (2)

The aim of this paper is to construct a similar flat connection V for a two-
dimensional manifold with non-metrizable locally symmetric connection V and
with V-parallel volume element. Our main motivation for research is as follows.
Firstly, manifold with locally symmetric linear connection can be thought of as
a generalization of a constant sectional curvature Riemannian manifold. Secondly,
sometimes more important than (M,g) or (M,V) alone is an embedding of M
into R3. For example, every isometric embedding of a pseudospherical surface
(M, g) into R3 corresponds to some particular solution of the sine-Gordon equa-
tion. Therefore restriction to those non-flat locally symmetric connections which
are induced on hypersurfaces in R"*! is legitimated. If such hypersurface f is
degenerate and its type number r is greater than 1, then around each generic
point of M there exists a local cylinder decomposition which contains as a part
a non-degenerate hypersurface in R™+! with some locally symmetric connection
(see []). On the other hand, if f is non-degenerate and n > 2, then V is the
Blaschke connection, Vh = 0, S = pid, p = const, p # 0 and f(M) is an open
part of a quadric with center [4]. Similarly as in the second proof of Berwald
theorem in [3] one can then define a pseudo-scalar product G in R"*! such that
G(f« X, f.Y) = h(X,)Y), G(f.X,&) = 0 and G(§,&) = p, where ¢ is the affine
normal. It is easy to check that relative to this pseudo-scalar product f is a hy-
persurface of constant sectional curvature p. If f is non-degenerate, n = 2 and the
induced locally symmetric connection satisfies the condition dimim R = 2, then
there also exists a pseudo-scalar product on R"*! = R3 relative to which f has
constant Gaussian curvature and £ is perpendicular to f [6].
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On the contrary, if f: M — R"*! is of type number 1 or if f: M — R3
is nondegenerate and dimim R = 1, then the connection as a connection of
1-codimensional nullity (dimker R = n — 1) is not metrizable [7], therefore we
have reason for generalizing Shchepetilov’s construction. The present paper deals
with the case n = 2.

2. Preliminaries

Let M be a connected two-dimensional real manifold and let V be a locally
symmetric connection on M, satisfying the condition dimim R = 1, where for
peM

im R|, :==span{R(X,Y)Z : X,Y,Z € T,M}

and R is the curvature tensor of V. Such connections were studied by B. Opozda
in [5]. Opozda proved that for every p € M there is a coordinate system (u,v)
around p such that

Vo,0u =Vs,0, =0 and Vo, 0p = €uly, (3)

where € € {1, —1}. A local coordinate system in which a locally symmetric con-
nection V is expressed by (3)) will be called a canonical coordinate system for V [5].
It is not unique. It is easy to check that if u,v and w,v are canonical coordinate
systems then on each connected component of the intersection of their domains
we have @ = Au + x(v), ¥ = év + B, where A, B, § are constants, 6> = 1, and
satisfies the differential equation x” 4+ ex = 0.

The Ricci tensor Ric(X,Y) := trace[V — R(V, X)Y] of such a connection is
symmetric and for every p € M there exists a V-parallel volume element around p.
Here we assume that a V-parallel volume element vol exists on the whole M.

It follows, that for every p € M we can find around p a local basis (X7, X52)
of T'M, satisfying the conditions:

X1 € kerRic, Ric(Xo, X5) =¢ and vol(X1, X2) = 1. (4)

For example, on the domain of canonical coordinates (u,v) as in we may
take X; = %&L and Xo = 0,, where c is the non-zero constant such that vol =
cdu A dv. Let w!, w? be the dual basis for (X7, X3). The local connection form is
(wij) = (8 ‘”52) and the structural equations are dw! = —wl, A w?, dw? = 0 and
dwly = ewl A w?.

The following proposition is easy to check.

ProroSITION 2.1

Let M be a two-dimensional manifold with locally symmetric connection V satis-
fying condition dimim R = 1. Let w', w? and w'; be the dual basis and the local
connection forms for some local basis of T M satisfying the condition . Then
each of the following four 1-forms §;

0 —wlh w! 0 —wh ew?
Ql =1{0 0 w2 s QQ = 0 0 0
0 —ew? 0 —w? w0
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0 —wlh w! w? 0 —wh ew? 0
0 0 w? 0 0 0 0 O
PB=10 —c? 0 0| Q=1_2 o1 0 0
0 0 0 0 0 w? 0 O

satisfies the condition d2; — Q; A Q; = 0.

Those gl(N,R)-valued (N = 3 or N = 4) 1-forms were obtained in [8] as the
local connection forms of connections on some principal GL(N,R)-bundle P and
seem to be analogous to the Sasaki connection form. The bundle P(M,G), G =
GL(N,R), is an extension of the bundle Q(M, H) consisting of all linear frames
on M which satisfy . The structure group is H := {(§ ¥): t e RyU{(" 4):
t € R}. Here we need not explain what the bundle P(M, G) is. It suffices to know
that there exists f: @ — P such that the triple (f,idas,¢) is a homomorphism
of principal fibre bundles Q(M, H) and P(M,G). The homomorphism ¢: H —
G of structure groups is given by t(a) := (§ INO_2 ), where Iny_o is the identity
(N —2) x (N — 2) matrix. Each of the forms ; is a local connection form
associated with a local section f o o of P, where ¢ is some local section of Q.

In the construction of P and € in [8] and in the present paper we consider the
left action of H on Q: axq := qa~!, where (v1,v2)h := (h';v1+h?va, hlyv +h%v9)
for h = (Z;l Z;) € H, and some left action of G on P. Another possible way is
to consider £craintionally a right action, but we have then —() instead of 2.

3. The connections on the vector bundle TM @ F

We will use the definition of the covariant derivative of a section of an asso-
ciated bundle which comes from [1], and is described for example in [2]. Since
we consider here the left action of G on P and the right action of G on RY,
z % ¢ := ¢!z, some details may be different from that of [T] and [2].

Let TM be the tangent bundle of M and let E be the trivial bundle, F =
RY=2 x M.

ProprosITION 3.1
The bundle TM @ E is a vector bundle associated to P with fibre RN

PxgRYN = (P xRY)/ ~,
with the equivalence relation ~ given by (cp,z * c=1) ~ (p, 2).

Proof. For x € M we take a basis ¢ = (vi,v2) € Q of T, M and identify (z'v; +
) @ (23,...,2N) from (TM @ E)|, with [(f(q),2)] € (P x RY)/ ~. This
identification is correct, because if we take another basis ¢’ = (v{,v}) € Q., then
¢ = ax*q=qa"?! for some a € H and z'v; + 22vy = 2"} + 2?0}, with 2’1 =
alizt +aly2?, 2% = a2 2t +a% 22 Tt follows that (2/1v] 4+ 2"2vh) @ (23,...,2'V) =
(2o + 22v9) @ (23,...,2N) for 2/ = 1(a)z = 2 * (1(a)) L. We obtain [(f(¢'),?')] =
[(Flaxq), 2+ (@) )] = [(a) (@), 2 * (@)~ = [(F(@), 2)]

Let [(p, 2)] € P x¢ RY and let 7(p) = z, where 7: P — M. Let ¢ = (v1,v2) €
Q., then f(q) € P,. Since G acts transitively on fibres of P, there exists b € G
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such that p = bf(q). It follows that [(p,z)] = [(bf(q),2)] = [(bf(q),(z * b) *
b1 = [( (q),z xb)] = [( (q),b712)], therefore we have to identify [(p, z)] with
(yrvr +y2v2) @ (v3,...,yY), where y = b1z

To each local section 1 of an associated vector bundle P xg RY corresponds
some mapping 77: P|ly — RY — called the Crittenden mapping — which satisfies
the condition 77(bp) = 7(p) * b=!. Since we have actually defined the right action
of G on RY using the left action, = * ¢ := ¢ 'z, we can write this condition simply
as 77(bp) = bij(p). By definition of the Crittenden mapping, [(p,7(p))] = n(7(p)).
Conversely, to each mapping 7: Py — R satisfying the condition 7j(b * p) =
7(p) * b~ corresponds a local section of the associated bundle.

Let X be a vector field on M. For every connection form €2; from Proposi-
tionwe will find the covariant derivative V xn of a local section n of TM @ E.

THEOREM 3.2
Letn =Y @& U, with a vector field Y on U € M and ¥: U — RN@ | pe a local
section of TM & E. Here N(1) = N(2) = 1 and N(3) = N(4) = 2. Let Vi
denote the covariant derivative of n with respect to the connection corresponding
to local connection form Q; from Proposition[2.1. Then

VLY @ 0) = (VxY — UX) @ (X(¥) + Ric(X,Y)),

V(Y @ ¥) = (VxY — ULX) @ (X(¥) - vol(X,Y)),

V(Y e (1, 1%)

= (VxY —¥'X —eV’LX) & (X(¥') + Ric(X,Y), X (¥?))

and

VAV e (1, u%)

= (VxY —¥'LX) @ (X(¥") — vol(X,Y), X (¥?) — Ric(X,Y)),

with the (1,1) tensor field L such that vol(LX,Y) = Ric(X,Y) for every X, Y.

Proof. By definition of the covariant derivative, the Crittenden mapping corre-
sponding to Vxn is equal to X (7}), where X is the horizontal lift of X to P|y.
We use a local section 7 = f oo of P, where o = (V4,V3) is a local section
of Q. Let Y = Y'V; +Y?2V;, then fjo1 = (Yl,Yz,\I/).
Let Q be the connection form on P. The local connection form is 7 = Q.
We have

Vxn(r(e) = XH, @), XH, =d.m(X.) + B,

where the right-invariant vector field B = —,(X,), which we easily obtain from
the condition Q(ng y) =0

0 = Qo) (daT(X2)) + Doy (Biy)) = (T D)o (Xs) + B = Qo (X,) + B.
The first part of Xﬁx)(m is equal to

(de(Xx))(m = Xx(ﬁo 7') = (Xx(Yl)va(Y2)7Xx(‘I/))-
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The second part is

d

Bl (i) = Siitbr(e))| =

= ﬁbtﬁ(T(@)

1n(r(z)) = Bi(r(z))-

t=0 t=0

Here (b;) is 1-parameter subgroup of G generated by B. It follows that
—~ X (Y1) Yi(z)

Vxn(r(z)) = | Xa(Y?) | = Qo (Xa) | V() | - ()
X (V) U (x)

For Q, = Q; we obtain
__ (X(Y1)> (0 ol (X) wl(X)> (yl)
Vxnor=[X({Y?%)|-10 0 WA(X) | | Y2
X(9) 0 —ew?(X) 0 v

Vxn = ((X(Y") + 05 (X)Y? ' (X)) + (X (V?) = w*(X)T)V3)
@ (X () + ew?(X)Y?).

and

Since VxV; = 0, we have

VxY =Vx(Y'V] +Y?V,)
=XYYL +Y'VxV + X(Y2)Va + Y2V x s
= X(YHVi + X(YH Vs + Yy (X)V).

We have also

Ric(X,Y) = Ric(w! (X)Vi + w?(X)Va, YIV] + Y213)
= w?(X)Y? Ric(Va, V)
=W} (X)YZ,

because Vi is a local section of ker Ric.
We obtain finally

Vx(Y &) = (VxY — ¥X) & (X(¥) + Ric(X,Y)). (6)

If we take ©, = s, then we obtain from

— (X(Yl)) ( 0 —wh(X) ng(X)) (Yl)
Vxnor=|x¥2) |- o 0 0 v2 |,
X () —w?(X) wl(X) 0 U

which gives

Vx(Y & 0) = (X(Y) +wh(X)Y? - ew?(X)0)V; + X (Y2)T)
& (X(P) +?(X)Y! —w!(X)Y?)
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= (VxY — Tew?(X)V) & (X(T) — vol(X,Y)),

because vol(Vy, V) = 1.

Let (171, 172) be another local basis of T'M satisfying . Then in the inter-
section of the corresponding domains we have 171 = iV, 172 = tV; + 6V, with
§ € {1,—1}. For the new dual basis we obtain &! = Jw! — tw?, ©? = dw?. It
follows that &2V, = w?Vi, therefore the vector field LX = ew?(X)V; is defined
on the whole M and L is a (1, 1) tensor field.

Note that for every Z we have

vol(LX, Z) = vol(ew?(X)V1, Z) = ew?(X)w?(Z) vol(V1, Vo) = ew?(X)w?(Z)

7
= Ric(X, 2). 0

For the second connection we finally obtain the global formula
Vx (Y@ U) = (VxY - ¥LX) & (X(¥) - vol(X,Y)). (8)

For Q, = Q3 we have

X(Yh 0 —wh(X) w'(X) w?(X) y!
Soror— Xy | |o 0 WwA(X) 0 Yy?
XNOT = x(wl) 0 —ew?(X) 0 0 ol

X(0?) 0 0 0 0 v2

hence

Vx(Y @ (U1, 0?))
= (XY +wH(X)Y? — ' (X)U' — (X)) T V) + (X(Y?) — 0 (X)U1)V5)
& (X (T +ew?(X)Y?, X(0?)),

which gives

Vx(Y & (U, 1?))

9
= (VxY —U'X —eW?LX) @ (X (V') + Ric(X,Y), X (¥?)). ©)
For Q, = Q4 we obtain

X(Yh 0 —wh(X) ew?(X) 0\ [Y!

Sroro | X 0 0 0 o] |y?

XNOT= | x(wl) —w(X) w'(X) 0o off|uw

X (0?) 0 w?(X) 0 0/ \w?

and
Vx (Y @ (¥, w2

x(Y & ( ) (10)

= (VxY = V'LX) & (X (¥') — vol(X,Y), X (¥?) — eRic(X,Y)).
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4. Flatness of V

THEOREM 4.1 R
Each of four connections V¢ in Theorem 1s flat.

Proof. We will compute
E(X,Y)(Z PU) = (ﬁxﬁy - §Y§X - §[X,y})(Z o v)

for each of four connections @, , @D and .
If we use VxY — Vy X — [X,Y] = T(X,Y) = 0, then for the connection ()
we obtain

~

RX,Y)(Z W)
= (R(X, Y)Z — (Ric(Y, Z) X — Ric(X, Z)Y))
$3) ((VX Ric)(Y,Z) — (Vy Ric)(X, Z) — ¥(Ric(X,Y) — Ric(Y, X)))
But Ric is symmetric, VR = 0 implies V Ric = 0, and for each two-dimensional

manifold
R(X,Y)Z = Ric(Y, Z2)X — Ric(X, Z)Y. (11)

Therefore R(X,Y)(Z® ¥) =0& 0.
For the connection we obtain

~

R(X,Y)Z D)
= (R(X, Y)Z +vol(Y,Z)LX —vol(X,Z)LY — ¥ ((VxL)Y — (VyL)X))
® ((Vy vol)(X, Z) — (Vx vol)(Y, Z) + ¥(vol(X, LY) — vol(Y, LX))).
From V vol = 0 it follows that R - vol = 0, therefore

0=(R(X,Y) vol)(Z,W) =—vol(R(X,Y)Z,W) —vol(Z, R(X,Y)WV)
= —vol(R(X,Y)Z, W) + vol(R(X, Y)W, Z),
hence
vol(R(X,Y)Z, W) =vol(R(X, Y)W, Z). (12)
For an arbitrary vector field W using , @ and we obtain

vol(R(X,Y)Z + vol(Y, Z)LX — vol(X, Z)LY, W)

= vol(R(X, Y)W, Z) 4+ vol(Y, Z) Ric(X, W) — vol(X, Z) Ric(Y, W)

= vol(R(X, Y)W + Ric(X, W)Y — Ric(Y, W)X, Z)

=0.
From the non-degeneracy of vol it follows that

R(X,Y)Z +vol(Y,Z)LX —vol(X,Z)LY = 0. (13)

Moreover, V Ric = 0, V vol = 0 and (7)) imply VL = 0. We have also vol(X, LY) —
vol(Y, LX) = —vol(LY, X) + vol(LX,Y) = —Ric(Y, X) 4+ Ric(X,Y) = 0. Hence

~

R(X,Y)(Z® W) =00 for V given by (g).
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For the connection @D we obtain

R(X,Y)(Z @ (¥, ¥?))
= (R(X,Y)Z —Ric(Y, Z)X + Ric(X, 2)Y —e¥*(VxL)(Y) — (VyL)(X)))
& ((Vx Ric)(Y, Z) — (Vy Ric)(X, Z) — ¥'(Ric(X,Y) — Ric(Y, X))
+ e¥?(Ric(Y, LX) — Ric(X, LY)),0)
=0 (0,0).

Note that im L C ker Ric.
For we have

R(X,Y)(Z ® (¥',0?))
= (R(X,Y)Z +vol(Y, Z)LX — vol(X,Z)LY — V' ((VxL)(Y) — (VyL)(X)))
@ ((Vy vol)(X, Z) — (Vx vol)(Y, Z) + ¥*(vol (X, LY) — vol(Y, LX)),
e(Vy Ric)(X, Z) — e(Vx Ric)(Y, Z) + V! (Ric(X, LY) — Ric(Y, LX)))
=0 (0,0).

5. Some remarks about interpretation of v

As is shown in [I0], in the metric case using (at least local) embedding of
(M, g) with K = %1 into Euclidean or pseudoeuclidean space E we may identify
V with the restriction of the flat connection on TE = Ex E to E x M and identify
the trivial one-dimensional summand E with the normal bundle of the surface.

We consider now the case of non-metrizable locally symmetric connection
on M, dimM = 2. Let f: M — R3 be an immersion and let V be the con-
nection induced on M by f and the transversal vector field £. If we identify the
bundle f.(TM)®RE with TM & E, then to the vector field f.(Y)+¥¢ corresponds
the section Y @ ¥ of TM @ E. The Gauss and Weingarten formulae yield that to
Dx(f.Y 4+ ¥¢) corresponds

Dx(Y @ W) = (VxY —¥SX) & (X(¥) + h(X,Y) + ¥r(X)), (14)

where h is the affine fundamental form, S is the shape operator and 7 is the
transversal connection form (see [3] for the deﬁnltlons) We look for f and & such
that D = V. Comparing the right-hand side of (|14)) with that of @ and 1 ) for the
section 0 @ 1 gives 7 = 0, which means that we may restrict ourselves to equiaffine
transversal vector fields.

Furthermore, since h is always symmetric and vol is anti-symmetric, we see
that there are no f and £ which allow to identify in the above described way the
connection with the standard connection D on the bundle R3 x M.

As concerns @, it should be h = Ric, which implies that we should consider
some realization of V on a degenerate surface f with the type number ¢ f equal to 1.
Such realizations were described by B. Opozda in [7]. Using a general description
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given in Proposition 6.2 of [7] and claiming that £ = —f, we easily obtain the
following particular local realizations of V

f(u,v) = (u,cosv,sinv) € R fore=1 (15)
and
2 2 .
flu,v) = <u, geﬂ’, ge”) cR? for e = —1. (16)

Here w,v is some fixed local canonical coordinate system for V. The volume
element vol = du A dv is the element induced by (f,£) from R3.

For a centro-affine immersion (f,£ = —f) and n = 2 we have SX = X and
Ric(X,Y) = (X, Y)trS — h(SX,Y) = (n — D)h(X,Y) = h(X,Y). It follows
that using the immersion or we may identify @ with the standard
connection D. N

To obtain V = D for V given by @ we also choose and fix some local canonical
coordinate system u,v for V and use for example the immersion f: M — R*,
f(u,v) = (u,cosv,sinv,0) if e = 1 and f(u,v) = (u,@e‘”,?e”,O) ife = —1,
and the two-dimensional transversal bundle spanned by & (u,v) = —f(u,v) and
& (u,v) = (—v,0,0,1). The induced connection (which is equal to V), the affine
fundamental forms h', h2, the shape operators S;, Sa, and the normal connection

forms Tij are defined by the following decompositions (cf [3])

DXf*Y = f*vXY + hl(X» Y)gl + h2(X7 Y)£27
Dxé = — .51 X + 74 (X)& + 75 (X)&,
DX€2 = _f*S2X + Tlg(X)& + 7'22(X)€2-

We obtain Tij =0, $1X = X, So = dv(-)0, = €L, h?® = 0 and h'(0,,0,) =
hY(8y,0,) = 0, h'(8y,0,) = . The volume element vol = du A dv is induced
from R*, vol(X,Y) = det(f. X, f.Y,&1,&). Identifying the vector field f.(Y) +
WlE) +W2E, with the section Y @ (U1, U2) of TM & E we obtain V x (Y @& (U1, U2))
as in (9) from Dy (f.Y + ¥l& + U2%).

Similarly as it was for @, the above immersion f is degenerate. By definition
(see [3]), an immersion f: M? — R?* is non-degenerate if the symmetric bilinear

function G, is non-degenerate. For a local frame field o = (X1, X2) the function
G, is defined by the formula (cf [3])

Co(¥, 2) = 5 (det(£(X0), £u(Xa), Dy £o(X1), D f.(X2))
+ det(f.(X1), fu(X2), Dz f+(X1), Dy fo(X2))).

For o = (9, 0,) we obtain G, = 0.
It is impossible to obtain in a similar way the connection , because vol is
anti-symmetric.
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6. Some further remarks

In general, to each immersion (f,£) and to each local basis ¢ = (X, X3) of
TM corresponds some GL(3,R)-valued 1-form €,

—wh —wly  SY()

Qy = —w? —w%  S%()

—h(',Xl) —h(',Xg) —T
Here wij are local connection forms of the induced connection and S = S1(-)X; +
S2(-) X3 is the shape operator. The condition dQ, — Q, A Q, = 0 is equivalent to
the fundamental Gauss, Codazzi and Ricci equations. The formula gives on

TM & E a flat connection D described by formula .

The considered in the present paper 1-forms €2; were constructed as satisfying
additional condition Q; = Aw! + Bw? + Cwl» with constant A, B and C. For
given ), such constant A, B and C' may not eX1st in such a case the connection
D is always different from V. For example, (M,V) can be affinely immersed
also as a non-degenerate surface in R3. Such immersions and transversal fields
are described in [5]. If we use one of them, then we obtain D different from
and .

For each given connection V on M, for each (1,1) tensor field A and (0,2)
tensor field o we can define some connection VA on TM @& E by the formula

VAAUY @) = (VxY + VAX) & (X(V) + a(X,Y)).

We may look for such connections V for which there exist A and a such that VAa
is flat.
It is easy to compute

RY(X,Y)(Y & ¥)
= (R(X,Y)Z + (Y, 2)AX — a(X, Z)AY + ¥((Vx A)(Y) — (Vy A)(X)))
® ((Vxa)(Y,2) — (Vya)(X, Z) + ¥(a(X, AY) — a(Y, AX)))

7. The case of indefinite metric

To complete the description we consider now a two-dimensional manifold with
indefinite metric g of constant curvature k. We can assume, by replacing g by
—g if necessary, that x > 0. Let k = p%. We take a local basis X;, Xs such
that g(X1,X1) =1 = —g(X2, X2), (X1, X2) = 0. The local connection forms are

wl = w? =0, wy = w} = w. The structural equations are dw! = —w A w?,
dw? = —w Aw!, dw = —kw! A w? and the 1-form
0 —w —%wl
Q= | —w 0 f%wz
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satisfies the condition dQ, — Q, A Q, =0 [§]. Using we obtain

Vx(Y & 0) = ((X(Yl) Fw(X)Y?+ %wl(X)\II) X+ (X(YQ) +w(X)Y!

I %wQ(X)\IJ>X2) ® (X(\p) — %(wl(x)yl _ w2(X)Y2)) (17)

- (VXY+ %\PX) o (X(\I') - %9(?@ Y)>~

Let R%! = R3 with the scalar product {(v!,v%v3), (w!, w?, w?)) = viw! +v2w? —
vdwd. Let Q = {x € R® : (x,2) = p?}. Let f: M — @ C R*! be a local
isometric immersion. Then g(X,Y") = (f«(X), f«(Y)) and the connection induced
by f and the normal vector field & = % f is the Levi-Civita connection of g. We

have h(X,Y) = g(SX,Y) and SX = —%X. From we obtain

~

Dx(Y @ W) = (VXY + %q/(x)) ® (X(\y) - %g(X, Y))

and we see that D = V.
If k = —p%, then to —g corresponds the positive curvature —x = p% and the
formula gives the flat connection
Vx(Y &) = (vXY + 1M) ® (X(\I/) Lo, Y))
" " (18)
= (Vxv + ;\IIX) @ (X(w)+ Jo(X. v)).

If p =1, then from we obtain and from we obtain . It follows that
Shchepetilov’s formulae hold also for indefinite metric g.

8. Summary

For a locally symmetric connection V with one-dimensional im R we have
constructed two flat connections on the vector bundle TM @ (R x M) and two
flat connections on TM @ (R? x M). From each pair only one connection may be
identified with the standard connection in RY, N = 3 or N = 4, after suitable
local embedding of (M, V) into RY. Those embeddings are degenerate.
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