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Several observations about Maneeals - a peculiar
system of lines

Abstract. For an arbitrary triangle ABC and an integer n we define points
Dn, En, Fn on the sides BC, CA, AB respectively, in such a manner that

|AC|n

|AB|n = |CDn|
|BDn| ,

|AB|n

|BC|n = |AEn|
|CEn| ,

|BC|n

|AC|n = |BFn|
|AFn| .

Cevians ADn, BEn, CFn are said to be the Maneeals of order n. In this
paper we discuss some properties of the Maneeals and related objects.

1. Introduction

Given an arbitrary triangle ABC we consider certain cevians [1] defined (for
given integral n) in the following way.

Definition 1.1
Let ABC be a triangle and let n be an integer. There are points Dn, En, Fn on
the sides BC, CA, AB respectively, satisfying

|AC|n

|AB|n
= |CDn|
|BDn|

,
|AB|n

|BC|n
= |AEn|
|CEn|

,
|BC|n

|AC|n
= |BFn|
|AFn|

.

We call the cevians ADn, BEn, CFn the order n Maneeals of the triangle ABC.

It is easy to check, that medians, bisectors and symmedians of a triangle are
examples of the Maneeals with integer n = 0, n = 1, n = 2 respectively. Further-
more, for the given triangle ABC, the points Dn, En, Fn (uniquely determined by
the integer n), are vertices of a new triangle, which is said to be the Maneeal’s
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triangle of order n. For Maneeals ADn, BEn, CFn we can use the Ceva’s theorem
in order to prove that they are concurrent. Their point of intersection Mn is said
to be the Maneeal’s point of order n. For given Mn we can choose points Pn, Qn,
Rn on the sides BC, CA, AB respectively, in such a manner that line segments
MnPn, MnQn, MnRn are perpendicular to the corresponding sides of the triangle
ABC. Points Pn, Qn, Rn are the vertices of a next triangle [11], which is said to
be the Maneeal’s pedal triangle of order n.

In the present note we investigate properties of Maneeal’s points and pedal
triangles.

In this paper, for a given triangle ABC and an integer n the points Dn, En,
Fn, Pn, Qn, Rn should be always understood in accordance with the definitions
given above. Furthermore, we will use the following notation:
|AB| = c, |BC| = a, |CA| = b, qn = an + bn + cn,
∆XY Z - the area of triangle XY Z,
∆ = ∆ABC , ∆n = ∆DnEnFn , ∆′n = ∆PnQnRn ,
R - the radius of the circumcircle of triangle ABC,
S - circumcenter of triangle ABC.

2. First properties

Theorem 2.1 (Ceva’s Theorem [4, 5])
For a given triangle with vertices A, B, and C and non-collinear points D, E,
and F on lines BC, AC, AB respectively, a necessary and sufficient condition for
the cevians AD, BE, and CF to be concurrent (intersect in a single point) is that
|BD| · |CE| · |AF | = |DC| · |EA| · |FB|.

A B

C

D
E

F

Theorem 2.2 (Maneeal’s points)
Maneeals of order n are always concurrent.

Proof. Since the points Dn, En, Fn lie always between the vertices A, B, C, they
cannot be collinear. The equality

|BDn|
|CDn|

· |CEn|
|AEn|

· |AFn|
|BFn|

= bn

cn
· c

n

an
· a

n

cn
= 1

together with Theorem (2.1) proves the assertion.
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In the next Lemma we collect a number of properties connected with Maneeals
and related objects.

Lemma 2.3
The lenghts of the segments of Maneeal’s triangle of order n are given by the
following formulas:

|EnFn|2

= b2nc2(an + cn)2 + b2c2n(an + bn)2 − bncn(an + bn)(an + cn)(b2 + c2 − a2)
(an + bn)2(an + cn)2 ,

|EnDn|2

= a2nb2(cn + bn)2 + a2b2n(cn + an)2 − anbn(cn + an)(cn + bn)(a2 + b2 − c2)
(cn + bn)2(cn + an)2 ,

|FnDn|2

= a2nc2(bn + cn)2 + a2c2n(bn + an)2 − ancn(bn + an)(bn + cn)(a2 + c2 − b2)
(bn + cn)2(bn + an)2 .

Lemma 2.4
The lenghts of the segments in which the Manneals of order n divide the sides of
the triangle are given by the following formulas:

|BDn| =
cn · a
bn + cn

, |CDn| =
bn · a
bn + cn

,

|CEn| =
an · b
cn + an

, |AEn| =
cn · b
cn + an

,

|AFn| =
bn · c
bn + an

, |BFn| =
an · c
bn + an

.

Lemma 2.5
The Manneal’s point Mn of order n divides the Manneal’s segments of order n in
the following ratios:

|AMn|
|MnDn|

= cn + bn

an
,

|BMn|
|MnEn|

= cn + an

bn
,

|CMn|
|MnFn|

= an + bn

cn
.

Lemma 2.6
It is also convenient to keep, for further reference, record of the following identities:

|AMn|
|ADn|

= cn + bn

qn
,

|MnDn|
|ADn|

= an

qn
,

|BMn|
|BEn|

= cn + an

qn
,

|MnEn|
|BEn|

= bn

qn
,

|CMn|
|CFn|

= an + bn

qn
,

|MnFn|
|CFn|

= cn

qn
,

(1)
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and

|ADn|2 = b2c2

(bn + cn)2 [(bn + cn)(bn−2 + cn−2)− a2bn−2cn−2],

|BEn|2 = a2c2

(an + cn)2 [(an + cn)(an−2 + cn−2)− b2an−2cn−2],

|CFn|2 = b2a2

(bn + an)2 [(bn + an)(bn−2 + an−2)− c2bn−2an−2].

(2)

Lemma 2.7
The Maneeal’s point of order n and every pair of vertices of the given triangle
ABC determine new triangles. Areas of these triangles are related to the areas of
the triangle ABC in the following way:

∆BMnC = an

qn
·∆, ∆CMnA = bn

qn
·∆, ∆BMnA = cn

qn
·∆. (3)

We can also consider the triangles determined by pairs of points Dn, En, Fn and
one of the vertices of the triangle ABC. Their areas are given by the following
formulas:

∆BDnFn
= ancn

(bn + cn)(bn + an) ·∆,

∆CDnEn
= anbn

(cn + bn)(cn + an) ·∆,

∆AEnFn
= bncn

(an + cn)(an + bn) ·∆.

(4)

Lemma 2.8
It is also worth to note some properties connected with the lengths of line segments
between the vertices of pedal Maneeals triangles of order n, the Maneeals points of
order n, and vertices of the triangle ABC.

|MnPn| =
2∆an−1

qn
, |MnQn| =

2∆bn−1

qn
, |MnRn| =

2∆cn−1

qn
. (5)

|BPn| =
1
qn
·
√
a2c2(an + cn)(an−2 + cn−2)− b2ancn − 4a2n−2∆2,

|BRn| =
1
qn
·
√
a2c2(an + cn)(an−2 + cn−2)− b2ancn − 4c2n−2∆2,

|CPn| =
1
qn
·
√
a2b2(an + bn)(an−2 + bn−2)− c2anbn − 4a2n−2∆2,

|CQn| =
1
qn
·
√
a2b2(an + bn)(an−2 + bn−2)− c2anbn − 4b2n−2∆2,

|AQn| =
1
qn
·
√
c2b2(cn + bn)(cn−2 + bn−2)− a2cnbn − 4b2n−2∆2,

|ARn| =
1
qn
·
√
c2b2(cn + bn)(cn−2 + bn−2)− a2cnbn − 4c2n−2∆2.

(6)
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Corollary 2.9
By definition we have |BPn|+ |CPn| = a, |CQn|+ |AQn| = b, |BRn|+ |ARn| = c.
Hence, by adding all equations in (6), we get

(a+ b+ c) · (an + bn + cn)

=
√
a2c2(an + cn)(an−2 + cn−2)− b2ancn − 4a2n−2∆2

+
√
a2c2(an + cn)(an−2 + cn−2)− b2ancn − 4c2n−2∆2

+
√
a2b2(an + bn)(an−2 + bn−2)− c2anbn − 4a2n−2∆2

+
√
a2b2(an + bn)(an−2 + bn−2)− c2anbn − 4b2n−2∆2

+
√
c2b2(cn + bn)(cn−2 + bn−2)− a2cnbn − 4b2n−2∆2

+
√
c2b2(cn + bn)(cn−2 + bn−2)− a2cnbn − 4c2n−2∆2.

Now we are in a position to prove the following new identity.

Theorem 2.10

∆n = 2 · anbncn

(an + bn)(bn + cn)(cn + an) ·∆,

∆−n = ∆n.

Proof. We will start with simple consequences of the definition of Maneeals:

Mn

A

B
CDn

Fn En

|AEn| =
cn

an
|EnC|, |BFn| =

an

bn
|FnA|.

From Lemma 2.4 we obtain
|AEn|
|AC|

= cn

cn + an
,

|BFn|
|BA|

= an

an + bn
.



[56] Naga Vijay Krishna Dasari, Jakub Kabat

On the other hand we can observe, that

|AEn|
|AC|

= ∆ABEn

∆ and |BFn|
|BA|

= ∆BEnFn

∆BEnA
.

Finally we can express the area of the triangle BEnFn by the formula

∆BEnFn
= |BFn|
|BA|

·∆BEnA = an

an + bn
·∆BEnA

= an

an + bn
· |AEn|
|AC|

·∆ = an

an + bn
· cn

cn + an
·∆

= ancn

(an + bn)(cn + an) ·∆.

Strictly analogously, we can provide the following formulas:

∆BEnDn
= cnan

(cn + bn)(an + cn) ·∆,

∆BFnDn = ancn

(an + bn)(cn + bn) ·∆.

To end the first part of the theorem, we only need to note, that

∆n = ∆BEnDn
+ ∆BEnFn

−∆BFnDn
.

Finally we get

∆n = cnan

(cn + bn)(an + cn) ·∆ + ancn

(an + bn)(cn + an) ·∆−
ancn

(an + bn)(cn + bn) ·∆

= ancn

(an + bn)(bn + cn)(cn + an) [(an + bn) + (bn + cn)− (cn + an)] ·∆.

Above consideration implies that ∆n = 2 · anbncn

(an+bn)(bn+cn)(cn+an) ·∆.
The last part of the proof is quite formal.

∆−n = 2 · a−nb−nc−n

(a−n + b−n)(b−n + c−n)(c−n + a−n) ·∆

= 2 · a−nb−nc−n

(a−n + b−n)(b−n + c−n)(c−n + a−n) ·∆ ·
a2nb2nc2n

a2nb2nc2n

= 2 · anbncn

(an + bn)(bn + cn)(cn + an) ·∆

= ∆n.



Several observations about Maneeals [57]

Now we pass to the Maneeal’s pedal triangle PnQnRn.

Lemma 2.11
The area of Maneeals pedal triangle of order n is given by the following formula

∆′n = 22n−2∆n+1Rn−2

(an + bn + cn)2 [a2−n + b2−n + c2−n].

Furthermore, sides of Maneeals pedal triangle have the following lengths:

|PnQn| =
2∆
qn

√
(an−2 + bn−2)(an + bn)− an−2bn−2c2,

|QnRn| =
2∆
qn

√
(bn−2 + cn−2)(bn + cn)− bn−2cn−2a2,

|RnPn| =
2∆
qn

√
(cn−2 + an−2)(cn + an)− cn−2an−2b2.

Theorem 2.12
For any point X in the plane we have the following formula

|MnX|2 = an|AX|2 + bn|BX|2 + cn|CX|2

an + bn + cn

− a2b2c2

(an + bn + cn)2 (an−2bn−2 + bn−2cn−2 + cn−2an−2).

B C

X

Dn

Proof. From the Stewart Theorem [3] for triangle XBC, we get

|XB|2 · |DnC|+ |XC|2 · |DnB| = |BC| · [|XDn|2 + |DnC| · |DnB|],

or equivalently

|XB|2 · |DnC|
|BC|

+ |XC|2 · |DnB|
|BC|

= |XDn|2 + |DnC| · |DnB|.

If we use formulas from Lemma 2.4 and make a few simple transformations, then
we will get

|XDn|2 = cn

cn + bn
|XC|2 + bn

cn + bn
|XB|2 − bncn

(cn + bn)2 |BC|
2.
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Mn

A

B C
Dn

X

Furthermore, an analogous consideration for the triangle AXDn shows that

|XMn|2 = |AMn|
|ADn|

|DnX|2 + |DnMn|
|ADn|

|AX|2 − |AMn| · |DnMn|

= |AMn|
|ADn|

|DnX|2 + |DnMn|
|ADn|

|AX|2 − |AMn|
|ADn|

· |DnMn|
|ADn|

· |ADn|2

=
( cn + bn

an + bn + cn

)( cn

cn + bn
|XC|2 + bn

cn + bn
|XB|2 − bncna2

(cn + bn)2

)
+ an

an + bn + cn
|AX|2 − an(cn + bn)

(an + bn + cn)2 |ADn|2

= an|AX|2 + bn|BX|2 + cn|CX|2

an + bn + cn
− a2bncn

(an + bn + cn)(bn + cn)

− an(cn + bn)
(an + bn + cn)2 |ADn|2.

Now we will use formula

|ADn|2 = b2c2

(bn + cn)2 [(bn + cn)(bn−2 + cn−2)− a2bn−2cn−2]

to simplify the following part of the main formula

− a2bncn

(an + bn + cn)(bn + cn) −
an(cn + bn)

(an + bn + cn)2 |ADn|2

= − a2bncn

(an + bn + cn)(bn + cn)

− an(cn + bn)
(an + bn + cn)2

b2c2

(bn + cn)2 [(bn + cn)(bn−2 + cn−2)− a2bn−2cn−2]
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= − a2b2c2

(an + bn + cn)2 [an−2bn−2 + bn−2cn−2 + cn−2an−2].

Finally we have

|MnX|2 = an|AX|2 + bn|BX|2 + cn|CX|2

an + bn + cn

− a2b2c2

(an + bn + cn)2 (an−2bn−2 + bn−2cn−2 + cn−2an−2).
(7)

Corollaries 2.13
From (7) we obtain for n = 0, 1:

|M0X|2 = |AX|
2 + |BX|2 + |CX|2

3 − a2 + b2 + c2

9 ,

|M1X|2 = a|AX|2 + b|BX|2 + c|CX|2

a+ b+ c
− abc

(a+ b+ c) .

Note that M0 is the centroid of the triangle ABC and M1 is the incenter of ABC.
From (7), (1), (2) we obtain the last corollary, which states, that the distance

between two Maneeal’s points, of order m and n, is given by the following formula

|MmMn|2 = 1
(am + bm + cm)2(an + bn + cn)2 · V,

where

V = a2{[bmcn − bncm]2 − [bmcn − bncm][am(bn − cn)− an(bm − cm)]
− [ambn − anbm][amcn − ancm]

}
+ b2

{
[cman − cnam]2 − [cman − cnam][bm(cn − an)− bn(cm − am)]

− [bmcn − bncm][bman − bnam]
}

+ c2
{

[ambn − anbm]2 − [ambn − anbm][cm(an − bn)− cn(am − bm)]
− [cman − cnam][cmbn − cnbm]

}
.

In particular if we let m = 1, n = 0, we will get

|M1M0|2 = 1
(a+ b+ c) [a|AM0|2 + b|BM0|2 + c|CM0|2 − abc].

Corollary 2.14
From (2.12) for X=S we have

|MnS|2 = anR2 + bnR2 + cnR2

an + bn + cn

− a2b2c2

(an + bn + cn)2 (an−2bn−2 + bn−2cn−2 + cn−2an−2)

≥ 0.
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Therefore, we have

R2 ≥ a2bncn + b2ancn + c2anbn

q2
n

.

In particular, for n = 1, since

R2 ≥ abc

(a+ b+ c) = 2Rr

therefore

R ≥ 2r.

Other proofs of Euler’s inequality you can find at [2, 13, 14, 6, 7, 8, 9, 10].

Now we can obtain a few relationships from the Cauchy-Schwarz inequality.
They will be important part of proofs of several subsequent theorems.

Lemma 2.15
Any non-zero real numbers a, b, c satisfy the following inequalities:(a2n

a2 + b2n

b2
+ c2n

c2

)
≥ (an + bn + cn)2

a2 + b2 + c2
, (8)

(a2n + b2n + c2n) ≥ 1
3(an + bn + cn)2, (9)

( a2

an
+ b2

bn
+ c2

cn

)
≥ (a+ b+ c)2

an + bn + cn
. (10)

Proof. Indeed, these are special cases of the Cauchy-Schwarz inequality

(x2
1 + x2

2 + x2
3)(y2

1 + y2
2 + y2

3) ≥ (x1y1 + x2y2 + x3y3)2

with the substitutions

x1 = an

a
, x2 = bn

b
, x3 = cn

c
, y1 = a, y2 = b, y3 = c for (8)

x1 = an, x2 = bn, x3 = cn, y1 = y2 = y3 = 1 for (9)

and

x1 =
√
a2

an
, x2 =

√
b2

bn
, x3 =

√
c2

cn
, y1 =

√
an, y2 =

√
bn, y3 =

√
cn for (10).

Lemma 2.16 (Inequality of arithmetic and geometric means)
For any real numbers x1, . . . , xn there is

x1 + . . .+ xn

n
≥ n
√
x1 · . . . · xn. (11)
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The Symmedian point M2 has a special feature, which we will describe by
following

Theorem 2.17
Let S(n) = |MnPn|2 + |MnQn|2 + |MnRn|2. Then S(2) ≤ S(n) for all n ∈ Z.

Proof. Using (5) we get

S(n) = 4∆2

q2
n

[a2n

a2 + b2n

b2
+ c2n

c2

]
.

Mn

A

B CPn

Qn
Rn

Using (8) we get

S(n) ≥ 4∆2

q2
.

Now, an easy computation shows, that

S(2) = |M2P2|2 + |M2Q2|2 + |M2R2|2 = 4∆2

q2
.

This finishes the proof.

Not only the Symmedian point, but also the CentroidM0, has a special feature:

Theorem 2.18
Let T (n) = a2|MnPn|2 + b2|MnQn|2 + c2|MnRn|2. Then T (0) ≤ T (n) for all
n ∈ Z.
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Proof. Using (5) we obtain

T (n) = 4∆2 · q2n

q2
n

.

By (9) we get

T (n) ≥ 4∆2

3 .

Now an easy computation shows, that

a2|M0P0|2 + b2|M0Q0|2 + c2|M0R0|2 = 4∆2

3 .

This finishes the proof.

Theorem 2.19
Let W (n) = a

|MnPn| + b
|MnQn| + c

|MnRn| . Then W (1) ≤ S(n) for all n ∈ Z.

Proof. Using (5) we get

W (n) = qn

2∆

( a2

an
+ b2

bn
+ c2

cn

)
.

Using (10) we get

W (n) = (an + bn + cn)
2∆

( a2

an
+ b2

bn
+ c2

cn

)
≥ (a+ b+ c)2

2∆ .

Now an easy computation shows, that

a

|M1P1|
+ b

|M1Q1|
+ c

|M1R1|
= (a+ b+ c)2

2∆ .

This finishes the proof.

Theorem 2.20
Let K(n) = |MnPn| · |MnQn| · |MnRn|. Then K(0) ≥ K(n) for all n ∈ Z.

Proof. Using (5) we obtain

K(n) = 8an−1bn−1cn−1

(an + bn + cn)3 ·∆
3.

By a special case of 2.16 we get

(an + bn + cn) ≥ 3 3
√
anbncn.

Equivalently,

1
(an + bn + cn)3 ≤

1
27anbncn

.
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Using this inequality, we get

K(n) ≤ 8an−1bn−1cn−1

27anbncn
·∆3 = 8

27abc ·∆
3.

Furthermore,

(an + bn + cn) = 3 3
√
anbncn for n = 0.

Hence,

|M0P0| · |M0Q0| · |M0R0| =
8a−1b−1c−1

27 ·∆3 = 8
27abc ·∆

3.

This equality finishes the proof.

Theorem 2.21
Let π be the circumcircle of the triangle ABC. For any n ∈ Z we choose points
Xn, Yn, Zn on π in such a manner, that chords AXn, BYn, CZn contain the
Maneeals ADn, BEn, CFn respectively. Let D′n, E′n, F ′n be intersection points of
AXn, BYn, CZn and YnZn, ZnXn, XnYn respctively.

Let finally m be an integer, XnD
′′
m, YnE

′′
m, ZnF

′′
m be order m Maneeals of the

triangle XnYnZn. Then the following conditions hold:
• D′′2 = D′2, E′′2 = E′2, F ′′2 = F ′2,
• if Gm is an m-order Maneeal’s point of triangle XnYnZn, then G2 = M2.

Mn

A

B

C
Dn

Fn En

Zn

Xn

Yn
D′n

E′n
F ′n
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Proof. Line segments BC and AXn are the chords of circle π, and Dn is their
point of intersection. Hence,

|BDn| · |DnC| = |ADn| · |DnXn|.

Using 2.4 we get

|DnXn| =
a2bncn

(bn + cn)2|ADn|
.

Strictly analogously we get

|EnYn| =
b2ancn

(an + cn)2|BEn|
, |FnZn| =

c2anbn

(an + bn)2|CFn|
.

Now we can use (1) and (2) to obtain

|MnXn| = |MnDn|+ |DnXn| =
an|ADn|

(an + bn + cn) + a2bncn

(bn + cn)2|ADn|

= a2bncn + b2cnan + c2anbn

(an + bn + cn)(bn + cn)|ADn|
.

Strictly analogously we get

|MnYn| =
a2bncn + b2cnan + c2anbn

(an + bn + cn)(cn + an)|BEn|
,

|MnZn| =
a2bncn + b2cnan + c2anbn

(an + bn + cn)(an + bn)|CFn|
.

Using (2) again, we get

|AXn| = |ADn|+ |DnXn| =
|ADn|2

|ADn|
+ a2bncn

(bn + cn)2|ADn|
= c2bn + b2cn

(bn + cn)|ADn|
.

Analogously we get

|BYn| =
c2an + a2cn

(an + cn)|BEn|
, |CZn| =

b2an + a2bn

(an + bn)|CFn|
.

Now we observe, that triangles XnMnZn and CMnA are similar. Indeed, we
only need to note, that Mn is the intersection point of chords AXn and CZn and
that respective angles are right.

From the similarity, we derive that

∆XnMnZn

∆CMnA
= |XnMn|2

|CMn|2
= |XnZn|2

|CA|2
= |ZnMn|2

|AMn|2
.

Since |XnZn|
|CA| = |ZnMn|

|AMn| , therefore if we use (1), we get

|XnZn| =
|AC| · |ZnMn|
|AMn|

= b · a2bncn + b2cnan + c2anbn

(an + bn)(bn + cn)|ADn||CFn|
.
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Strictly analogously we get

|XnYn| = c · a2bncn + b2cnan + c2anbn

(an + cn)(bn + cn)|ADn||BEn|
,

|YnZn| = a · a2bncn + b2cnan + c2anbn

(an + cn)(an + bn)|CFn||BEn|
.

By (3) and similarity of respective triangles we have

∆XnMnZn = |XnZn|2

|CA|2
·∆CMnA

= bn(a2bncn + b2cnan + c2anbn)2

(an + bn + cn)(an + bn)2(bn + cn)2|ADn|2|CFn|2
·∆.

By the same taken we get

∆YnMnZn = an(a2bncn + b2cnan + c2anbn)2

(an + bn + cn)(an + bn)2(an + cn)2|BEn|2|CFn|2
·∆,

∆XnMnYn = cn(a2bncn + b2cnan + c2anbn)2

(an + bn + cn)(cn + bn)2(cn + an)2|ADn|2|BEn|2
·∆.

No we can determine the area of the triangle ZnBYn. Since

∆ZnMnYn

∆ZnBYn

= |YnMn|
|BYn|

,

therefore

∆ZnBYn
= BYn

YnMn
·∆ZnMnYn

= an(a2bncn + b2cnan + c2anbn)(c2an + a2cn)
(an + bn)2(an + cn)2|BEn|2|CFn|2

·∆.

Strictly analogously we get

∆XnBYn
= cn(a2bncn + b2cnan + c2anbn)(anc2 + cna2)

(cn + bn)2(cn + an)2|BEn|2|ADn|2
·∆.

Furthermore we have the following relation

|ZnE
′
n|

|XnE′n|
= ∆ZnBYn

∆XnBYn

= an(bn + cn)2|ADn|2

cn(bn + an)2|CFn|2
.

On the other hand since

|YnZn|
|YnXn|

= a(bn + cn)|ADn|
c(bn + an)|CFn|

,

we can conclude, that

|YnZn|2

|YnXn|2
= |ZnE

′
n|

|XnE′n|
if and only if n = 2.
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On the other hand, by definition, the cevian YnE
′′
m, is an order m Maneeal of

triangle XnYnZn if, and only if, the following condition holds

|ZnE
′′
m|

|XnE′′m|
= |YnZn|m

|YnXn|m
.

Now it is easy to see, that the above condition is satisfied for n = m = 2.
Hence, E′′2 = E′2. We can provide strictly analogously, that D′′2 = D′2, F ′′2 = F ′2.
In particular, cevians X2D

′
2, Y2E

′
2, Z2F

′
2 are Symmedians of the triangle X2Y2Z2.

The fact, that G2 = M2 we conclude by the definition (construction) of points X2,
Y2, Z2.

Theorem 2.22 (Lemoine’s Pedal Triangle Theorem [15])
Let DnEnFn be the order n Maneeal’s triangle and PnQnRn be the order n pedal
Maneeal’s triangle of the given triangle ABC. We can choose points Tn, Un, Wn,
on sides RnPn, QnPn, QnRn, respectively, in such a manner that cevians RnUn,
PnWn, QnTn contain the line segments RnMn, PnMn, QnMn respectively. Then
the following conditions hold:
• if RnR

′
m, QnQ

′
m, PnP

′
m are order m Maneeals of the triangle PnQnRn, then

U2 = R′0, W2 = P ′0, T2 = Q′0,
• Symmedian point of triangle ABC is the centroid of its pedals triangle PnQnRn,
• |AF1|
|F1B| = |P1U1|

|U1Q1| ,
|BD1|
|D1C| = |Q1W1|

|W1R1| ,
|CE1|
|E1A| = |R1T1|

|T1P1| .

Mn

A

B
CDn

Fn

En

Pn

QnRn
Wn

Tn

Un

Proof. We use (5) to make simple computations

|PnUn|
|UnQn|

= ∆RnMnPn

∆RnMnQn

=
1
2 |RnMn||MnPn| sin (∠RnMnPn)
1
2 |RnMn||MnQn| sin (∠RnMnQn)
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=
2cn−1∆

(an+bn+cn)
2an−1∆

(an+bn+cn) sin (∠180−B)
2cn−1∆

(an+bn+cn)
2bn−1∆

(an+bn+cn) sin (∠180−A)
= an−1 sinB
bn−1 sinA

= an−2

bn−2

and get

|PnUn|
|UnQn|

= an−2

bn−2 . (12)

In particular, if we choose n = 2, we obtain |PnUn| = |UnQn|. Therefore, by
definition of order m Maneeals of the triangle PnQnRn the cevian R2U2 is a median
of this triangle. Finally R2U2 = R2R

′
0. Strictly analogously we can show, that

P2W2 = P2P
′
0, Q2T2 = Q2Q

′
0.

On the other hand, if we put n = 1 into (12), we obtain

|P1U1|
|U1Q1|

= b

a
= |AF1|
|F1B|

.

And analogously

|Q1W1|
|W1R1|

= c

b
= |BD1|
|D1C|

, ,
|R1T1|
|T1P1|

= a

c
= |CE1|
|E1A|

.

For further properties see [12].

Final remarks. In this article we introduced Maneeal’s points, which to the
best of our knowledge, have non been studied in the literature before. We shared
a number of properties of these points, related lines and triangles. There is surely
much more to discover. We hope, this note will sparkle some interest in the
construction and will lead further research in this area of very classical triangle
geometry.
Acknowledgement. The authors would like to thank Prof. Tomasz Szemberg
for his help while preparing this manuscript. Additional thanks go to the referee
for valuable comments and suggestions.
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