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Properties of two variables Toeplitz type operators

Abstract. The investigation of properties of generalized Toeplitz operators
with respect to the pairs of doubly commuting contractions (the abstract
analogue of classical two variable Toeplitz operators) is proceeded. We es-
pecially concentrate on the condition of existence such a non-zero operator.
There are also presented conditions of analyticity of such an operator.

1. Introduction

Let L(H1, H2) denote the algebra of all bounded linear operators from H1 into
H2, where H1, H2 are complex, separable Hilbert spaces. If H1 = H2 we will use
the notation L(H1).

The classical Toeplitz operators on the Hardy space on the unit disc are well
known and they are fully characterized by the relation X = T ∗zXTz, where Tz is
the shift operator – the multiplication operator by the independent variable on
the Hardy space H2 on the circle T. This notion can be generalized when instead
of the backward shift T ∗z in the equation above we will put arbitrary, possibly
different, contractions. Namely, for given contractions S ∈ L(H1) and T ∈ L(H2),
an operator X ∈ L(H2, H1) is called generalized Toeplitz operator if X = SXT ∗.
These type of operators were studied in [1, 6, 11].

The classical Toeplitz operators are also considered on the Hardy space on
the torus H2(T2). The space H2(T2) can be seen as a subspace of L2(T2) =
L2(T2,m ⊗m) (m denotes the normalized Lebesgue measure on T) and PH2(T2)
is the appropriate projection. For any ϕ ∈ L∞(T2) = L∞(T2,m ⊗m) we define
the Toeplitz operator Tϕ ∈ L(H2(T2)) by Tϕf = PH2(T2)(ϕf) (f ∈ H2(T2)).
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The function ϕ is called the symbol of the Toeplitz operator. The multiplication
operators by the independent variables in this space we denote by Tz1 , Tz2 . As
it was shown in [9, Proposition 3.3], the set of Toeplitz operators on H2(T2) can
be characterized as a set of operators X ∈ L(H2(T2)) such that X = T ∗z1

XTz1

and X = T ∗z2
XTz2 . In [10], for given pairs of contractions S1, S2 ∈ L(H1) and

T1, T2 ∈ L(H2), there were considered operators X ∈ L(H2, H1) such that X =
S1XT

∗
1 and X = S2XT

∗
2 and they were called generalized Toeplitz operators with

respect to the pairs S1, S2 and T1, T2. A general assumption was that S1, S2 doubly
commute (i.e. not only S1, S2 commute but also S∗1 , S2 do) and T1, T2 also doubly
commute. Observe that in the previous case operators T ∗z1

, T ∗z2
doubly commute.

One of the results, see [10] and Theorem 3.3, claims that for every generalized
Toeplitz operator X there is an operator Y ∈ L(K+

2 ,K
+
1 ) with X = PH1Y |H2 ,

Y = W1Y V
∗

1 and Y = W2Y V
∗

2 , where pair W1,W2 and pair V1, V2 are minimal
isometric dilations of the pairs of operators S1, S2 and T1, T2, respectively, defined
on spaces K+

1 ,K
+
2 , respectively. Such an operator Y is called the symbol of X.

In this paper we continue the investigation of properties of generalized Toeplitz
operator with respect to pairs of doubly commuting contractions. We especially
concentrate on the condition of existing such a non zero operator (Section 3).
There are also presented conditions of analyticity of such an operator (Section 4).
The dilation theory of the pairs of contractions is the main tool. Hence, in Sec-
tion 2, we recall results on dilations of pairs of doubly commuting contractions.
In both sections 3 and 4 examples are given.

2. Preliminaries on dilations of pairs of operators

In what follows some properties of a minimal isometric dilation for a pair of
contractions will be needed. For a pair T1, T2 ∈ L(H) of commuting contractions,
by Ando’s theorem [8, Theorem I.6.1], there is a pair of commuting isometries
V1, V2 ∈ L(K+), H ⊂ K+, being a minimal isometric dilation of the given pair
T1, T2, i.e. for all non-negative integers n,m the following holds

Tn1 T
m
2 = PHV

n
1 V

m
2
∣∣
H

and K+ =
∨

n,m>0
V n1 V

m
2 H. (1)

A minimal isometric dilations of a pair of commuting contractions is not unique
but for each minimal isometric dilation we have (see [8, 10])

TiPH = PHVi, V ∗i H ⊂ H and V ∗i
∣∣
H

= T ∗i , i = 1, 2. (2)

The aim of the paper is to consider a doubly commuting pairs of contractions
T1, T2 ∈ L(H), i.e. we assume that not only T1, T2 commute but also T ∗1 , T2
commute. The important observation, which was made in [12] (Lemma 1 and
remarks afterwards), is that in this case the isometries V1, V2 can be also chosen
doubly commuting. Then as it was noticed in [10, 12, 13] we have the specific
properties. Let R be a maximal subspace of K+, such that R1 = V1|R, R2 = V2|R,
is a pair of unitary operators. As it was shown in [10] the projection PR can be
defined as follows

PRk = lim
n,m→∞

V n1 V
m

2 V ∗n1 V ∗m2 k for k ∈ K+ (3)
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and that
ViPR = PRVi, V ∗i PR = PRV

∗
i for i = 1, 2. (4)

The following will be used later.

Lemma 2.1
Let T1, T2 be a pair of doubly commuting contractions. Using the notations intro-
duced above the doubly index sequence of closed subspaces Rn1Rm2 PRH is increasing
according to the natural order in N× N. Moreover,

R =
∨

n,m>0
Rn1R

m
2 PRH. (5)

Proof. By (2) and (3)

PRh = lim
n,m→∞

V n1 V
m

2 T ∗n1 T ∗m2 h for h ∈ H.

Hence
V1PRT

∗
1 h = lim

n,m→∞
V n+1

1 V m2 T ∗n+1
1 T ∗m2 h = PRh

and
PRT

∗
1 h = R∗1PRh for h ∈ H.

Similarly
PRT

∗
2 h = R∗2PRh for h ∈ H,

which implies R∗iPRH ⊂ PRH thus PRH ⊂ RiPRH for i = 1, 2. In consequence

Rn1
1 Rn2

2 PRH ⊂ Rm1
1 Rm2

2 PRH for n1 6 m1, n2 6 m2.

Applying (1) and (4) we have

R = PRK
+ = PR

∨
n,m>0

V n1 V
m

2 H =
∨

n,m>0
PRV

n
1 V

m
2 H =

∨
n,m>0

Rn1R
m
2 PRH.

3. Review on existence of a symbol

Let us consider two pairs of doubly commuting contractions

S1, S2 ∈ L(H1), T1, T2 ∈ L(H2).

Let the pairs W1,W2 ∈ L(K+
1 ), V1, V2 ∈ L(K+

2 ) be minimal isometric dilations
of the pairs S1, S2 and T1, T2, respectively. Chose using [10, 12], as above, the
pairs W1,W2 and V1, V2 doubly commuting. Let R1,R2 be maximal subspaces
of K+

1 ,K
+
2 , respectively, such that both pairs W1|R1 ,W2|R1 and V1|R2 , V2|R2 are

unitary. An operator Y ∈ L(K+
2 ,K

+
1 ), following [10], is called a symbol with

respect to the pairs S1, S2 and T1, T2 if Y = W1Y V
∗

1 and Y = W2Y V
∗

2 .
Recall after [10] some basic fact about the symbols.



[100] Elżbieta Król-Klimkowska, Marek Ptak

Remark 3.1 (Remark 3.1, [10])
If an operator Y ∈ L(K+

2 ,K
+
1 ) is a symbol with respect to the pairs S1, S2 ∈ L(H1)

and T1, T2 ∈ L(H2), then the operator X = PH1Y
∣∣
H2

is a generalized Toeplitz
operator with respect to the pais S1, S2 and T1, T2.

Now we recall a characterization of the symbol.

Proposition 3.2 (Proposition 3.2, [10])
Let Y ∈ L(K+

2 ,K
+
1 ). Then the following are equivalent

(i) Y is a symbol with respect to the pairs S1, S2 and T1, T2,
(ii) Y Vi = WiY , i = 1, 2 and Y = Y PR2 ,
(iii) Y V ∗i = W ∗i Y , i = 1, 2 and Y = PR1Y ,
(iv) Y = limn,m→∞Wn

1 W
m
2 PH1Y PH2V

∗n
1 V ∗m2 in SOT.

Now let us recall the theorem about an existence of a symbol.

Theorem 3.3 (Theorem 3.5, [10])
Suppose X ∈ L(H2, H1). Let S1, S2 ∈ L(H1) and T1, T2 ∈ L(H2) be pairs of
doubly commuting contractions. Assume that X = S1XT

∗
1 , X = S2XT

∗
2 . Then

there exists exactly one operator Y ∈ L(K+
2 ,K

+
1 ) such that

(i) Y is a symbol with respect to the pairs S1, S2 and T1, T2,
(ii) X = PH1Y |H2 ,
(iii) ‖X‖ = ‖Y ‖.

4. Existence of non-zero generalized Toeplitz operators

The next two theorems characterize when a non–zero generalized Toeplitz
operator with respect to the pairs of doubly commuting contractions can exists.

Theorem 4.1
Let T1, T2 ∈ L(H2) be a pair of doubly commuting contractions, then the following
are equivalent.

(i) The only operator X ∈ L(H2) satisfying X = T1XT
∗
1 and X = T2XT

∗
2 is

the zero operator,
(ii) limn,m→∞ T ∗n1 T ∗m2 h = 0 for h ∈ H2,
(iii) PR2H2 = 0,
(iv) PH2R2 = 0,
(v) PH2PR2PH2 = 0,

(vi) R2 = 0.

Proof. Note firstly that projection PR2 satisfies condition (ii) in Proposition 3.2,
thus PR2 is a symbol by condition (i) of this Proposition. Hence, by Remark 3.1,
X = PH2PR2 |H2

is a generalized Toeplitz operator with respect to the pair T1, T2.
If (i) is satisfied, then X = 0 and PH2PR2PH2 = X = 0 and (v) is fulfilled. Note
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that 0 = PH2PR2PH2 = PH2PR2(PH2PR2)∗ implies PH2PR2 = 0, i.e. (v) ⇒ (iv).
If (iv) is satisfied, then also PR2PH2 = 0 and we obtain (iii). Assuming (iii),
by (5) we get (vi). When we assume (vi) and apply (5) we obtain PR2H2 = 0.
Using (3) and isometric properties of V1, V2 we get (ii). The implication (ii) ⇒ (i)
is straightforward.

Example 4.2
Let us now consider T ∗z1

, T ∗z2
the adjoints to the multiplication operators by the

independent variables in the space H2(T2) as a pair of contractions. Note that
the operators T ∗z1

, T ∗z2
doubly commute. It was shown in [10, Example 3.7] that

a minimal isometric dilation for the pair T ∗z1
, T ∗z2

is the pair M∗z1
,M∗z2

of multipli-
cation operators by the conjugates of the independent variables in L2(T2). Hence
R2 = L2(T2), so it is far from being zero. On the other hand, if X ∈ L(H2(T2))
fulfils the equations X = T ∗zi

XTzi
for i = 1, 2, then, as it was shown in [10, Exam-

ple 3.7], the symbol Y ∈ L(L2(T2)) for X is represented by a function ϕ ∈ L∞(T2)
such that Y = Mϕ, (Mϕf)(z1, z2) = ϕ(z1, z2)f(z1, z2) for f ∈ H2(T2). Hence
X = PH2(T2)Mϕ|H2(T2) (Theorem 3.3). Thus the set of X fulfilling the equations
X = T ∗z1

XTz1 , X = T ∗z2
XTz2 can be identify with ϕ ∈ L∞(T2). Hence the set of

generalized Toeplitz operators with respect to both pairs equal to T ∗z1
, T ∗z2

is "rich".
This is the case of the classical Toeplitz operator of two variables.

Example 4.3
Let Tz1 , Tz2 be the multiplication operators by the independent variables in the
space H2(T2). Note that the operators Tz1 , Tz2 doubly commute. Since they
are isometries, a minimal isometric dilation is the same pair Tz1 , Tz2 and K+ =
H2(T2). It is easy to see that limn,m→∞ T ∗nz1

T ∗mz2
h = 0 for h ∈ H2(T2) so that

R2 = 0. Hence the only operator X ∈ L(H2(T2)) satisfying X = Tz1XT
∗
z1

and
X = Tz2XT

∗
z2

is the zero operator.

Now let us consider the general case.

Theorem 4.4
Let S1, S2 ∈ L(H1) and T1, T2 ∈ L(H2) be pairs of doubly commuting contractions.
Then the following are equivalent.

(i) The only operator X ∈ L(H2, H1) satisfying X = S1XT
∗
1 and X = S2XT

∗
2

is the zero operator.
(ii) One of the subspaces R1, R2 is trivial or the pairs of operators W1|R1 ,
W2|R1 and V1|R2 , V2|R2 are relatively singular.

Proof. Let X ∈ L(H2, H1) satisfying X = S1XT
∗
1 , X = S2XT

∗
2 . Then there exists

its symbol Y ∈ L(K+
2 ,K

+
1 ) such that

Y = W1Y V
∗

1 , Y = W2Y V
∗

2 .

Let Z = Y |R2 . By definition of R1, R2 we have

ZV1
∣∣
R2

= W1
∣∣
R1
Z, ZV2

∣∣
R2

= W2
∣∣
R1
Z.
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Let Z = AU be a polar decomposition of Z. By [1, Lemma 4.1] kerZ⊥ reduces
V1|R2 and V2|R2 and the subspace RanZ reducesW1|R1 ,W2|R1 . Moreover, opera-
tors V1|kerZ⊥ , W1|RanZ are unitarily equivalent taking U |kerZ⊥ : kerZ⊥ → RanZ
and V2|kerZ⊥ , W2|RanZ are unitarily equivalent taking the same unitary opera-
tor U |kerZ⊥ . Thus pairs V1|kerZ⊥ , V2|kerZ⊥ and W1|RanZ , W2|RanZ are unitarily
equivalent taking UkerZ⊥ .

By (i), X have to be the zero operator. Hence Y and Z have to be zero
operators. If Z = Y |R2 is zero operator, then R1 = 0 or R2 = 0.

For the proof of the converse implication we assume that R1 6= 0, R2 6= 0. Let
A(D2) be the algebra of all holomorphic functions on D2 and continuous in D2 (D
is the unit disc). It is a standard technique (see [4, 5]) that the pair W1|R1 , W2|R1

generate the representation ΦW : A(D2) → L(R1), i.e. ΦW is linear, ΦW (uv) =
ΦW (u), ΦW (v) and ‖ΦW (u)‖ 6 ‖u‖∞ for u, v ∈ A(D2). For any polynomial p
of two variables the representation ΦW is defined as ΦW (p) := p(W1|R1 ,W2|R1).
Next ΦW is uniquely extended to A(D2). Then, for any x ∈ R1, there exists
a positive regular Borel measure µx on T2 such that

〈ΦW (u)x, x〉 =
∫
u dµx for x ∈ R1, u ∈ A(D2)

and ‖µx‖ 6 ‖x‖2. LetMµ be a band of measures generated (for definition see [4])
by {µx}x∈R1 . Similarly the pair V1|R2 , V2|R2 generate the representation ΦV and
there are measures νy, y ∈ R2, such that

〈ΦV (u)y, y〉 =
∫
u dνy for y ∈ R2, u ∈ A(D2).

Let Mν be a band of measures generated by νy, y ∈ R2. If the pairs W1|R1 ,
W2|R1 and V1|R2 , V2|R2 are not singular, there is a measure η ∈ Mµ ∩ Mν .
By [4, Proposition 1.4] there is x ∈ R1 such that η � µx. By the theory of
spectral multiplicity (see [2]), mainly by [2, §65, Theorem 3], there are vectors
x0 ∈ R1, y0 ∈ R2 and a unitary operator U : Z(y0) → Z(x0), where Z(x0) is
the smallest closed subspace containing x0 and reducing for W1|R1 and W2|R1

and Z(y0) is the smallest closed subspace containing y0 and reducing for V1|R1

and V2|R1 . Moreover, UVi|Z(y0) = Wi|Z(x0)U for i = 1, 2. Let us define nonzero
operator Y ∈ L(K+

2 ,K
+
1 ) as Y = U on Z(y0) and Y = 0 on K2

+ 	Z(y0). Clearly
Y = WiY V

∗
i for i = 1, 2, i.e. Y is a symbol with respect to the pairs S1, S2

and T1, T2. By Theorem 3.3 and Remark 3.1 the operator X = PH1Y |H2 fulfils
equalities X = S1XT

∗
1 and X = S2XT

∗
2 . Moreover, X 6≡ 0, since ‖X‖ = ‖Y ‖.

Example 4.5
Let the first pair of contractions be the pair Mz1 ,Mz2 of multiplication operators
by the independent variables in the space L2(T2, µ⊗ µ), where µ is a non-atomic
normalized measure concentrated on the Cantor set on the unit circle T of the
Lebesgue measure zero. The operatorsMz1 ,Mz2 on L2(T2, µ⊗µ) doubly commute
as unitary. The pair Mz1 ,Mz2 is its own isometric (and unitary) dilation. Hence
the space R1 = L2(T2, µ⊗µ) is non-zero. Let the second pair of contractions be as
in Example 4.2, i.e. T ∗z1

, T ∗z2
in the space H2(T2). As we have noticed above R2 =



Properties of two variables Toeplitz type operators [103]

L2(T2,m ⊗m), so it is also non-zero. There is no non-zero generalized Toeplitz
operator with respect to this two pairs since the pair Mz1 ,Mz2 on L2(T2, µ ⊗ µ)
and the pair M∗z1

,M∗z2
on L2(T2,m⊗m) are relatively singular (µ⊗µ and m⊗m

are singular measures).

5. Analytic generalized Toeplitz operators

Let us above S1, S2 ∈ L(H1) and T1, T2 ∈ L(H2) be two pairs of doubly com-
muting contractions. Let Y ∈ L(K+

2 ,K
+
1 ) be a symbol with respect to this pairs.

We call a symbol Y analytic if Y H2 ⊂ H1. The following theorem characterizes
the analyticity of the symbol.

Theorem 5.1
Let S1, S2 ∈ L(H1) and T1, T2 ∈ L(H2) be pairs of doubly commuting contractions.
Assume that X ∈ L(H2, H1) such that

S∗1X = XT ∗1 and S∗2X = XT ∗2 . (6)

Then the operator PH1PR1X is a generalized Toeplitz operator with respect to the
pairs S1, S2 and T1, T2 and the following are equivalent

(i) X is a generalized Toeplitz operator with respect to the pairs S1, S2 and
T1, T2,

(ii) X = PH1PR1X,
(iii) X = PH1∩R1X,
(iv) X(H2) ⊂ H1 ∩R1.

Additionally, if the operator X satisfies (6) and one of the above conditions is
fulfilled then X is a generalized Toeplitz operator whose symbol is analytic.

Adversely, if Y is an analytic symbol with respect to the pairs S1, S2 and T1, T2,
then the related Toeplitz X = PH1Y |H2 operator satisfies (6) and conditions (ii),
(iii), (iv).

Proof. Let X ∈ L(H2, H1) be such that S∗1X = XT ∗1 and S∗2X = XT ∗2 . Then,
by (2), we have

S1PH1PR1XT
∗
1 = S1PH1PR1S

∗
1X = PH1W1PR1S

∗
1X

= PH1W1PR1W
∗
1X = PH1W1W

∗
1 PR1X

= PH1PR1X,

since R1 is reducing forW1. Similarly we prove that S2PH1PR1XT
∗
2 = PH1PR1X.

Hence the operator PH1PR1X is a generalized Toeplitz operator with respect to
the pairs S1, S2 and T1, T2.

Let now (i) be fulfilled. For nonnegative integers n,m and h2 ∈ H2 we have

Xh2 = Sn1 S
m
2 XT

∗n
1 T ∗m2 h2 = Sn1 S

m
2 S
∗n
1 XT ∗m2 h2 = Sn1 S

m
2 S
∗n
1 S∗m2 Xh2

= PH1W
n
1 W

m
2 S∗n1 S∗m2 Xh2 = PH1W

n
1 W

m
2 W ∗n1 W ∗m2 Xh2,
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by (1) and (2). Taking the limit when n,m→∞, by (3), we obtain

PH1W
n
1 W

m
2 W ∗n1 W ∗m2 Xh2 −→ PH1PR1Xh2 (7)

and (ii) is satisfied. Assume that (ii) holds, then

X = (PH1PR1)nPH1X −→ PH1∩R1X,

by [7, p.192]. The remaining implications in the equivalence (i)–(iv) are straight-
forward.

Assume that (iv), (6) hold and Y is a symbol for X. Using Proposition 3.2,
(1), Theorem 3.3 we have the following

Y h2 = lim
n,m→∞

Wn
1 W

m
2 PH1Y PH2V

∗n
1 V ∗m2 h2 = lim

n,m→∞
Wn

1 W
m
2 PH1Y T

∗n
1 T ∗m2 h2

= lim
n,m→∞

Wn
1 W

m
2 XT ∗n1 T ∗m2 h2 = lim

n,m→∞
Wn

1 W
m
2 S∗n1 XT ∗m2 h2

= lim
n,m→∞

Wn
1 W

m
2 S∗n1 S∗m2 Xh2 = lim

n,m→∞
Wn

1 W
m
2 V ∗n1 V ∗m2 Xh2 = PR1Xh2

= Xh2

by (3) and (iv). Consequently Y is an analytic symbol.
For the proof of the converse implication we assume that Y is an analytic

symbol, X = Y |H2 and X(H2) = Y (H2) ⊂ H1 ∩ R1 by Proposition 3.2 [10,
Proposition 3.2,(3)]. Moreover, for i = 1, 2 and h2 ∈ H2, we have

XT ∗i h2 = Y T ∗i h2 = Y V ∗i h2 = W ∗i Y h2 = W ∗i Xh2 = S∗iXh2,

which finishes the proof of the theorem.

Example 5.2
Let, as in Example 4.2, T ∗z1

, T ∗z2
be the adjoints to multiplication operators by the

independent variables in the space H2(T2) as both pairs of contractions. Looking
from one point of view, if an operator X fulfills (6), then Tz1X = XTz1 and
Tz2X = XTz2 , which means that X ∈ {Tz1 , Tz2}′. Hence, by [3, Theorem 11], the
operatorX have to be equal to a Toeplitz operatorX = Tϕ with ϕ being a bounded
holomorphic function on D2. On the other hand the symbol Y ∈ L(L2(T2)) for
X is represented by a function ϕ ∈ L∞(T2) such that Y = Mϕ. The analyticity
of the symbol means that Y (H2(T2)) = Mϕ(H2(T2)) ⊂ H2(T2). It forces ϕ to be
holomorphic.

Example 5.3
Let Mz1 ,Mz2 be the multiplication operators by the independent variables in the
space L2(T2). Note that the operators Mz1 ,Mz2 doubly commute. Since they
are unitary operators a minimal isometric dilation is the same pair Mz1 ,Mz2 and
K+ = L2(T2). Hence the operator X ∈ L(L2(T2)) satisfies X = Mz1XM

∗
z1

and X = Mz2XM
∗
z2

if and only if X belongs to the commutant {Mz1 ,Mz2}′.
The commutant equals to the set of all multiplication operators Mϕ with ϕ ∈
L∞(T2). Thus each generalized Toeplitz operator X with respect to both pairs
being Mz1 ,Mz2 equals to its symbol Y and there is a function ϕ ∈ L∞(T2) such
that X = Y = Mϕ. Moreover, the symbol Y is analytic in our sense, since
Y L2(T2) ⊂ L2(T2).
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