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Chapter 1

Introduction

The theory of hyperplane arrangements is one of the most classical theories in combina-

torial algebraic geometry. The origins of the theory date back to the ancient Greece (4th

century), for instance the celebrated Pappus theorem which leads to the so-called symmetric

(93)-configuration. Another interesting classical result which involves a point-line configuration

is Desargues’s theorem (17th century): if two triangles are in central perspective (lines joining

pairs of their vertices intersect in one point), then the triangles are in axial perspective (inter-

section points of pairs of lines containing edges of the triangles are collinear). In these results

the most important common factor is the collinearity of certain collections of points. Years

later, in 1893, Sylvester asked if there exists an arrangement L in the real projective plane

which is not a pencil of lines, such that there are no double intersection points. A baby case

of this problem was raised already in 1821 by Jackson and is known as the orchard problem.

Somewhat surprisingly, this problem was solved to the negative by Gallai (or Grünwald) around

1940.

Theorem 1.0.1 (Sylvester-Gallai). If L is an arrangement of d lines in the real projective

plane which does not contain any double intersection point, then all lines have a common point

of intersection, i.e. they form a pencil of d concurrent lines.

In 1941, Melchior presented his inequality for line arrangements in the real projective plane

that gives another proof of Sylvester’s problem [30]. For an arrangement of lines L in a projec-

tive plane we denote by tr the number of r-fold points, i.e., points where exactly r lines from

L meet.
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Theorem 1.0.2 (Melchior). Let L ⊂ P2
R be an arrangement of d ≥ 3 lines with td = 0, then

t2 ≥ 3 +
∑
r≥3

(r − 3)tr.

Melchior’s result provides a small improvement of Gallai’s Theorem – now we have not just

one but at least three double intersection points under the assumption that our arrangement

is not a pencil. After Melchior’s result, it was an open problem to decide whether a similar

inequality can hold for line arrangements in the complex projective plane. It turns out there is a

similar inequality. In 1983 Hirzebruch [22] proved a ground-breaking result in the combinatorial

theory of line arrangements, which is in fact a by-product of his work on surfaces of general

type.

Theorem 1.0.3 (Hirzebruch). Let L ⊂ P2
C be an arrangement of d ≥ 6 lines such that td =

td−1 = 0, then

t2 +
3

4
t3 ≥ d+

∑
r≥4

(r − 4)tr.

For both inequalities mentioned above it is natural to investigate examples of line arrange-

ments for which we obtain equalities (or we are close to get equalities), and to understand

geometric properties characterizing such arrangements. It turns out that these line arrange-

ments are extremal in their nature, for instance they possess a large number of triple intersection

points – as simplicial line arrangements do – or, in the case of Hirzebruch’s inequality, these

examples are related to finite reflection groups.

Somehow surprisingly, these extremal properties have also other manifestations in different

areas of the current research fields in commutative algebra, or algebraic geometry. In order

to give some feeling, let us present some recent connections. In the theory of matroids of

arbitrary rank, hyperplane arrangements can be viewed as representable matroids, and we

have some interesting applications, for instance certain classes of hyperplane arrangements are

related to the so-called wonderful compactifications in the sense of de Concini-Procesi and

the combinatorial Chow rings [1]. In topology, there is an interesting problem devoted to

the complex compactifications of the complements of line arrangements (in this case we have

non-trivial topology), for instance Rybnikov found two interesting complex line arrangements

of 13 lines (based on MacLane combinatorics) being combinatorially equivalent, but having

non-homeomorphic complements (their fundamental groups are different). This means that
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the global topology of line arrangements is not combinatorial in its nature [2]. At this stage

the mentioned areas of research might appear quite remote from the viewpoint of the present

thesis, but we want to emphasize that the subject of our interest has broad connections and

applications in various branches of mathematics.

Now we would like to present a short outline and the main results of the thesis. Our

hope is to provide an interesting merger of combinatorial and algebraic methods that allows

to understand such beautiful geometrical objects as line arrangements are. The Leitmotif of

our research is a family of Böröczky line arrangements – this is an interesting classical object

strictly related to the problem of classification of line arrangements in the real projective plane

possessing the maximal possible number of triple intersections points, quite along the lines of

the Green and Tao beautiful results in [20].

The first part of this thesis is devoted to basics on combinatorics of line arrangements in

the projective planes and their applications, mostly in the context of the freeness of hyperplane

arrangements in the projective spaces, and the so-called containment problem.

In Chapter 3, we study parameter spaces of certain Böröczky line arrangements for 13, 14, 16,

18, and 24 lines. In Chapter 4 we look from the combinatorial point of view on the contain-

ment problem I(3) ⊂ I2, where I is the radical ideal of a finite set of points in the projective

plane, and I(m) denotes the m-th symbolic power. In recent years the containment problem (in

general) gained a lot of attention among the renowned researchers whose list include L. Ein,

R. Lazarsfeld, C. Huneke, B. Harbourne, and many others. In this circle of ideas there are still

many open questions to explore. In this thesis, we look at the containment problem above from

the viewpoint of the combinatorics of line arrangements in the complex or real projective plane

emphasizing the role of extreme point-line configurations in the sense of the orchard problem.

This background reveals an important role played by Böröczky’s family.

In the last chapter, we study the freeness of line arrangements. Let us recall that to a line

arrangement (or in general a hyperplane arrangement) in a projective plane one can asso-

ciate certain (sub)module of polynomial derivations that encodes combinatorial features of the

arrangement. It turns out that if the mentioned (sub)module is a free module, then the ar-

rangement has many interesting properties and applications in different fields (for instance the

brand new field of research on unexpected hypersurfaces in projective spaces). We study the

freeness of Böröczky’s family of line arrangements, and variations on the Böröczky construction.
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At the end of the thesis, we study extensions to the supersolvability – a special class of free

line arrangements having very restrictive combinatorics. It turns out that our method allows

to construct new examples of supersolvable line arrangements that might be applied in further

research. Since the core of our thesis is rather technical, and it is difficult to present the main

results word-by-word, let us show here an outline:

• In Chapter 3, we study the parameter spaces of certain Böröczky’s arrangement of lines,

namely for n = 13, 14, 16, 18, 24 lines. We show that these parameter spaces are in fact

high genus curves. Combined with the famous Falting’s result on the number of rational

points on varieties of general type this implies that to construct construct combinatorics of

the mentioned Böröczky’s line arrangements over the rational numbers is either extremely

hard or impossible. This path of studies was suggested by B. Harbourne in order to verify

whether one can find new (counter)examples to the containment problem. In the context

of the containment problem, we show that the radical ideals I3 of the triple intersection

points of Böröczky’s line arrangements up to 11 lines satisfy the containment I
(3)
3 ⊂ I23 . In

chapter 4, we study a natural combinatorial problem related to the containment problem

which can be described shortly as follows. Suppose that we have two line arrangements

in the complex projective plane having the same numbers of the intersection points of

each type. Then it is natural to wonder if certain containment relation does (or does

not) hold for the radical ideal of some intersection points of the first arrangement, then

the containment holds (or does not hold) for the corresponding set of singular points of

the second arrangement. We show, using a result due to Bokowski and Pokora, that the

question has, in general, a negative answer: the containment relations are in fact not

combinatorial in their nature.

• In Chapter 5, we study the notion of free line arrangements. Our main result for this

part tells us that Böröczky’s line arrangements of n ≥ 7 lines are not free in the sense of

Saito. In Section 5.2, we study supersolvability numbers. Given a line arrangement L,

it can be extended to a supersolvable arrangement by adding new lines. The question is

what is the minimal number of lines required to obtain a supersolvable arrangement. Let

us recall that a line arrangement is supersolvable in the sense of Stanley if there exists an

intersection point (called a modular point) such that if we join this point with another
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intersection point, then the line defined by these two points is contained in the set of lines

building up the arrangement. In particular, we show that for Böröczky’s arrangement of

n = 6k lines the mentioned number is less or equal to 6k2 − 6k, which shows somehow

that this particular subfamily of arrangements is far away from the supersolvable world.

At the end, I would like to thank my advisors, prof. dr hab. Tomasz Szemberg and Dr.

habil. Piotr Pokora, for hours of discussions and a plenty of essential comments that allowed

to improve the work. I would also like to thank Barbara Kabat, Zbigniew Kabat, Grzegorz

Malara, Marek Janasz, Magdalena Lampa-Baczyńska,  Lucja Farnik, and Beata Gryszka for

their meaningful mental support.





Chapter 2

Preliminaries

2.1 Combinatorics of line arrangements

In the thesis, we will consider projective spaces PnK defined over an arbitrary field K.

Definition 2.1.1. A set of the form ` = {[x : y : z] : ax + by + cz = 0} ⊆ P2
K for some

a, b, c ∈ K, not all zero, will be called a line. A line arrangement L ⊆ P2
K is a finite set of two

or more lines.

Definition 2.1.2 (Weak combinatorics). In the thesis, the weak combinatorics of a line ar-

rangement L is the vectors whose entries are the number of lines in L and their points of

incidence, namely (d; t2, t3, ..., td), where for m ≥ 2 an m-point of L is a point where exactly m

lines from the arrangement meet, and the number of m-points is denoted by tm.

Remark 2.1.3. In combinatorial approach towards line arrangements, the notion of the combi-

natorics of a given line arrangement means usually something different, i.e., this is not only the

lines and the intersection points, but also the way how the intersection points are distributed

on each line from the arrangement, and so on. Thus, it means the intersection lattice L(L).

Now let us present a couple of examples.

Example 2.1.4. In the real projective plane, any line arrangement L provides a partition of

P2
R. Denote by CM(L) the complement of L in P2

R. As we can see, CM(L) consists of the

union of disjoint polygons. If each polygon is a triangle, then we say that L is simplicial.

Simplicial line arrangements play an important role in combinatorics. However, these objects
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are not completely classified yet! One of the simplest known examples of a simplicial line

arrangement is the complete quadrangle A1(6) defined by the zeros of xyz(x− y)(x− z)(y− z).

It is an arrangement of 6 lines with t2 = 3 and t3 = 4. Figure 2.1 shows an affine model of the

arrangement.

Figure 2.1: A1(6) simplicial arrangement.

Example 2.1.5. Consider Fpn for some n > 0 and a prime number p. It is well-known that

the set of (pn)2 + pn + 1 lines in P2
Fpn

forms an arrangement with tpn+1 = (pn)2 + pn + 1, and

other tm’s equal to zero. We call such an arrangement a finite projective plane arrangement. If

now p = 2 and n = 1, we obtain the famous Fano plane consisting of 7 lines and t3 = 7.

Note that the Fano plane is one of very few known arrangements with triple points only.

Counting (intersections of) pairs of lines in two different ways, we see that any arrangement

L of d lines in the projective plane satisfies the following combinatorial equality(
d

2

)
=
∑
r≥2

(
r

2

)
tr. (2.1)

This is purely combinatorial – it holds over any field. However, this combinatorial equality is

a rather weak tool and it might be not enough to decide whether certain combinatorics can be

constructed. For example, the Fano combinatorics, i.e., (d; t2, t3) = (7, 0, 7), can be realized over

a field K if and only if charK = 2. Another, almost combinatorial fact, is the de Bruijn-Erdös

Theorem, see [8].

Theorem 2.1.6 (de Bruijn-Erdös). Let L ⊆ P2
K be any arrangement of d lines such that td = 0.

Then ∑
r≥2

tr ≥ d,
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and the equality holds if and only if L is either a Hirzebruch’s quasi-pencil with td−1 = 1 and

t2 = d− 1 or a finite projective plane arrangement.

2.1.1 Böröczky’s arrangements of lines

In this subsection, we describe the main construction, namely Böröczky’s arrangements Bn

which were introduced in [19, Example 2]. Following this example, we present here an outline

of the construction.

Consider a regular 2n-gon inscribed in the unit circle in the real affine plane. Let us fix one

of the 2n vertices and denote it by Q0. By Qα we denote the point arising by the rotation of

Q0 around the center of the circle by angle α.

Then we take the following set of lines

Bn =

{
QαQπ−2α,where α =

2kπ

n
for k = 0, . . . , n− 1

}
.

If α ≡ (π − 2α)(mod 2π), then the line QαQπ−2α is the tangent to the circle at the point Qα.

The arrangement Bn has
⌊n(n−3)

6

⌋
+ 1 triple points by [19, Property 4]. We denote the set of

these triple points by Tn.

Example 2.1.7 (Böröczky arrangement of 13 lines). In Figure 2.2 we present the Böröczky

arrangement for n = 13 with distinguished point Q0. In this case we have exactly 22 triple

intersection points and these points form a very interesting arrangement: one of the lines

contains 6 of these triple points, and each of the remaining 12 lines contains exactly 5 triple

points.
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Q0

Figure 2.2: The regular 26-gon and the 13 lines of Böröczky.

In the sequel we will need the following simple fact concerning the distribution of triple

points on the arrangement lines.

Proposition 2.1.8. Every line in the Bn arrangement contains at least
⌊
n−3
2

⌋
triple points and

there exists a line containing at least one more triple point.

Proof. By construction the triple points are distributed on the arrangement lines almost uni-

formly, that means that the difference between the number of points from Tn on two arrange-

ment lines is at most 1. Let s be the minimal number of triple points on an arrangement line.

Then it must be
sn

3
≤ 1 +

⌊n(n− 3)

6

⌋
and

⌊n(n− 3)

6

⌋
≤ (s+ 1)n

3

and the claim follows.

We derive the following, very useful, consequence of Proposition 2.1.8.

Corollary 2.1.9. For a fixed n ≥ 8 let C be a plane curve (possibly reducible and non-reduced)

of degree d passing through every point in the set Tn with multiplicity at least 3. Then d ≥ n.

Moreover, if d = n, then C is the union of all arrangement lines in Bn.

Proof. Assume to the contrary, that d < n. By Proposition 2.1.8 an arrangement line ` contains

at least
⌊
n−3
2

⌋
triple points. If ` is not a component of C, then it must be, by Bézout Theorem,

n > d ≥ 3
⌊n− 3

2

⌋
.
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It follows that

n+ 3 > 3bn
2
c,

which contradicts the assumption n ≥ 8.

2.2 Freeness of hyperplane arrangements and of divisors

In this section, we consider all objects over the complex numbers, even if some definitions

are true over an arbitrary field. Our major reference for this section is Dimca’s book [11].

Let S =
⊕

k Sk = C[x0, . . . , xn] be the graded polynomial ring in n+ 1 indeterminates with

complex coefficients, where Sk denotes the vector space of degree k homogeneous polynomials.

Let f ∈ Sd be a degree d polynomial and denote by Jf the corresponding Jacobian ideal

generated by the partial derivatives fj = ∂f
∂xj

. Now we define the graded Milnor algebra M(f) =⊕
kM(f)k = S/Jf . The graded module of all Jacobian syzygies (algebra of relations) is defined

by

AR(f) = {r = (a0, a1, ..., an) ∈ Sn+1 : a0f0 + a1f1 + ...+ anfn = 0}.

To each Jacobian relation r ∈ AR(f), one can associate a derivation

δ(r) = a0∂x0 + a1∂x1 + ...+ an∂xn

of the polynomial ring S. Note that δ(r) kills f , that is δ(r)(f) = 0. The set of all derivations

that kill f is denoted by D0(f), a graded S-module isomorphic to the module AR(f). One can

consider the Euler derivation

δE = x0∂x0 + x1∂x1 + ...+ xn∂xn

and then the graded S-module

D(f) = S · δE ⊕D0(f)

consists of all derivations δ of the polynomial ring S preserving the principle ideal (f).

Now we are ready to present one of possible freeness characterizations.

Theorem 2.2.1 (Freeness of divisors). Let V be a divisor in PnC defined by a homogeneous

polynomial f . We say that V is free (f is free) if one of the following equivalent conditions is

satisfied:
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• the module AR(f) is a free graded S-module;

• the module D0(f) is a free graded S-module;

• the module D(f) is a free graded S-module.

Let f be such that AR(f) is free. Then the rank of S-module AR(f) is n. Let ri =

(ri0, ..., rin) ∈ AR(f) ⊂ Sn+1 for i = 1, ..., n be a homogeneous basis of AR(F ) with deg ri = di.

We call the integers di the exponents of f . Consider also the vector r0 = (r00, ..., r0n) =

(x0, ..., xn), which is not in the module of AR(f), but it corresponds to the Euler derivation.

In order to show the freeness of certain divisor, one can use the following Saito’s result – this

can be considered as a folklore result, but we took it from Dimca’s book [11].

Theorem 2.2.2 (Saito). The homogeneous Jacobian syzygies ri ∈ AR(f) for i = 1, ..., n form a

basis of this S-module if and only if ϕ(f) = cf , where ϕ(f) is the determinant of (n+1)×(n+1)

matrix Φ(f) = [rij]i,j=0,...,n and c is a non-zero constant.

Now we consider a hyperplane arrangement A in Cn+1 which is the affine cone over the cor-

responding projective arrangement in PnC. We define the intersection lattice of A (in particular,

such arrangements are central arrangements, i.e.,
⋂
H∈AH 3 {0}).

Definition 2.2.3. • A non-empty intersection X of a family of hyperplanes in A is called

a flat of A. Note that Cn+1 itself is always a flat, the intersection of the empty family of

hyperplanes.

• The intersection poset of A is the set L(A) of all the flats X of A with the order ≤ defined

by X ≤ Y if and only if Y ⊆ X.

• The rank function r : L(A)→ Z is defined by r(X) = n+ 1− dimX = codimX.

We write X < Y if and only if X ≤ Y and Y ( X. Moreover by X 6≤ Y we understand

elements which are not comparable with respect to ≤, i.e., neither X 6≤ Y nor Y 6≤ X holds.

Definition 2.2.4. The Möbius function µ of an arbitrary poset L is defined as the unique

function µ : L× L→ Z such that

• µ(x, x) = 1 for any x ∈ L;

•
∑

x≤z≤y µ(x, z) = 0 for all x, y ∈ L with x < y;
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• µ(x, y) = 0 for x 6≤ y.

If L has a minimal element 0̃, we set µ(x) = µ(0̃, x). In our setting, when L = L(A), Cn+1

is the unique minimal element and we have µ(Cn+1) = 1. If H ∈ A, then µ(H) = −1.

Definition 2.2.5. The characteristic polynomial of a hyperplane arrangement A is defined by

χ(A, t) =
∑

X∈L(A)

µ(X)tdimX ,

and the Poincaré polynomial of a hyperplane arrangement is defined by

π(A, t) =
∑

X∈L(A)

µ(X)(−t)r(X).

An intuitive example of a free arrangement (or divisor) is given by the class of supersolvable

lattices.

Definition 2.2.6. Let A be a central hyperplane arrangement in Cn+1.

• A flat X ∈ L(A) is modular if X + Y ∈ L(A) for any other flat Y ∈ L(A), where X + Y

denotes the linear subspace generated by X ∪ Y .

• The arrangement A is supersolvable if the intersection lattice L(A) has a maximal chain

Cn+1 = X0 < X1 < ... < Xr = {0}

of modular flats with r = rank(A) and C(A) =
⋂
H∈AH is the centre of A.

Let us explain this notion using a down-to-earth example.

Example 2.2.7. Consider a near-pencil of d lines in the projective plane which has td−1 = 1

and t2 = d−1. If we take the vertex corresponding to multiplicity d−1, then we can join it with

each double intersection point using a line from the arrangement – this description explains

what we understand by being supersolvable in the case of projective planes. In fact, all the

double points are also modular.

We have mentioned that supersolvable arrangements are free, and this follows from Jambu-

Terao’s result [24].

Now we focus on the case of the complex projective plane. For a line arrangement A its

Levi graph is defined as a bipartite graph with one vertex per (singular) point and one vertex

per line with an edge for every incidence between a (singular) point and a line.
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Definition 2.2.8. We say that two line arrangements A and B are (strongly) combinatorially

equivalent if the associated Levi graphs are isomorphic (equivalently, if the intersection posets

are isomorphic).

A central problem in the theory of hyperplane arrangements is the following conjecture due

to Terao.

Conjecture 2.2.9 (Terao). Let A1 and A2 be two line arrangements in the complex projective

plane such that the associated Levi graphs are isomorphic. Assume that A1 is free, then A2 is

also free.

We know by [13] that Terao’s conjecture is true for up to 13 lines, but except that case the

conjecture is widely open. We are not going to approach this conjecture since this is a very

difficult problem. Let us emphasize that it is also a very elegant problem since the freeness

of certain modules of derivations is expected to be encoded in combinatorics of the associated

line arrangements – somehow surprisingly. As it was mentioned in Introduction, the topological

counterpart of the story that combinatorics should be reflected in algebro-topological properties

of certain associated objects is false, so it is extremely interesting to decide whether Terao’s

conjecture is true or not.

Finally, let us recall the main tool in our thesis that allows to decide whether certain line

arrangement is free. This result works in the whole generality.

Definition 2.2.10. We say that C : {f = 0} of degree deg f = d is a free curve with the

exponents (d1, d2) if the minimal resolution of the Milnor algebra M(f) is of the form

0 −→ S(−d1 − (d− 1))⊕ S(−d2 − (d− 1)) −→ S3(−d+ 1)→ S →M(f)→ 0,

with d1 + d2 = d− 1.

Example 2.2.11. Consider the line arrangement given by Q(x, y, z) = xy(x + y + z). The

Jacobian ideal corresponding to Q is given by

Jac(Q) = 〈2xy + y2 + yz, x2 + 2yx+ xz, xy〉.

Then the minimal set of generators of Jac(Q) looks as follows

Jac(Q) = 〈y2 + yz, x2 + xz, xy〉.
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We compute the resolution of Jac(Q). The first map S3(−2) → S is given by the partial

derivatives ∂Q
∂x
, ∂Q
∂y
, ∂Q
∂z

. Next, we are going to look at non-trivial relations among the partials.

It is easy to observe that

x · (y2 + yz)− (y + z) · xy = 0,

(x+ y) · xy − y · (x2 + xz) = 0,

so the Hilbert-Burch matrix of the first syzygies looks as follows

A =

 x 0 −y − z

0 −y x+ z

T

.

Obviously, we have 1 · x + (−1) · (−y − z) + 1 · (−y) + (−1) · (x + z) = 0, so the minimal free

resolution has the following form:

0→ S(−3)⊕ S(−3)
A−→ S(−2)3

(∂x,∂y ,∂z)−−−−−→ S →M(Q)→ 0,

so the arrangement defined by Q is free with exponents d1 = d2 = 1.

2.3 Symbolic powers of ideals and the containment prob-

lem

In this section we assume that K is an arbitrary algebraically closed field.

Definition 2.3.1. Let I ⊆ S be a homogeneous ideal and let m ≥ 1 be a positive integer. The

m-th symbolic power of I is defined as

I(m) = S ∩
⋂

Q∈Ass(I)

(Im)Q,

where Ass(·) denotes the set of associated primes, and the intersection is taken in the field of

fractions of S.

Symbolic powers are algebraic objects, but we can see their association with geometry due

to glorious Zariski-Nagata theorem, which says, that if I is a radical ideal, then

I(m) =
{
f ∈ I :

∂|α|f

∂xα
= 0 on the zeros of I, for all |α| < m

}
.
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Directly from definitions of symbolic and ordinary powers of an ideal we have the following

containments:

I = I(1) ⊇ I(2) ⊇ I(3) ⊇ . . .

and

I = I1 ⊇ I2 ⊇ I3 ⊇ . . .

It is natural to ask if there are some containment relations between the members of symbolic

family of powers of ideals and the members of family of their ordinary powers. In one direction

this relation is quite elementary.

Proposition 2.3.2. Let I ⊂ K[x0, . . . , xn] be a radical homogeneous ideal. Then the contain-

ment

Ir ⊂ I(m)

holds if and only if r ≥ m.

The reverse containment is much more subtle. It has been established in 2001 by Ein,

Lazarsfeld and Smith [16] under the additional assumption that charK = 0. This assumption

is not essential as proved by Hochster and Huneke [23]. Since we are interested in the first line

in ideals of points, we present the Containment Theorem in a somewhat simplified version.

Theorem 2.3.3 (Containment Theorem). Let I ⊂ K[x0, . . . , xn] be a homogeneous ideal. Then

the containment

I(m) ⊂ Ir

holds for all m ≥ nr.

The key feature of Theorem 2.3.3 is that the statement does not depend on I !

It is natural to wonder to what extent the lower bound nr is optimal. Clearly, it cannot

be optimal for any I. For some classes of ideals it is even very far from being optimal. For

example, if I is a complete intersection ideal, then its symbolic and ordinary powers agree and

one does not need the factor n. The same happens for other classes of ideals.

Example 2.3.4 (Edge ideals of bipartite graphs). Let G be a simple graph with vertex set

V (G) = {x1, . . . , xn} and edge set E(G). The edge ideal I(G) of G is defined by

I(G) = (xixj : xixj ∈ E(G)) ⊂ K[x1, . . . , xn].
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Simis, Vasconcelos and Villarreal showed in [35] that all symbolic and ordinary powers of I(G)

coincide if and only if G is bipartite.

Huneke asked around 2006 if the containment I(3) ⊂ I2 holds for radical ideals of points

in the projective plane. Note that the containment I(4) ⊂ I2 follows from Theorem 2.3.3.

This question has motivated a considerable part of this thesis. Before, it has motivated a

lot of research, and led Bocci, Harbourne and Huneke to formulate the following, conjectural,

improvement to the lower bound in Theorem 2.3.3.

Conjecture 2.3.5. Let I be saturated ideal of a finite set of reduced points in Pn. Then the

containment

I(m) ⊂ Ir

holds for m ≥ nr − (n− 1).

Strangely enough, it turns out that Conjecture 2.3.5 fails in its original setting due to

Huneke, i.e., it fails for ideals of points in P2. The first non-containment result was exhibited

by Dumnicki, Szemberg, and Tutaj-Gasińska in [15]. They study set of 12 intersection points of

9 lines arranged in the so called dual Hesse arrangement. This arrangement cannot be realized

over the reals and it is rigid, i.e., any arrangement of 9 lines intersecting by 3 in 12 points, is

projectively equivalent to the dual Hesse arrangement, see [28] for a direct argument.

The first real non-containment example was provided in [7]. The construction there is based

on the Böröczky arrangement of 12 lines which is defined over the reals but not over the rational

numbers. However, it turned out that in this example the 12 lines can be slightly modified so

that they can be defined over the rational numbers. This path of investigations was followed

by Lampa-Baczyńska and Szpond in [27]. They introduced the notion of a parameter space for

a line arrangement. We will follow closely their ideas in the study of other arrangements in the

Böröczky series of examples in the next chapter.





Chapter 3

Böröczky arrangements

3.1 Parameter spaces of some Böröczky line arrange-

ments

In order to put our research in the perspective, we begin by recalling what is usually under-

stood by a moduli space of line arrangements and explaining how our parameter spaces fit into

the picture. In this set-up it is convenient and customary to consider a line ` in the projective

plane as a point in the dual projective plane (P2
C)∗.

We say that two line arrangements A and A′ are combinatorially equivalent A ∼ A′ if their

intersection lattices L(A) and L(A′) are isomorphic. That means that there exists a bijection

ϕ : A→ A′ (extending naturally to intersection lattices) that preserves the lattice order, i.e.,

B ≤ C if and only if ϕ(B) ≤ ϕ(C)

for all B,C ∈ L(A).

If A is an ordered arrangement, i.e., the lines in A are numbered, then two ordered arrange-

ments are ordered combinatorially equivalent if the bijection ϕ respects the order.

The following definition is taken from [2].

Definition 3.1.1 (Moduli spaces of ordered line arrangements). The moduli space of arrange-

ments of ordered n lines with the fixed intersection poset L(A) is defined as

MA =

{
B ∈ (P2 ∗

C )n : B ∼ A

}
/PGL(3,C),

23
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where the action of PGL(3,C) is defined naturally as

PGL(3,C)× (P2 ∗
C )n 3 (g, (`1, ..., `n)) = (g`1, ..., g`n) ∈ (P2 ∗

C )n.

We emphasize the adjective ordered in Definition 3.1.1 since we fix the order of lines – in

general one allows to have unordered lines and then we must take an additional quotient by an

appropriate symmetric group. The following Example shows that it is important to distinguish

between ordered and unordered arrangements.

Example 3.1.2. Let ω± = 1±
√
−3

2
. We consider two ordered sets of 8 lines A+ and A−, where

A± = {`1, ..., `5, `±6 , `±7 , `±8 } given by

`1 : x = 0, `2 : y = 0, `3 : z = 0, `4 : y − x = 0,

`5 : z − x = 0, `±6 : z + ω±y = 0, `±7 : z + ω2
±x+ ω±y = 0, `±8 : z − x− ω2

±y = 0.

It is known, see for instance [31], that the moduli space (after fixing L(A)) is

MA = {A+,A−},

so it consists of exactly two points.

However, passing to unordered arrangements, the moduli space has just one element, see

[2, Example 1.7].

The combinatorics from Example 3.1.2 plays an important role in the topology of comple-

ments and the so-called Zariski pairs, but we are not going to discuss the details here.

Parameter spaces of line arrangements considered here are a much less formal object. The

idea behind is very simple. Knowing the intersection poset of the arrangement, one reconstructs

the arrangement starting from the scratch. Here, we start always with four points in general

position. We may, and do, choose their coordinates in a convenient way. Then we construct

additional lines and their intersection points, following the receipt encoded in the intersection

poset. Whenever there is some ambiguity in making the next step in the construction, we

introduce a new parameter, and continue the construction. Typically, at the end, we arrive at

a number of constraints (equations) involving the parameters, which must be satisfied so that

we obtain the whole intersection poset. In this approach some values of parameters correspond

to degenerate arrangements, where some lines or points fall together. Parameter spaces can
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be thus considered as some particular compactifications of realization spaces (see [2]), which

typically are quasi-projective varieties. It seems that the approach presented here has been

pioneered by Lampa-Baczyńska and Szpond in [27] and we thank them for teaching us their

techniques.

Later on, in our considerations we will be interested in finding rational points of the pa-

rameter spaces of line arrangements. In the case of Böröczky families of line arrangements, the

parameter spaces turn out to be curves of genus g ≥ 2. The celebrated Mordell Conjecture

(solved by Faltings) tells us that curves of genus g ≥ 2 defined over the rationals have only

finitely many rational points. However, Faltings’s proof does not tell us how we can find these

rational point in an effective way. It turns out that old methods developed into the direction

of the proof of Mordell Conjecture are very useful for searching the rational points. Here we

are going to use Chabauty’s method – a very nice description of this method is presented by

Poonen in [32]. The idea standing behind Chabauty’s method is to use p-adic extensions, but

we do not want to go into details since it involves some technicalities not related to the core

of the thesis. However, we are going to use MAGMA’s command which allows to apply this

method and find rational points in our cases.

Our key motivation for this search of rational points on some algebraic curves stems from

the desire to construct new rational non-containment examples for the I(3) ⊂ I2 problem. Such

rational non-containment examples seem to be quite rare. We pass to this question in Chapter

4.

By Bn we denote arrangements which preserve all incidences of the original construction

of Böröczky arrangement Bn on n lines. Thus the arrangements Bn are in particular less

symmetric then the original arrangements Bn.

3.1.1 Construction of B13

The original Böröczky construction of B13 uses trigonometric functions and is based on

vertices of a regular 26-gon. The core of the construction of B13 is the set of four general

points in the projective plane and five lines joining certain pairs of these points. To simplify

the calculations we begin our construction with the four fundamental points:

P1 = (1 : 0 : 0), P2 = (0 : 1 : 0), P3 = (0 : 0 : 1), P4 = (1 : 1 : 1).
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Then we take the following lines

P1P4 : z − y = 0, P1P2 : z = 0, P1P3 : y = 0, P2P4 : z − x = 0, P3P4 : y − x = 0.

It gives us the coordinates of intersection points

P5 = P3P4 ∩ P1P2 = (1 : 1 : 0) and P6 = P1P3 ∩ P2P4 = (1 : 0 : 1).

From now on we need to introduce a parameter. We choose a point P7 ∈ P1P4, distinct from

all previous points. We write its coordinates with the parameter a 6= 1 and a 6= 0

P7 = (a : 1 : 1).

The construction up to this point is depicted in Figure 3.1.

P1

P2

P3

P4

P5

P6

P7 = (a : 1 : 1)

Figure 3.1: Construction of B13 at the stage of choosing parameter a

Continuing the construction, we obtain the following equations of lines

P3P7 : ay − x = 0, P2P7 : x− az = 0.
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In the next step, we take the following points:

P8 = P3P7 ∩ P1P2 = (a : 1 : 0),

P9 = P2P7 ∩ P1P3 = (a : 0 : 1),

P10 = P3P4 ∩ P2P7 = (a : a : 1),

P11 = P3P7 ∩ P2P4 = (a : 1 : a).

Now we need to introduce an additional point P12 ∈ P1P4 distinct from all points from P1 to

P11 and depending on a new parameter b /∈ {1, a}:

P12 = (b : 1 : 1).

Figure 3.2 indicates the construction at the current stage.

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12 = (b : 1 : 1)

Figure 3.2: Construction of B13 at the stage of choosing parameter b
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The next two lines in our construction are

P12P8 : −x+ ay + (b− a)z = 0 and P12P9 : x+ (a− b)y − az = 0.

This gives us the following points

P13 = P12P8 ∩ P2P4 = (a : a− b+ 1 : a),

P14 = P12P9 ∩ P3P4 = (a : a : a− b+ 1),

P15 = P1P2 ∩ P12P9 = (b− a : 1 : 0),

P16 = P12P8 ∩ P1P3 = (b− a : 0 : 1).

The last four lines of the construction are

P10P15 : x− (b− a)y + (ab− a2 − a)z = 0,

P16P11 : x+ (ab− a2 − a)y − (b− a)z = 0,

P13P5 : −ax+ ay + (b− 1)z = 0,

P6P14 : −ax+ (b− 1)y + az = 0.

Finally, we obtain the remaining triple points

P17 = P1P4 ∩ P10P15 ∩ P11P = (a2 + b− ab : 1 : 1),

P18 = P12P8 ∩ P10P15 ∩ P6P14 = (b2 − a2 − b+ a− ab : ab− a2 − a : −a2 + b− 1),

P19 = P2P7 ∩ P6P14 ∩ P11P = (a− ab : a− a2 : 1− b),

P20 = P12P9 ∩ P13P5 ∩ P11P = (b2 − a2 − b+ a− ab : −a2 + b− 1 : ab− a2 − a),

P21 = P13P5 ∩ P10P15 ∩ P3P7 = (a− ab : 1− b : a− a2),

P22 = P1P4 ∩ P13P5 ∩ P6P14 = (a+ b− 1 : a : a).

It is easy to check (computing a suitable determinant) that points P17 and P22 are always the

common points of given three lines, independently of the values of a and b. The situation is

more complicated for points P18, P19, P20 and P21. These points are triple only if parameters a

and b satisfy the additional condition:

C13(a, b) : a4 − a3b+ a2b− a2 + b2 − 2ab+ 2a− b = 0.
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This condition is necessary for the construction to terminate successfully, in the sense that we

obtain exactly 22 points in T13, distributed as follows: six points on one of the lines and of

five points on each of the remaining 12 lines, as in the original Böröczky arrangement B13, see

Figure 3.3.

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12

P13

P14

P15

P16

P17

P18

P19 P20

P21

P22

Figure 3.3: Complete construction of B13.



30

3.1.2 Degenerate cases of B13

In this section we check under which conditions the arrangement B13 is non-degenerate in

the sense that all points and lines appearing in the construction are mutually distinct.

Proposition 3.1.3. For (a, b) ∈ R2 such that a 6= 0, a 6= 1, a 6= b, and b 6= 1, and satisfying

C13(a, b) : a4 − a3b+ a2b− a2 + b2 − 2ab+ 2a− b = 0 (3.1)

the arrangement constructed in Subsection 3.1.1 consists of 13 mutually distinct lines which

intersect in exactly 22 triple points and 12 double points.

Proof. We have already seen that the conditions a 6= 0, a 6= 1, a 6= b, and b 6= 1 are necessary.

We need to check when other overlaps of points and/or lines might occur. We have the following

possibilities:

i) if a− b+ 1 = 0 then P4 = P17, P5 = P14 = P15 = P20 = P10 and P6 = P13 = P18 = P16 =

P11,

ii) if 2a− b = 0 then P8 = 0, P9 = P16, P11 = P20 = P13 and P12 = P18 = P14,

iii) if a2 − ab+ 2a− b = 0 then P10P15 = P16P11 (thus P10, P15, P16, P11 are collinear points),

iv) if a2 − b+ 1 = 0 then P8 = P18 and P9 = P20,

v) if a2 − a− b+ 1 = 0 then P7 = P14 = P21 = P22 = P19,

vi) if a3 − a2b+ ab− a− b+ 1 = 0 then P17 = P22,

vii) if a3 − 2ab+ 2a+ b2 − a2 − b = 0 then P21 = P20 and P18 = P19.

Together with main condition (3.1) it gives us

i) −a(a− 1) = 0

ii) −a2(a− 1)2 = 0

iii) − a3

(a+1)2
= 0

iv) −a2(a− 1)3 = 0
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v) −a(a− 1)4 = 0

vi) a2(a−1)3
(a2−a+1)2

= 0

vii) a2(a− 1)(a− b) = 0

It is easy to see, that in all these cases we get values of a and b already excluded by the

assumptions. Thus, if (a, b) satisfy equation (3.1) and a 6= 0, a 6= 1, a 6= b and b 6= 1, the

construction leads to an arrangement of 13 distinct lines, which have 22 triple intersection

points.

3.1.3 Parameter space of B13 arrangements

The parameterizing curve

C13(a, b) : a4 − a3b+ a2b− a2 + b2 − 2ab+ 2a− b = 0

is an irreducible curve of degree 4 with one double point. This may be checked by hand or with

help of a computer. Thus, the geometrical genus of C is 2. The curve may be written as

b2 + b(−1− 2a+ a2 − a3) + a4 − a2 + 2a = 0.

Substituting b by b− −1−2a+a2−a3
2

and then b by b
2

we get

D : 1− 4a+ 6a2 − 2a3 + a4 − 2a5 + a6 − b2 = 0.

We denote the homogenization of D also by D. Using computer algebra programme MAGMA,

we compute that the Mordell-Weil rank of the Jacobian of D has rank 0, thus Chabauty’s

method may be applied here. We obtain all rational points of D:

(1 : −1 : 0), (1 : 1 : 0), (0 : 1 : 1), (0 : −1 : 1), (1 : 1 : 1), (1 : −1 : 1).

These points correspond to the set of all rational points on C (with perhaps second coordi-

nate changed). However, the points having a = 1 or a = 0 are excluded by the construction.

Thus all possibilities lead us to the degenerated cases. Thus we have the following

Corollary 3.1.4. The configuration B13 cannot be realized over the rational numbers.
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3.2 Construction of B14, B16, B18 and B24

For configurations B14, B16, B18 and B24 we present simplified descriptions of construction

in tables. We omit some coordinates of points and some equations of lines of the configurations,

because of their complicated forms. We only give the coordinates of points being the core of

each construction and coordinates of points taken during the construction as parameters. We

distinguish these special points using bold type font. Enough motivated reader may follow the

construction step by step and find remaining coordinates and equations of lines if necessary.

The idea of the construction is the same in all considered cases: we start with four fundamental

points and some of the lines through them, and then we choose two points (parameters) on one

of the already constructed lines. This input allows us to construct the configurations.

3.2.1 Construction of B14

The construction of B14 is based on the four fundamental points in the projective plane.

We introduce here two parameters a and b such that a 6= 1, b 6= 1 and a 6= b. The construction

goes in the following way

step 1 P1 = (1 : 0 : 0), P2 = (0 : 1 : 0), P3 = (0 : 0 : 1), P4 = (1 : 1 : 1)

step 2 lines: P1P2, P1P3, P1P4, P2P3, P2P4, P3P4

step 3 P5 = P1P2 ∩ P3P4, P6 = P1P3 ∩ P2P4, P7 = (a : 1 : 1) ∈ P1P4

The construction up to now is visualised at Figure 3.4.

P1

P2

P3

P4

P5

P6

P7 = (a : 1 : 1)

Figure 3.4: The B14 arrangement at the point of choosing the first parameter
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step 4 lines: P5P7, P6P7

step

5

P8 = P2P4 ∩ P5P7, P9 = P3P4 ∩ P6P7, P10 = P1P2 ∩ P6P7,

P11 = P1P3 ∩ P5P7, P12 = P2P3 ∩ P5P7, P13 = P2P3 ∩ P6P7,

P14 = (b : 1 : 1) ∈ P1P4

The construction up to now is visualised at Figure 3.5.

P1

P2

P3

P4

P5

P6
P7

P8

P9

P10

P11

P12

P13

P14 = (1 : 1 : b)

Figure 3.5: The B14 arrangement at the point of choosing the second parameter

The construction continues as follows.

step 6 lines: P10P14, P11P14

step

7

P15 = P5P7 ∩ P10P14, P16 = P3P4 ∩ P10P14, P17 = P2P4 ∩ P10P14,

P18 = P2P3 ∩ P10P14, P19 = P6P7 ∩ P11P14, P20 = P2P4 ∩ P11P14,

P21 = P3P4 ∩ P11P14, P22 = P2P3 ∩ P11P14

step 8 lines: P15P20, P16P19, P17P22, P18P21

step

9

P23 = P1P4 ∩ P15P20, P24 = P1P3 ∩ P15P20, P25 = P1P2 ∩ P16P19,

P26 = P17P22 ∩ P18P21

This ends the construction of 14 lines with 26 triple intersection points. The complete B14

arrangement is visualized in Figure 3.6.

We sum up the discussion gathering coordinates of the points and equations of the lines in

Tables 3.1 and 3.2.
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P1

P2

P3

P4

P5

P6
P7

P8

P9

P10

P11

P12

P13

P14

P15

P16

P17

P18

P19

P20

P21

P22

P23

P24

P25

P26

Figure 3.6: The complete B14 arrangement
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Point Coordinates

P1 (1 : 0 : 0)

P2 (0 : 1 : 0)

P3 (0 : 0 : 1)

P4 (1 : 1 : 1)

P5 (−1 : −1 : 0)

P6 (1 : 0 : 1)

P7 (a : 1 : 1)

P8 (1 : −a+ 2 : 1)

P9 (1 : 1 : −a+ 2)

P10 (−a+ 1 : −1 : 0)

P11 (−a+ 1 : 0 : −1)

P12 (0 : −a+ 1 : 1)

P13 (0 : −1 : a− 1)

P14 (b : 1 : 1)

P15 (−a2 + a+ b : −2a+ b+ 2 : −a+ 2)

P16 (−a+ b+ 1 : −a+ b+ 1 : −a+ 2)

P17 (a− 1 : a− b : a− 1)

P18 (0 : a− b− 1 : a− 1)

P19 (−a2 + a+ b : −a+ 2 : −2a+ b+ 2)

P20 (a− b− 1 : a− 2 : a− b− 1)

P21 (−a+ 1 : −a+ 1 : −a+ b)

P22 (0 : a− 1 : a− b− 1)

P23 (a2b− 2a2 + ab+ 2a− 2b2 : −a2 + 3ab− b2 − 3b+ 2 : −a2 + 3ab− b2 − 3b+ 2)

P24 (a3 − 5a2 + 2ab+ 6a− b2 − b− 2 : 0 : −a2 + 3ab− b2 − 3b+ 2)

P25 (−a3 + 5a2 − 2ab− 6a+ b2 + b+ 2 : a2− 3ab+ b2 + 3b− 2 : 0)

P26 (2a3b− a2b2 − 6a2b+ 2ab2 + 6ab− b2 − 2b :

4a3b− 2a3 − 4a2b2 − 9a2b+ 6a2 + ab3 + 7ab2 + 6ab− 6a− b3 − 3b2 − b+ 2 :

4a3b− 2a3 − 4a2b2 − 9a2b+ 6a2 + ab3 + 7ab2 + 6ab− 6a− b3 − 3b2 − b+ 2)

Table 3.1: Points in the B14 arrangement



36

P1P2 : z = 0

P1P3 : y = 0

P1P4 : −y + z = 0

P2P3 : x = 0

P2P4 : x− z = 0

P3P4 : x− y = 0

P15P20 : (−a2 + 3ab− b2 − 3b+ 2)x+ (a3 − a2b− 3a2 + ab+ 4a+ b2− b− 2)y + (−a3 + 5a2 − 2ab− 6a+ b2 + b+ 2)z = 0

P16P19 : (a2 − 3ab+ b2 + 3b− 2)x+ (a3 − 5a2 + 2ab+ 6a− b2 − b− 2)y + (−a3 + a2b+ 3a2 − ab− 4a− b2 + b+ 2)z = 0

P17P22 : (−2ab+ a+ b2 + b− 1)x+ (−a2 + ab+ 2a− b− 1)y + (a2 − 2a+ 1)z = 0

P18P21 : (2ab− a− b2 − b+ 1)x+ (−a2 + 2a− 1)y + (a2 − ab− 2a+ b+ 1)z = 0

P10P14 : −x+ (a− 1)y + (−a+ b+ 1)z = 0

P11P14 : x+ (a− b− 1)y + (−a+ 1)z = 0

P5P7 : −x+ y + (a− 1)z = 0

P6P7 : −x+ (a− 1)y + z = 0

Table 3.2: Lines in the B14 arrangement

The point P23 lies additionally on the line P16P19 and the point P26 lies on the line P1P4 for

any value of a and b. However, there exist points, which become triple only for certain values

of parameters a and b. These points are P8, P9, P12, P13, P24 and P25. The conditions to have

them triple (i.e., to assure additional incidences) are

P8 ∈ P2P4 ∩ P5P7 ∩ P18P21,

P9 ∈ P3P4 ∩ P6P7 ∩ P17P22,

P12 ∈ P2P3 ∩ P5P7 ∩ P16P19,

P13 ∈ P2P3 ∩ P6P7 ∩ P15P20,

P24 ∈ P1P3 ∩ P18P21 ∩ P15P20,

P25 ∈ P1P2 ∩ P16P19 ∩ P17P22.

We obtain the following algebraic conditions for parameters a and b:

• 2a− 3a2 + a3 + ab− b2 = 0,

• (−2 + a)(2a− 3a2 + a3 + ab− b2) = 0,

• (−2 + 2a− b)(−1 + b)(2a− 3a2 + a3 + ab− b2) = 0.

Thus the parameter space for configurations B14 is the curve

C14(a, b) : 2a− 3a2 + a3 + ab− b2 = 0.
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Parameter space of configurations B14

We now take a closer look at the curve parametrizing the configurations B14, i.e.,

C14(a, b) : 2a− 3a2 + a3 + ab− b2 = 0.

Its smooth of geometric genus is 1. By substituting a 7→ a/4, b 7→ (a+ b)/4 we get the curve in

Weierstrass form

D : b2 = a3 − 11a2 + 32a.

The curve D has the following rational points:

(0, 0), (4,−4), (4, 4), (8,−8), (8, 8).

Thus the closure of C14 in the projective plane has the following rational points:

(0 : 0 : 1), (1 : 1 : 1), (1 : 0 : 1), (2 : 2 : 1), (2 : 0 : 1), (0 : 1 : 0).

Each of them leads us to a degenerated case hence no B14 configuration can be obtained over

the rational numbers.

3.2.2 Construction of B16

The core of configuration B16 are the four fundamental points. We need two parameters a

and b such that a 6= 1, a 6= 0, b 6= 0, b 6= 1 and a 6= b. We present the construction step by step.

step 1 P1 = (1 : 0 : 0), P2 = (0 : 1 : 0), P3 = (0 : 0 : 1), P4 = (1 : 1 : 1)

step 2 lines: P1P4, P2P4, P3P4

step 3 P5 = (a : 1 : 1) ∈ P1P4

The construction up to now is visualised at Figure 3.7.
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P1

P2

P3

P4

P5 = (a : 1 : 1)

Figure 3.7: The B16 arrangement at the point of choosing the first parameter

step 4 lines: P2P5, P3P5

step 5 P6 = P2P4 ∩ P3P5, P7 = P3P4 ∩ P2P5

step 6 lines: P1P6, P1P7

step

7

P8 = P3P5 ∩ P1P7, P9 = P2P4 ∩ P1P7, P10 = P1P6 ∩ P2P5,

P11 = P3P4 ∩ P1P6

step 8 line P9P11

step 9 P12 = P9P11 ∩ P3P5, P13 = P9P11 ∩ P2P5, P14 = (b : 1 : 1) ∈ P1P4

The construction up to now is visualised in Figure 3.8. In order to improve its readability we

denote points Pi merely by their index i. The exception is done for point P14 as this is where

the new parameter appears.
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P14 = (b : 1 : 1)

Figure 3.8: The B16 arrangement at the point of choosing the second parameter

step 10 lines: P2P14, P3P14

step

11

P15 = P3P14 ∩ P1P6, P16 = P3P14 ∩ P9P11, P17 = P3P14 ∩ P1P7,

P18 = P2P14 ∩ P3P4, P19 = P2P14 ∩ P1P6, P20 = P2P14 ∩ P9P11

P21 = P2P14 ∩ P1P7, P22 = P2P4 ∩ P3P14

step 12 lines: P8P20, P10P16, P12P19, P13P17, P15P18, P21P22

step

13

P23 = P3P14 ∩ P8P20, P24 = P15P18 ∩ P13P17, P25 = P13P17 ∩ P8P20,

P26 = P13P17 ∩ P1P4, P27 = P2P4 ∩ P15P18, P28 = P10P16 ∩ P13P17,

P29 = P2P4 ∩ P10P16, P30 = P2P5 ∩ P12P19, P31 = P10P16 ∩ P3P4,

P32 = P1P4 ∩ P15P18, P33 = P1P6 ∩ P8P20, P34 = P1P7 ∩ P10P16,

P35 = P1P4 ∩ P10P16

The complete B16 arrangement is visualized in Figure 3.9.
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Figure 3.9: The complete B16 arrangement

To sum up, we collect coordinates of all points and equations of all lines in the Tables 3.3,
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3.4 and 3.5.

Point Coordinates

P1 (1 : 0 : 0)

P2 (0 : 1 : 0)

P3 (0 : 0 : 1)

P4 (1 : 1 : 1)

P5 (a : 1 : 1)

P6 (a : 1 : a)

P7 (−a : −a : −1)

P8 (−a2 : −a : −1)

P9 (1 : a : 1)

P10 (a2 : 1 : a)

P11 (1 : 1 : a)

P12 (a2 − a : a− 1 : a3 − 2a+ 1)

P13 (a2 − a : a3 − 2a+ 1 : a− 1)

P14 (b : 1 : 1)

P15 (b : 1 : a)

P16 (−ab+ b : −a+ 1 : −a2b+ a+ b− 1)

P17 (−ab : −a : −1)

P18 (b : b : 1)

P19 (−ab : −1 : −a)

P20 (−ab+ b : −a2b+ a+ b− 1 : −a+ 1)

P21 (b : a : 1)

P22 (b : 1 : b)

P23

(
a4b2 − a3b− 2a2b2 + a2b+ ab2 : a4b− a3 − 2a2b+ a2 + ab : a3 + a2b2 − a2b− a2 − ab− b2 + 2b

)
P24 (a5b2 − a4b2 − a4b− 2a3b2 + 2a3b+ a2b3 + a2b2 − ab3 + ab2 − ab :

a5b2 − 2a4b− 3a3b2 + 2a3b+ a3 + 2a2b2 + a2b− a2 + ab2 − 2ab− b2 + b :

a4b+ a3b2 − 3a3b− a2b2 + a2 + 3ab− a− b)

Table 3.3: Points in the B16 arrangement, Part 1
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Point Coordinates

P25 (a7b− a6b2 − a6 − 2a5b+ a5 + 3a4b2 + a4 − a3b2 + a3b− a3 − 2a2b2 + ab2 :

a7b− a6b2 − a6 − 2a5b+ a5 + 3a4b2 + a4 − a3b2 + a3b− a3 − 2a2b2 + ab2 :

a6 − 2a5 − a4b2 + a4b− a4 + a3b2 + 3a3 + a2b2 − 2a2b− ab2 − a+ b)

P26

(
a4b− a3 − 3a2b+ 2a2 + 2ab− a : a3 − a2 − a+ 1 : a3 − a2 − a+ 1

)
P27

(
ab− b : ab− b2 + b− 1 : ab− b

)
P28 (a8b2 − 2a7b− 4a6b2 + 2a6b+ a6 + 2a5b2 + 3a5b− a5 + 4a4b2 − 4a4b− a4 − 3a3b2 + a3 − a2b2 + 2a2b+ ab2 − ab :

a6b2 − a6b+ a6 − a5b− a5 − 3a4b2 + 3a4b− a4 + a3b2 + 2a3b+ a3 + 2a2b2 − 3a2b− ab2 − ab+ b :

a7b− a6b− a6 − 3a5b+ 2a5 + a4b2 + 2a4b+ a4 − a3b2 + 3a3b− 3a3 − a2b2 − a2b+ ab2 − ab+ a)

P29

(
a4b− a3 − 2a2b+ a2 + ab : a3 + a2b− 2a2 − ab+ 1 : a4b− a3 − 2a2b+ a2 + ab

)
P30

(
−a5b+ a4 + 2a3b− a3 − a2b : −a4 + a3 − a2b+ 2a2 + ab− 2a : −a4b+ a3 + 2a2b− a2 − ab

)
P31

(
a3 − a2 − ab+ b : a3 − a2 − ab+ b : a4b− a3 − 3a2b+ 2a2 + ab+ b− 1

)
P32

(
−ab− b2 + 2b : −ab+ 1 : −ab+ 1

)
P33

(
−a5b+ a4 + 2a3b− a2b− a2 − ab+ b : −a2b+ a2 + b− 1 : −a3b+ a3 + ab− a

)
P34

(
a5b− a4 − 2a3b+ a2b+ a2 + ab− b : a3b− a3 − ab+ a : a2b− a2 − b+ 1

)
P35

(
−a4b+ 2a3 + 2a2b− 2a2 − 2ab+ b : −a2b+ a2 + b− 1 : −a2b+ a2 + b− 1

)
Table 3.4: Points in the B16 arrangement, Part 2

P1P4 : −y + z = 0

P2P4 : x− z = 0

P3P4 : −x+ y = 0

P2P5 : x+ (−a)z = 0

P3P5 : −x+ (a)y = 0

P1P6 : (−a)y + z = 0

P1P7 : y + (−a)z = 0

P9P11 : (a2 − 1)x+ (−a+ 1)y + (−a+ 1)z = 0

P2P14 : x+ (−b)z = 0

P3P14 : −x+ y = 0

P8P20 : (−a2b+ a2 + b− 1)x+ (−a3 + a2 + ab− b)y + (a4b− a3 − 2a2b+ a2 + ab)z = 0

P10P16 : (−a2b+ a2 + b− 1)x+ (a4b− a3 − 2a2b+ a2 + ab)y + (−a3 + a2 + ab− b)z = 0

P12P19 : (a3 − a2 − a+ 1)x+ (−a4b+ a3 + 2a2b− a2 − ab)y + (a2b− a2 − ab+ a)z = 0

P13P17 : (−a3 + a2 + a− 1)x+ (−a2b+ a2 + ab− a)y + (a4b− a3 − 2a2b+ a2 + ab)z = 0

P15P18 : (−ab+ 1)x+ (ab− b)y + (b2 − b)z = 0

P21P22 : (ab− 1)x+ (−b2 + b)y + (−ab+ b)z = 0

Table 3.5: Lines in the B16 arrangement

We get the following additional incidences for free: P25 ∈ P3P4, P26 ∈ P12P19, P29 ∈ P12P19,

P32 ∈ P21P22, P35 ∈ P8P20.

Additional incidences impose conditions on parameters a and b. These are the points P23,
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P24, P27, P28, P30, P31, P33 and P34. The conditions to have them triple are

P23 = P3P14 ∩ P8P20 ∩ P12P19,

P24 = P3P5 ∩ P13P17 ∩ P15P18,

P27 = P2P4 ∩ P8P20 ∩ P15P18,

P28 = P2P14 ∩ P10P16 ∩ P13P17,

P30 = P2P5 ∩ P12P19 ∩ P21P22,

P31 = P3P4 ∩ P10P16 ∩ P21P22,

P33 = P1P6 ∩ P8P20 ∩ P21P22,

P34 = P1P7 ∩ P10P16 ∩ P15P18.

Evaluating these conditions we get the equation:

a4b2 − 2a3b− 2a2b2 + a2b+ 2ab2 − b3 + a2 + 2b2 − 2b = 0

Parameter space of configurations B16

The parametrizing curve is

C16(a, b) : a4b2 − 2a3b− 2a2b2 + a2b+ 2ab2 − b3 + a2 + 2b2 − 2b = 0.

Computations with MAGMA returned genus of C16 = 2. This curve is hyperelliptic and its

Mordell-Weil rank of the Jacobian J has rank 0. Hence, Chabauty’s method may be applied

and MAGMA computes that the rational points on C16 are:

(1 : 1 : 1), (0 : 1 : 0), (0 : 0 : 1), (1 : 0 : 0), (−2 : −2 : 1), (−1 : 1 : 1), (−1 : −1 : 1).

All these points lead to degenerate configurations.

3.2.3 Construction of B18

The construction of B18 is also based on the four fundamental points on the projective plane.

As before, we introduce parameters a and b satisfying the conditions a 6= 1, b 6= 1 and a 6= b.

step 1 P1 = (1 : 0 : 0), P2 = (0 : 1 : 0), P3 = (0 : 0 : 1), P4 = (1 : 1 : 1)

step 2 lines: P1P4, P2P4, P3P4

step 3 P5 = (a : 1 : 1) ∈ P1P4
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The construction up to now is visualised at Figure 3.10.

P1

P2

P3

P4

P5 = (a : 1 : 1)

Figure 3.10: The B18 arrangement at the point of choosing the first parameter

step 4 lines: P2P5, P3P5

step 5 P6 = P2P4 ∩ P3P5, P7 = P3P4 ∩ P2P5

step 6 P8 = (b : 1 : 1) ∈ P1P4

The construction up to now is visualised at Figure 3.11.

P1

P2

P3

P4

P5

P6P7

P8 = (b : 1 : 1)

Figure 3.11: The B18 arrangement at the point of choosing the second parameter
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step 7 lines: P6P8, P7P8

step

8

P9 = P2P5 ∩ P6P8, P10 = P3P5 ∩ P7P8, P11 = P3P4 ∩ P6P8,

P12 = P2P4 ∩ P7P8

step 9 lines P1P9, P1P10

step

10

P13 = P3P4 ∩ P1P9, P14 = P2P4 ∩ P1P10, P15 = P1P10 ∩ P6P8,

P16 = P1P9 ∩ P7P8, P17 = P2P4 ∩ P1P9, P18 = P3P4 ∩ P1P10

step 11 lines: P13P15, P14P16

step

12

P19 = P2P4 ∩ P13P15, P20 = P3P4 ∩ P14P16, P21 = P2P5 ∩ P13P15,

P22 = P3P5 ∩ P14P16, P23 = P1P4 ∩ P13P15, P24 = P7P8 ∩ P13P15

P25 = P6P8 ∩ P14P16

step 13 lines: P17P21, P18P22, P19P20

step

14

P26 = P17P21 ∩ P1P4, P27 = P3P5 ∩ P17P21, P28 = P18P22 ∩ P2P5,

P29 = P19P20 ∩ P17P21, P30 = P19P20 ∩ P18P22, P31 = P3P4 ∩ P17P21,

P32 = P2P4 ∩ P18P22, P33 = P1P10 ∩ P17P21, P34 = P1P9 ∩ P18P22,

P35 = P17P21 ∩ P14P16, P36 = P18P22 ∩ P13P15, P37 = P19P20 ∩ P1P9,

P38 = P19P20 ∩ P1P10, P39 = P3P5 ∩ P19P20, P40 = P2P5 ∩ P19P20

step 15 lines: P2P24, P3P25, P11P27, P12P28

step

14

P41 = P2P24 ∩ P1P10, P42 = P3P25 ∩ P1P9, P43 = P1P4 ∩ P11P27,

P44 = P2P24 ∩ P6P8, P45 = P3P25 ∩ P7P8, P46 = P1P4 ∩ P2P24

The complete B18 arrangement is visualized in Figure 3.12.
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Figure 3.12: The complete B18 arrangement

Thus we obtain 46 triple intersection points. Here there also exist some points which are

not triple for arbitrary values of a and b. The conditions that there are 3 lines passing through
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all of them are:

P29 = P6P8 ∩ P17P21 ∩ P19P20,

P30 = P7P8 ∩ P18P22 ∩ P19P20,

P31 = P2P24 ∩ P3P4 ∩ P17P21,

P32 = P2P4 ∩ P3P25 ∩ P18P22,

P35 = P11P27 ∩ P12P28 ∩ P14P16,

P36 = P11P27 ∩ P13P15 ∩ P18P22,

P37 = P1P9 ∩ P11P27 ∩ P19P20,

P38 = P1P10 ∩ P12P28 ∩ P19P20,

P39 = P2P24 ∩ P3P5 ∩ P19P20,

P40 = P2P5 ∩ P3P25 ∩ P19P20,

P44 = P2P24 ∩ P6P8 ∩ P12P28,

P45 = P3P25 ∩ P7P8 ∩ P11P27.

They imply several algebraic conditions for parameters a and b but only one of them does not

lead to a degenerate case. This condition provides us the parametrization curve of the B18

configurations:

C18(a, b) :=a3b5 − a5b2 + a4b3 − 6a3b4 + a2b5 + a6 + a4b2 + 12a3b3 − 4a2b4 − 5a5+

7a4b− 22a3b2 + 11a2b3 − ab4 + 6a4 − a3b+ 3a2b2 − 4ab3 + b4 − 4a3+

4a2b− ab2.

Parameter space of configurations B18

Computations with MAGMA returned genus of C18 equal to 2 again. This curve is hyperel-

liptic and the Mordell-Weil rank of its Jacobian J has rank 0. Thus, Chabauty’s method may

be applied and Magma computes the rational points on homogenization of C18, namely

(1 : 1 : 1), (0 : 1 : 0), (0 : 0 : 1), (1 : 0 : 0).

All these points correspond to degenerate configurations.

3.2.4 Construction of B24

We start the construction by taking the four fundamental points. Then we introduce the

parameters a and b, such that a 6= 1, a 6= 0, b 6= 1 and a 6= b and we have
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step 1 P1 = (1 : 0 : 0), P2 = (0 : 1 : 0), P3 = (0 : 0 : 1), P4 = (1 : 1 : 1)

step 2 lines: P1P4, P2P4, P3P4

step 3 P5 = (a : 1 : 1) ∈ P1P4

step 4 lines: P2P5, P3P5

step 5 P6 = P2P4 ∩ P3P5, P7 = P2P5 ∩ P3P4

step 6 lines: P1P6, P1P7

step 7 P8 = P1P6 ∩ P3P4, P9 = P1P7 ∩ P2P4

step 8 lines: P2P8, P3P9

step 9

P10 = P1P4 ∩ P3P9, P11 = P2P5 ∩ P3P9, P12 = P2P8 ∩ P3P5,

P13 = P1P6 ∩ P2P5, P14 = P1P7 ∩ P3P5, P15 = P1P6 ∩ P3P9,

P16 = P1P7 ∩ P2P8

step 10 P17 = (b : 1 : 1) ∈ P1P4

step 11 lines: P11P17, P12P17

step 12

P18 = P3P9 ∩ P12P17, P19 = P2P8 ∩ P11P17, P20 = P1P7 ∩ P11P17,

P21 = P1P6 ∩ P12P17, P22 = P3P4 ∩ P12P17, P23 = P2P4 ∩ P11P17,

P24 = P2P5 ∩ P12P17, P25 = P3P5 ∩ P11P17, P26 = P3P4 ∩ P11P17,

P27 = P2P4 ∩ P12P17

step 13 lines: P12P22, P22P23

step 14

P28 = P4P9 ∩ P22P23, P29 = P12P17 ∩ P22P23, P30 = P2P5 ∩ P22P23,

P31 = P3P4 ∩ P22P23, P32 = P1P45 ∩ P22P23, P33 = P1P6 ∩ P22P23,

P34 = P1P7 ∩ P15P22, P35 = P2P4 ∩ P15P22, P36 = P3P5 ∩ P15P22,

P37 = P11P17 ∩ P15P22, P38 = P2P8 ∩ P15P22

step 15 lines: P24P28, P25P38

step 16

P39 = P1P4 ∩ P24P28, P40 = P2P4 ∩ P24P28, P41 = P1P7 ∩ P24P28,

P42 = P2P8 ∩ P24P28, P43 = P3P4 ∩ P24P28, P44 = P15P22 ∩ P24P28,

P45 = P1P6 ∩ P24P28, P46 = P3P5 ∩ P24P28, P47 = P2P5 ∩ P25P38,

P48 = P1P7 ∩ P25P38, P49 = P22P23 ∩ P25P38, P50 = P2P4 ∩ P25P38,

P51 = P3P9 ∩ P25P38, P52 = P1P6 ∩ P25P38, P53 = P3P4 ∩ P25P38

step 17 lines: P30P53, P36P40

step 18

P54 = P3P9 ∩ P36P40, P55 = P2P5 ∩ P36P40, P56 = P2P8 ∩ P36P40,

P57 = P12P17 ∩ P36P40, P58 = P1P4 ∩ P36P40, P59 = P3P4 ∩ P36P40,

P60 = P25P38 ∩ P36P40, P61 = P1P6 ∩ P36P40, P62 = P1P7 ∩ P30P53,

P63 = P24P28 ∩ P30P53, P64 = P2P4 ∩ P30P53, P65 = P11P17 ∩ P30P53,

P66 = P3P9 ∩ P30P53, P67 = P3P5 ∩ P30P53, P68 = P2P8 ∩ P30P53

step 19 lines: P42P54, P51P68

step 20

P69 = P2P4 ∩ P42P54, P70 = P15P22 ∩ P42P54, P71 = P1P6 ∩ P42P54,

P72 = P1P4 ∩ P42P54, P73 = P3P5 ∩ P42P54, P74 = P2P5 ∩ P51P68,

P75 = P1P7 ∩ P51P68, P76 = P22P23 ∩ P51P68, P77 = P3P4 ∩ P51P68

step 21 lines: P26P66, P27P56

step 22
P78 = P11P17 ∩ P27P56, P79 = P3P5 ∩ P27P56, P80 = P1P4 ∩ P27P56,

P81 = P2P5 ∩ P26P66, P82 = P12P17 ∩ P26P66

step 23 lines: P18P65, P19P57

step 24 P83 = P3P9 ∩ P19P57, P84 = P2P8 ∩ P18P65, P85 = P18P65 ∩ P19P57

step 25 line: P41P52

In this case we obtain 85 intersection points and, as previously, some points are not neces-
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sarily triple. The conditions to have them triple are:

P29 = P12P17 ∩ P22P23 ∩ P42P54,

P33 = P1P6 ∩ P18P65 ∩ P22P23,

P34 = P1P7 ∩ P15P22 ∩ P19P57,

P37 = P11P17 ∩ P15P22 ∩ P51P68,

P43 = P3P4 ∩ P19P57 ∩ P24P28,

P44 = P15P22 ∩ P18P65 ∩ P24P28,

P46 = P3P5 ∩ P24P28 ∩ P51P68,

P47 = P2P5 ∩ P25P38 ∩ P42P54,

P49 = P22P23 ∩ P19P57 ∩ P25P38,

P50 = P2P4 ∩ P18P65 ∩ P25P38,

P55 = P2P5 ∩ P36P40 ∩ P41P52,

P59 = P3P4 ∩ P18P65 ∩ P36P40,

P60 = P25P38 ∩ P26P66 ∩ P36P40,

P61 = P1P6 ∩ P36P40 ∩ P51P68,

P62 = P1P7 ∩ P30P53 ∩ P42P54,

P63 = P24P28 ∩ P27P56 ∩ P30P53,

P64 = P2P4 ∩ P19P57 ∩ P30P53,

P67 = P3P5 ∩ P30P53 ∩ P41P52,

P69 = P2P4 ∩ P41P52 ∩ P42P54,

P71 = P1P6 ∩ P19P57 ∩ P42P54,

P73 = P3P5 ∩ P18P65 ∩ P42P54,

P74 = P2P5 ∩ P19P57 ∩ P51P68,

P75 = P1P7 ∩ P18P65 ∩ P51P68,

P76 = P22P23 ∩ P26P66 ∩ P51P68,

P77 = P3P4 ∩ P41P52 ∩ P51P68,

P78 = P11P17 ∩ P27P56 ∩ P41P52,

P79 = P3P5 ∩ P19P57 ∩ P27P56,

P81 = P2P5 ∩ P18P65 ∩ P26P66,

P82 = P12P17 ∩ P26P66 ∩ P41P52,

P83 = P3P9 ∩ P19P57 ∩ P41P52,

P84 = P2P8 ∩ P18P65 ∩ P41P52.

Removing the factors which lead to the degenerate cases we are left with the equation:

C24(a, b) :=a8b3 + a7b3 + a6b4 − 6a7b2 + 3a6b3 − 6a6b2 − 2a5b3 + 10a6b− 6a5b2−

2a4b3 − a6 + 12a5b+ 3a4b2 − 2a3b3 − 6a5 + 3a4b+ 6a3b2 − a2b3−

3a4 − 13a3b+ 9a2b2 − ab3 + 4a3 − 12a2b+ 6ab2 − b3 + 5a2 − 3ab+

2a− b = 0.

This condition is necessary for the construction to terminate successfully in the sense that

we obtain exactly 85 triple points on 24 lines satisfying the combinatorial properties of the

original Böröczky configuration of 24 lines.
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Parameter space of configurations B24

The parametrizing curve

C24(a, b) :=a8b3 + a7b3 + a6b4 − 6a7b2 + 3a6b3 − 6a6b2 − 2a5b3 + 10a6b− 6a5b2−

2a4b3 − a6 + 12a5b+ 3a4b2 − 2a3b3 − 6a5 + 3a4b+ 6a3b2 − a2b3−

3a4 − 13a3b+ 9a2b2 − ab3 + 4a3 − 12a2b+ 6ab2 − b3 + 5a2 − 3ab+

2a− b = 0

is a curve of genus 5. Therefore, there are no general methods to determine all the rational

points of C24. The only rational points of height up to 105 are

(1 : 1 : 1), (0 : 1 : 0), (0 : 0 : 1), (1 : 0 : 0), (−1 : −1 : 1).

Simple but cumbersome calculations confirm that all of these points lead to a degenerate

configuration, however we were not able to prove that the construction cannot be made over

the rational numbers.



Chapter 4

Line arrangements and the

Containment Problem

Before we present our main results, let us give a chronological outline of the subject in order

to present a motivation standing behind our work. Here we assume that P ⊂ P2
C is a finite set

of mutually distinct points, and we denote by I its radical ideal.

(2001) Ein, Lazarsfeld, and Smith [16]: I(2k) ⊂ Ik for every k ≥ 1.

(2006) Huneke: Does the containment I(3) ⊂ I2 hold?

(2009) Bocci and Harbourne: Does the containment I(2k−1) ⊂ Ik hold for every k ≥ 1?

(2013) Dumnicki, Szemberg, and Tutaj-Gasińska [15]: The first counterexample to the contain-

ment I(3) ⊂ I2 – they used the dual-Hesse arrangement of 9 lines and 12 triple intersection

points.

(2013) Czapliński et al. [7]: The first counterexample to the containment I(3) ⊂ I2 over the real

numbers – Böröczky’s arrangement of 12 lines, 19 triple and 9 double intersection points.

(2015) Lampa-Baczyńska and Szpond [27]: The first counterexample to the containment I(3) ⊂ I2

over the rational numbers – using the parameter space of Böröczky arrangement of 12
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4.1 Containment criteria

Over the years a number of containment criteria has been developed. We recall here those

which are relevant for our applications. We begin by recalling some standard notions in a

general setting of homogeneous ideals in the ring of polynomials. In order to fix the notation,

let I be a homogeneous ideal in the polynomial ring R = K[x0, . . . , xn]. Let

0→ . . .→ ⊕jR(−j)βi,j(I) → . . .→ ⊕jR(−j)β1,j(I) → ⊕jR(−j)β0,j(I) → I → 0

be the minimal free resolution of I. From this resolution we derive one of central invariants in

commutative algebra and algebraic geometry.

Definition 4.1.1. The Castelnuovo-Mumford regularity (or simply, regularity) of I, denoted

by reg(I), is the integer

reg(I) = max {j − i : βi,j(I) 6= 0} .

Thus reg(I) is the height of the Betti table of I.

Another important invariant of a homogeneous ideal I = ⊕∞t=0(I)t is its initial degree

α(I) = min {t : (I)t 6= 0} = min {j : β0,j 6= 0} .

Note that it is always

α(I) ≤ reg(I)

because reg(I) is at least equal to the maximal degree of a generator in the minimal set of

generators.

Bocci and Harbourne proved in [3, Lemma 2.3.3 (c)] an important containment statement,

which we recall here only in the case of saturated ideals of zero-dimensional subschemes in Pn.

Proposition 4.1.2 (Bocci-Harbourne Containment Criterion). Let I ⊂ R be a non-trivial

saturated homogeneous ideal defining a zero-dimensional subscheme. For t ≥ r · reg(I) there is

(Ir)t = (I(r))t.

Remark 4.1.3. It follows from the proof of Lemma 2.3.3 in [3] that the conclusion in Propo-

sition 4.1.2 holds as soon, as t ≥ reg(Ir).
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From Proposition 4.1.2 and Remark 4.1.3 we derive the following useful result.

Corollary 4.1.4 (Bocci-Harbourbe Containment Criterion 2). Let I ⊂ R be a non-trivial ideal

defining a zero-dimensional subscheme in Pn.

If reg(Ir) ≤ α(I(m)), then I(m) ⊂ Ir.

In the rest of this section, we consider zero-dimensional strict almost complete intersections,

i.e., ideals of height h that have a minimal set of generators of cardinality h + 1. In the case

of projective plane, a reduced set of points is strict almost complete intersection if its ideal is

3-generated – the minimal set of homogeneous generators of degree d has cardinality 3. Let

I = (f, g, h) ⊂ R := K[x, y, z] (here we do not assume anything about K) be a homogeneous

ideal with minimal generators of the same degree. We are interested in free resolutions for

powers of I, and in order to do so we need to consider the Rees algebra of I, which is defined

by R(I) = ⊕i≥0I iti. In that case we have the following description, see [33].

Theorem 4.1.5. Let I be a strict almost complete intersection ideal defining a reduced set of

points in P2 and let A =

 P1 P2 P3

Q1 Q2 Q3

T

be a presentation matrix for the module of syzygies

on I, i.e., the Hilbert-Burch matrix of I. Then the Rees algebra of I is given as a quotient of

the polynomial ring S = R(T1, T2, T3) of the following form

R(I) ∼= S/(P1T1 + P2T2 + P3T3, Q1T1 +Q2T2 +Q3T3).

Furthermore, the defining ideal of this algebra, (P1T1 + P2T2 + P3T3, Q1T1 +Q2T2 +Q3T3) is a

complete intersection.

Before we present our main tool in the box, we need the following result providing a precise

description of powers of strict almost complete intersection ideals.

Theorem 4.1.6. Let I be a strict almost complete intersection ideal with minimal generators

of the same degree d defining a reduced set of points in P2
K. Let AT =

 P1 P2 P3

Q1 Q2 Q3

 be

the Hilbert-Burch matrix of I. Let d0 and d1 denote the respective degrees of the polynomials

in each of the two rows of AT . Then the minimal free resolutions of I2 and I3 are as follows:

0→ R(−3d)
X−→ R(−2d− d0)3 ⊕R(−2d− d1)3 −→ R(−2d)6 −→ I2 −→ 0,
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0 −→ R(−4d)3
Y−→ R(−3d− d0)6 ⊕R(−3d− d1)6 −→ R(−3d)10 −→ I3 −→ 0,

and the last homomorphism in the respective resolutions can be described by the matrices X

and Y given below by:

X = [P1, P2, P3, −Q1, −Q2, −Q3]
T ,

and

Y =


P1 P2 P3 0 0 0 −Q1 −Q2 −Q3 0 0 0

0 P1 0 P2 P3 0 0 −Q1 0 −Q2 −Q3 0

0 0 P1 0 P2 P3 0 0 −Q1 0 −Q2 −Q3


T

.

Theorem 4.1.7 (Seceleanu). Let I be a 3-generated homogeneous ideal with minimal generators

f, g, h of the same degree d, defining a reduced set of points in P2
K, where K is an arbitrary field

of characteristic different than 3. Set Y to be the matrix representing the last homomorphism

in the minimal free resolution of I3 (see above):

0 −→ R3 Y−→ R12 −→ R10 −→ I3 −→ 0.

Then I(3) ⊆ I2 if and only if [f, g, h]T ∈ Image(Y T ).

In the same direction, we can follow ideas of Grifo, Huneke, and Mukundan developed

in [21]. In order to formulate more efficient criterion on the containment I3 ⊂ I2 for ideals

generated by 2× 2 minors of 2× 3 matrices.

Theorem 4.1.8 (Grifo-Huneke-Mukundan). Let R = K[x, y, z], where K is a field of charac-

teristic different than 3. Let a1, a2, a3, b1, b2, b3 ∈ R and consider the ideal I which is generated

by 2× 2 minors of the matrix

A =

 a1 a2 a3

b1 b2 b3

 .

If the ideal 〈a1, a2, a3, b1, b2, b3〉 can be generated by 5 or less elements, than I(3) ⊂ I2.

It turns out that we can use this interesting result in a straightforward way in the case of

Böröczky’s arrangements of n ∈ {4, ..., 10} lines in order to verify that for the radical ideals

of triple intersection points I3 the containment I(3) ⊂ I2 does hold. Since the method is the

same for all cases, we are going to present our considerations only for n = 10.



55

Proposition 4.1.9. Let I3 be the radical ideal of the triple intersection points of Böröczky’s

arrangement of 10 lines. Then the containment I
(3)
3 ⊂ I23 does hold.

Proof. First of all, we need to observe that the ideal of the triple intersection points is generated

as bellow by

I3 = 〈4xy3 + 2x2yz + 4y3z − xyz2 − 3yz3, 4x3y + 2x2yz − 3xyz2 − yz3,

x4 − 6x2y2 + y4 − 4x3z + x2z2 + y2z2 + 2xz3 − z4〉.

Since the ideal I3 is 3-generated, we can use the theory of Hilbert-Burch. We compute the

minimal free resolution of I3, and the matrix A that we are searching for is given by the

following Hilbert-Burch matrix, namely

A =

 4x2 − 2xz − z2 4y2 − 14xz + z2 −4y2 − 2xz + 3z2

4x2 − 24y2 − 14xz + 13z2 0 −16xy − 16yz

 .

Since it is obvious that the ideal given by the entries of matrix A is 5 or less generated (in fact

it is 5 generated), thus the containment I
(3)
3 ⊂ I23 holds.

Now we are going to consider the last remaining case which would allow us to conclude

that the minimal counterexample to the containment problem I(3) ⊂ I2 (in the sense of the

number of lines) for Böröczky’s family of line arrangements is the case of 12 lines. As a first

observation, we can show that for n = 11 lines the ideal of the triple intersection points is

not 3-generated – in fact the minimal set of generators has cardinality 4, so we cannot use the

Grifo-Huneke-Mukundan method. In the remaining part of this section, we are going to show

explicitly the following theorem.

Theorem 4.1.10. Let us denote by I3 the radical ideal of the triple intersection points of

Böröczky’s arrangement of 11 lines. Then the containment I
(3)
3 ⊂ I23 holds.

Proof. Our proof heavily relies on computer aid methods with use of Singular. First of all, we

compute the ideal I3 which has exactly 4 generators, namely

I3 =〈4x3y − 4xy3 − 3x2yz − 3y3z − 2xyz2 + 2yz3,

32y5 + 88xy3z + 33x2yz2 − 55y3z2 − 66xyz3 + 22yz4,

32x2y3 + 72xy3z + 11x2yz2 + 35y3z2 − 22xyz3 − 22yz4,

2x5 − 10xy4 − 8x4z − 15x2y2z − 7y4z + 4x3z2 + 2xy2z2 + 10x2z3 + 8y2z3 − 4xz4 − 2z5〉.
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Then we compute the minimal free resolution of I23 which has the following form

0→ S(−13)2⊕S(−12)→ S(−12)3⊕S(−11)7⊕S(−10)2 → S(−10)6⊕S(−9)3⊕S(−8)→ I23 → 0.

Thus we have reg(I23 ) = 11. Taking into account Corollary 2.1.9 we obtain α(I
(3)
3 ) = 11.

Applying in turn Corollary 4.1.4 with m = 3 and r = 2 we conclude that

I
(3)
3 ⊂ I23 .

4.2 Arrangements of 12 lines with 19 triple and 9 double

intersection points

The study of arrangements of lines with many triple is motivated by the Sylvester-Gallai

problem and classical problems in combinatorics, see [34], and for a modern treatment [14]. A

general upper bound for the number T3(d) of triple points in the arrangement of d lines has

been provided by Schönheim

T3(d) ≤
⌊⌊
d− 1

3

⌋
· d

3

⌋
− ε(d),

where ε(d) = 1 if d ≡ 5 mod 6 and ε(d) = 0, otherwise. In the case of 12 lines, the upper bound

is 20. It has been proved by Burr, Grünbaum and Sloane [6, Theorem 7] that no arrangement

of 12 lines with 20 triple points is possible over the reals. We do not know if it exists over the

complex numbers, but we suspect that the answer is no. On the other hand, Bokowski and

Pokora classified in [5] all oriented matroids of rank 3 with 12 pseudolines and 19 triple points.

They showed that among them, there are only three realizable matroids, i.e., corresponding

to actual arrangements of lines. In their notation, these arrangements are C2, C6 (which is

Böröczky on 12 lines), and C7. In this section we take a closer look at C2 and C7. Our study

is motivated by the following folklore problem.

Question 4.2.1. Let L1 and L2 be two line arrangements having the same number of lines and

the same number of the corresponding tk points, i.e., the same weak combinatorics. Assume

that the containment I
(3)
L1
⊂ I2L1

does not hold. Does it follow that the containment I
(3)
L2
⊂ I2L2

is not satisfied?
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We answer this question in the negative. Arrangements of 12 lines are of interest in the

context of the containment problem since 12 is the smallest known number d of real lines such

that triple points of arrangement of d lines provide a non-containment example for I(3) ⊂ I2,

Interestingly, all arrangements considered here can be realized over the reals, this follows from

the Bokowski-Pokora classification.

4.2.1 Arrangement C2

Figure 4.1 indicates the C2 arrangement. The points P1 = (1 : 0 : 0) and P2 = (0 : 1 : 0)

are at infinity. Without loss of generality, we assume that P3 = (0 : 0 : 1) and P4 = (1 : 1 : 1).

Now we want to show that, up to conjugation in the field extension Q[
√

2]/Q, coordinates of

all remaining points are determined by incidences depicted in Figure 4.1.

P4

P5P3

P6

P8

P9

P11

L1,4

L1,7

L1,3

L2,3 L2,9 L2,4

P13

P7

L5,6L3,4

P12

P10

L8,12

L10,11

P15

P14

P16

P17

P18

L13,14

L7,16

P19

P1

P2

Figure 4.1: Arrangement C2.
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We take the following lines:

L1,3 : y = 0,

L2,4 : x− z = 0,

L1,4 : y − z = 0,

L3,4 : x− y = 0,

L2,3 : x = 0,

where Li,j, is the line passing through the points Pi and Pj. Then we obtain the points

P5 = L1,3 ∩ L2,4 = (1 : 0 : 1),

P6 = L1,4 ∩ L2,3 = (0 : 1 : 1)

and the line

L5,6 : x+ y − z = 0.

We need now to introduce a parameter to proceed with the construction. Thus we take the

point P7 = (0, 1, a) ∈ L2,3. Since all points and lines in the configuration should be distinct, we

assume that a 6= 1 and a 6= 0. We obtain the remaining lines and points in the following order:

L1,7 : z − ay = 0,

P8 = L1,7 ∩ L2,4 = (a : 1 : a),

P9 = L1,7 ∩ L5,6 = (a− 1 : 1 : a),

P10 = L1,7 ∩ L3,4 = (1 : 1 : a),

L2,9 : ax− (a− 1)z = 0,

P11 = L2,9 ∩ L1,3 = (a− 1 : 0 : a),

P12 = L2,9 ∩ L3,4 = (a− 1 : a− 1 : a),

P13 = L2,9 ∩ L1,4 = (a− 1 : a : a),

L8,12 : a(2− a)x− ay + (a− 1)2z = 0,

P14 = L8,12 ∩ L1,3 = ((a− 1)2 : 0 : a(a− 2)),

P15 = L8,12 ∩ L5,6 = (a2 − 3a+ 1 : −1 : a(a− 3)),

P16 = L8,12 ∩ L1,4 = (a2 − 3a+ 1 : a(a− 2) : a(a− 2)),

L10,11 : ax− a(a− 2)y − (a− 1)z = 0,

P17 = L10,11 ∩ L2,3 = (0 : a− 1 : a(a− 2)),

P18 = L10,11 ∩ L2,4 = (a(2− a) : 1 : a(2− a)),
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L13,14 : a(a− 2)x+ (a− 1)y − (a− 1)2z = 0,

L7,16 : a(a− 1)(a− 2)x− a(a2 − 3a+ 1)y + (a2 − 3a+ 1)z = 0,

P19 = L13,14 ∩ L7,16 = (a5 − 5a4 + 7a3 − a2 − 3a+ 1 : a3(a− 2)2 : a5 − 4a4 + 3a3 + 3a2 − 2a).

The following incidences need to be checked additionally:

P15 ∈ L10,11, P17 ∈ L13,14, P18 ∈ L7,16, P19 ∈ L5,6.

By the determinant condition we conclude that P15 ∈ L10,11 holds without any assumption on

a, but the remaining incidences occur under the algebraic condition

a2 − 2a− 1 = 0,

which is equivalent to a = 1 +
√

2 or a = 1−
√

2. The arrangement in Figure 4.1 corresponds

to the parameter a = 1 +
√

2. Then P7 = (0 :
√

2− 1 : 1) and P17 = (0 :
√

2 : 1).

We sum up the discussion gathering coordinates of the points and equations of the lines.

Point Coordinates

P1 (1 : 0 : 0)

P2 (0 : 1 : 0)

P3 (0 : 0 : 1)

P4 (1 : 1 : 1)

P5 (1 : 0 : 1)

P6 (0 : 1 : 1)

P7

(
0 :
√

2− 1 : 1
)

P8

(
1 :
√

2− 1 : 1
)

P9

(
2−
√

2 :
√

2− 1 : 1
)

P10

(√
2− 1 :

√
2− 1 : 1

)
P11

(
2−
√

2 : 0 : 1
)

P12

(
2−
√

2 : 2−
√

2 : 1
)

P13

(
2−
√

2 : 1 : 1
)

P14 (2 : 0 : 1)

P15

(
2−
√
2

2
:
√
2
2

: 1
)

Table 4.1: Points in C+
2 arrangement
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P16

(
1−
√

2 : 1 : 1
)

P17

(
0 :
√

2 : 1
)

P18 (1 : −1 : 1)

P19

(
−
√

2 : 1 +
√

2 : 1
)

Table 4.2: Points in C+
2 arrangement, continued

P1P3 : y = 0

P2P4 : x− z = 0

P1P4 : y − z = 0

P3P4 : x− y = 0

P2P3 : x = 0

P5P6 : x+ y − z = 0

P1P7 : z − (1 +
√

2)y = 0

P2P9 : (1 +
√

2)x−
√

2z = 0

P8P12 : x+ (1 +
√

2)y − 2z = 0

P10P11 : (1 +
√

2)x+ y −
√

2z = 0

P13P14 : (1 +
√

2)x+ (2 +
√

2)y − 2(1 +
√

2)z = 0

P7P16 :
√

2x+ y − (
√

2− 1)z = 0

Table 4.3: Lines in the C+
2 arrangement

Point Coordinates

P1 (1 : 0 : 0)

P2 (0 : 1 : 0)

P3 (0 : 0 : 1)

P4 (1 : 1 : 1)

P5 (1 : 0 : 1)

P6 (0 : 1 : 1)

P7

(
0 : −1−

√
2 : 1

)
Table 4.4: Points in C−2 arrangement
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P8

(
1 : −1−

√
2 : 1

)
P9

(
2 +
√

2 : −
√

2− 1 : 1
)

P10

(
−1−

√
2 : −1−

√
2 : 1

)
P11

(
2 +
√

2 : 0 : 1
)

P12

(
2 +
√

2 : 2 +
√

2 : 1
)

P13

(
2 +
√

2 : 1 : 1
)

P14 (2 : 0 : 1)

P15

(
2+
√
2

2
: −

√
2
2

: 1
)

P16

(
1 +
√

2 : 1 : 1
)

P17

(
0 : −

√
2 : 1

)
P18 (1 : −1 : 1)

P19

(√
2 : 1−

√
2 : 1

)
Table 4.5: Points in the C−2 arrangement, continued

P1P3 : y = 0

P2P4 : x− z = 0

P1P4 : y − z = 0

P3P4 : x− y = 0

P2P3 : x = 0

P5P6 : x+ y − z = 0

P1P7 : z + (−1 +
√

2)y = 0

P2P9 : (−1 +
√

2)x−
√

2z = 0

P8P12 : x+ (1−
√

2)y − 2z = 0

P10P11 : (1−
√

2)x+ y +
√

2z = 0

P13P14 : (1−
√

2)x+ (2−
√

2)y + 2(−1 +
√

2)z = 0

P7P16 :
√

2x− y − (1 +
√

2)z = 0

Table 4.6: Lines in the C−2 arrangement

Corollary 4.2.2. There is no geometric realization of C2 over the rational numbers possible.

Remark 4.2.3. We observe that the moduli space for C±2 arrangements is similar to the
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situation for the MacLane arrangements. Namely, the moduli space consists of two points and

it is not irreducible, in particular.

Now we are in the position to prove our main statement for the ideal I of triple points in

the C2 arrangement.

Proposition 4.2.4. Let I be the ideal of triple points in C2 arrangement, then

I(3) ⊂ I2.

Proof. Using Singular, we check that reg(I) = 6. Then reg(I2) ≤ 12. On the other hand,

by Corollary 2.1.9 we have α(I(3)) = 12. Combining this with result 4.1.4, Bocci-Harbourne’s

Criterion 2, we obtain the assertion.

4.2.2 Arrangement C7

The real realization of the configuration C7 is in the picture below (points P1, P2, P3 are “at

infinity”):

P7

P9

P10

L3,6

L1,8

L2,5

L9,12

L10,15

L4,7L2,4

L1,12

L1,4

P12 P13

P8

P14

P15

P11

P6P5

P4
L1,5

L11,14L8,13

P19

P17 P18

P16

P1

P2 P3

Figure 4.2: Arrangement C7.
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Here, using a projective automorphism, we may assume (with the notation as in the picture)

that P1 = (1 : 0 : 0), P2 = (−1 : 1 : 0), P3 = (1 : 1 : 0) and P4 = (0 : 0 : 1). Then we have lines:

L2,4 : x+ y = 0,

L1,4 : x− y = 0.

We need now to introduce the parameter to proceed with the construction, so take a point on

the line L1,4:

P5 = (a : a : 1),

where a 6= 0. We get the lines

L1,5 : y − az = 0,

L2,5 : x+ y − 2az = 0

and the point

P6 = L2,4 ∩ L1,5 = (−a : a : 1)

and then the line

L3,6 : x− y + 2az = 0.

To continue we need to choose next point. We take a point on the line L2,5.

P7 = (b : −b+ 2a : 1).

We get the line

L4,7 : 2ax− bx− by = 0.

The condition for the lines L4,7, L2,5, L3,6 to meet at P7 is

ba = 0.

As a 6= 0, we have to take b = 0. Thus, from now on:

P7 = (0 : 2a : 1)

and

L4,7 : 2ax = 0.

Again, we need a new parameter. Take a point on the line L1,4

P8 = (c : c : 1),
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where a 6= c, c 6= 0. Then

L1,8 : y − cz = 0,

P9 = L1,8 ∩ L3,6 = (−2a+ c : c : 1),

P10 = L1,8 ∩ L2,5 = (2a− c : c : 1),

P11 = L1,8 ∩ L2,4 = (−c : c : 1).

Now, choose the last parameter by taking a point, again on the line L1,4:

P12 = (d : d : 1),

with d different from 0, a and c. Then

L1,12 : y − dz = 0,

P13 = L1,12 ∩ L3,6 = (−2a+ d : d : 1),

P14 = L1,12 ∩ L2,5 = (2a− d : d : 1),

P15 = L1,12 ∩ L2,4 = (−d : d : 1),

L10,15 : (c− d)x+ (c− d− 2a)y + 2adz = 0,

P17 = L10,15 ∩ L1,5 = (2a2 − ac− ad : ac− ad : c− d),

L9,12 : (c− d)x+ (2a− c+ d)y − 2adz = 0,

P18 = L9,12 ∩ L1,5 = (−2a2 + ac+ ad : ac− ad : c− d),

L8,13 : (c− d)x− (2a+ c− d)y + 2acz = 0,

L11,14 : (c− d)x+ (2a+ c− d)y − 2acz = 0,

and finally

P19 = L8,13 ∩ L11,14 = (0 : 4ac2 − 4acd : 4ac− 4ad+ 2c2 − 4cd+ 2d2).

Almost all points of the construction are triple without any additional conditions. Only P2 and

P3 require an additional condition to be triple, namely:

4a(a+ c− d) = 0.

As a 6= 0, we get a + c − d = 0. Thus the parametrization space of this configuration is a

line and the configuration has a realization over Q. It is not difficult to check (with help of,

e.g., Singular) that the product of all twelve lines (which obviously is in I
(3)
7 ) does not belong

to I27 . Thus, the triple points of this configuration give another rational example of the non-

containment of the third symbolic power into the second ordinary power of an ideal.

For the convenience of the reader, we enclose the Singular script below:
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LIB "elim.lib";

ring R=(32003,a,d),(x,y,z),dp;

option(redSB);

proc rdideal(number p, number q, number r){

matrix m[2][3]=p,q,r,x,y,z;

ideal I=minor(m,2);

I=std(I);

return(I);}

proc pline(list P1, list P2){

matrix A[3][3]=P1[1],P1[2],P1[3],P2[1],P2[2],P2[3],x,y,z;

return(det(A));}

ideal P1=rdideal(1,0,0);

ideal P2=rdideal(-1,1,0);

ideal P3=rdideal(1,1,0);

ideal P4=rdideal(0,0,1);

ideal P5=rdideal(a,a,1);

ideal P6=rdideal(-a,a,1);

ideal P7=rdideal(0,2*a,1);

ideal P8=rdideal((d-a),(d-a),1);

ideal P9=rdideal(-2*a+(d-a),(d-a),1);

ideal P10=rdideal(2*a-(d-a),(d-a),1);

ideal P11=rdideal(-(d-a),(d-a),1);

ideal P12=rdideal(d,d,1);

ideal P13=rdideal(-2*a+d,d,1);

ideal P14=rdideal(2*a-d,d,1);

ideal P15=rdideal(-d,d,1);

ideal P16=rdideal(0,4*a*d,4*a-2*(d-a)+2*d);

ideal P17=rdideal(2*(a2)-a*(d-a)-a*d,a*(d-a)-a*d,(d-a)-d);

ideal P18=rdideal(-2*(a2)+a*(d-a)+a*d, a*(d-a)-a*d,(d-a)-d);

ideal P19=rdideal(0,4*a*((d-a)^2)-4*a*(d-a)*d,4*a*(d-a)-4*a*d+2*((d-a)^2)-4*(d-a)*d+2*(d2));

poly pp=(2*(d*z-y))*((d-a)*z-y)*(a*z-y)*(2*a*d*z-2*a*y+(d-a)*x+(d-a)*y-d*x-d*y)*

(2*a*(d-a)*z-2*a*y+(d-a)*x-(d-a)*y-d*x+d*y)*(2*a*z-x-y)*(-x-y)*x*a*(2*a*z+x-y)*

(-2*a*(d-a)*z+2*a*y+(d-a)*x+(d-a)*y-d*x-d*y)*(-2*a*d*z+2*a*y+(d-a)*x-(d-a)*y-d*x+d*y)*(-y+x);

ideal I=intersect(P1,P2,P3,P4,P5,P6,P7,P8,P9,P10,P11,P12,P13,P14,P15,P16,P17,P18,P19);

I=std(I);

reduce(pp,std(I^2));





Chapter 5

Freeness of special line arrangements

5.1 Freeness of Böröczky’s line arrangements

We begin by showing that for some classes of line arrangements the weak combinatorics can

be read of the Poincaré polynomial, see Definition 2.2.5. This is not true in general.

Proposition 5.1.1. Let A,B be two line arrangements having only double and triple points of

intersection. Suppose that π(A, t) = π(B, t), then t2(A) = t2(B) and t3(A) = t3(B).

To begin with, let us emphasise here that we can obtain an analogous result replacing in

the statement of Proposition 5.1.1 triple points by arbitrary k-fold points with a fixed k ≥ 3.

Proof. Suppose that π(A, t) = π(B, t). This implies in particular that

|A| = |B|

and

t2(A) + 2t3(A) = t2(B) + 2t3(B),

which gives

t2(A)− t2(B) = 2(t3(B)− t3(A)).

Observe that

t2(A) + 3t3(A) =

(
|A|
2

)
=

(
|B|
2

)
= t2(B) + 3t3(B),

and this gives

t2(A)− t2(B) = 3(t3(B)− t3(A)).
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Since

3(t3(B)− t3(A)) = t2(A)− t2(B) = 2(t3(B)− t3(A)),

then this implies t3(A) = t3(B) and we also have t2(A) = t2(B), which completes the proof.

Remark 5.1.2. In fact, we can obtain an analogous result replacing triple by arbitrary k-fold

points with k ≥ 4. The same argument works.

The main result of this section is the following classification result. Before we present our

proof, let us recall Terao’s factorization theorem [36] for free complex line arrangements.

Theorem 5.1.3 (Terao). Let L ⊂ P2
C be a free line arrangement, then its Poincaré polynomial

splits as

π(L; t) = (1 + t)(1 + d1t)(1 + d2t),

where di’s are the exponents as in Definition 2.2.10.

Theorem 5.1.4. Let A ⊂ P2
C be a line arrangement having only double and triple points as the

intersections. Suppose that A is free, then 2 ≤ |A| ≤ 9.

Proof. Suppose that A ⊂ P2
C is free and |A| ≥ 3 as the case of two lines is obvious. Then

by Terao’s Theorem 5.1.3, the Poincaré polynomial π(A, t) splits into linear factors over the

integers. Observe that

π(A, t) = (1 + t) ·
(

1 + (|A| − 1)t+ (t2(A) + 2t3(A) + 1− |A|)t2
)
,

and the quadratic factor also splits into linear factors. This condition implies that

(|A| − 1)2 − 4t2(A)− 8t3(A) + 4|A| − 4 ≥ 0.

Using the combinatorial equality

|A|(|A| − 1) = 2t2(A) + 6t3(A)

one gets

3|A| − 3 ≥ 2t2(A) + 2t3(A).

and

|A|(|A| − 1) = 2t2(A) + 6t3(A) ≤ 3(2t2(A) + 2t3(A)) ≤ 9|A| − 9.

This provides the condition |A| ≤ 9, and finally we obtain 3 ≤ |A| ≤ 9, which completes the

proof.
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Corollary 5.1.5. Except the cases n = 4, 5, 6, Böröczky arrangements of n lines are not free.

Proof. By the above result, it is enough to check the cases n ∈ {4, 5, 6, 7, 8, 9}. Since

π(A, t) = 1 + |A|t+ (t2(A) + 2t3(A))t2 + (t2(A) + 2t3(A) + 1− |A|)t3,

we obtain the following table

n = |A| t2(A) t3(A) π(A, t)

4 3 1 1 + 4t+ 5t2 + 2t3 = (t+ 1)2(2t+ 1)

5 4 2 1 + 5t+ 8t2 + 4t3 = (t+ 1)(2t+ 1)2

6 3 4 1 + 6t+ 11t2 + 6t3 = (t+ 1)(2t+ 1)(3t+ 1)

7 6 5 1 + 7t+ 16t2 + 10t3 = (t+ 1)(10t2 + 6t+ 1)

8 6 5 1 + 8t+ 21t2 + 14t3 = (t+ 1)(14t2 + 7t+ 1)

9 6 10 1 + 9t+ 26t2 + 18t3 = (t+ 1)(18t2 + 8t+ 1)

It is easy to see that for n ∈ {7, 8, 9} we cannot factorize Poincaré polynomials into linear factors

over the integers, so in these cases Böröczky arrangements are not free. When n = 6, then this

arrangement is projectively equivalent to the well-known arrangement A1(6), which is known

to be free. Now we focus on the remaining cases n ∈ {4, 5} showing for them freeness explicitly.

We are going to use Definition 2.2.10, if L is free, then we have the following resolution

0→ ⊕i=1,2S(−di − (n− 1))→ S3(−n+ 1)→ S.

If n = 4, then the defining equation of B4 has the form

Q4(x, y, z) = xy(y − x+ z)(y + x− z).

Denote by JB4 the Jacobian ideal generated by the partials of Q4, and by S/JB4 the Milnor

algebra. Then the resolution of S/JB4 has the following form:

0→ S(−4)⊕ S(−5)→ S3(−3)→ S,

with the following relations:

3x · ∂xQ4 − y · ∂yQ4 + (4x− z) · ∂zQ4 = 0,

(4x2 − 7xz) · ∂xQ4 + (13yz − 12xy) · ∂yQ4 + (16y2 − 3z2) · ∂zQ4 = 0.
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This allows us to conclude that B4 is free.

Now consider the case n = 5. As the coordinates of P0, ..., P9 (vertices of a regular 10-

gon) in this case satisfy the condition {P0, ..., P9} ⊆ {(±(1
4

√
5± 1

4
),±1

4

√
10± 2

√
5)}, it is more

convenient to change the coordinates and consider the following equivalent arrangement of lines

given by

Q5(x, y, z) = y(2y − x)(2y + 3x)(x+ 2y − 4z)(3x− 2y − 12z).

The minimal resolution of S/JB5 has the following form:

0→ S(−6)⊕ S(−6)→ S3(−4)→ S,

with the following syzygies:

(3x2−20xy−20y2+24xz) ·∂xQ5+(24yz−12xy) ·∂yQ5+(18xz+20yz−10xy−36z2) ·∂zQ5 = 0,

(176xy + 160y2 − 288xz) · ∂xQ5 + (120xy + 16y2 − 288yz) · ∂yQ5

+(15x2 + 100xy − 20y2 − 240xz − 224yz + 432z2) · ∂zQ5 = 0,

which tells us that B5 is also free.

At the end, it is worth pointing out that Dimca and Sernesi in [12] were able to obtain a

similar result about line arrangements with double and triple points using much deeper meth-

ods. However, our approach is completely different and much simpler using only combinatorial

methods related to basics on line arrangements.

5.2 Extensions to the supersolvability

In the last section, we focus on a natural problem that one can consider in the case of

Böröczky’s arrangements. As we observed previously, near-pencils in the complex projective

plane are free arrangements since these examples are supersolvable. Using this idea, let A be an

arrangement of lines (which is not a pencil or near-pencil, in order to avoid trivialities). Then

we add one vertex and we join it with all singular points Sing(A) by lines. In result we obtain

a new arrangement ACS which is by the construction supersolvable. This is a trivial extension,

but we can do much better, i.e., start with a vertex V chosen from Sing(A) we add some lines
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through V in order to force our new arrangement to be supersolvable. This motivates the

introducing the following constant:

extSS(A) = min{d : d is the number of lines that we add to A so that ACS is supersolvable}.

Remark 5.2.1. Note that the number extSS(A) is well-defined and finite.

Proof. Let A be an arbitrary line arrangement and P a general point in the plane. Let B be

the arrangement consisting of all lines in A and lines joining P with all intersection points of

A. Then B is supersolvable.

It follows immediately that for any arrangement A one has

extSS(A) ≤ |Sing(A)|.

Note that this upper bound is very rough. For example, if A is already supersolvable, then

extSS(A) = 0. It is thus natural to state the following question.

Problem 5.2.2. Find extSS(·) numbers for relevant line arrangements.

By the way of warming up, we study star configurations of lines.

Example 5.2.3. Let A ⊂ P2
C be an arrangement of d generic lines. Then

extSS(A) =

(
d− 2

2

)
.

Indeed, let P be any double intersection point of A and let `,m be the lines from A intersecting

at P . We denote by A′ = A\{`,m}. Then we need to join singular points of A′ with P . There

are exactly
(
d−2
2

)
such points. Note that there are no additional collinearities because A is a

generic arrangement.

Before we proceed to the main results of this section, let us present also another motivation

that leads us to study the mentioned extensions to the supersolvability property. Very recently,

the theory of unexpected curves has appeared and gained a lot of attention by researchers.

Let P = {P1, ..., Ps} ⊂ P2
C be a finite set of points and denote by m̄ = {m1, ...,ms} a sequence

of positive integers called the sequence of multiplicities. Denote by X = m1P1 + ... + msPs a

fat point scheme and consider the associated ideal

I(X) =
s⋂
i=1

I(Pi)
mi .
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Here by I(X)d we mean the homogeneous component of degree d. Now we can define the

expected dimension by

expdim I(X)d = max

{(
d+ 2

2

)
−

s∑
i=1

(
mi + 1

2

)
, 0

}
.

Geometrically speaking, the vector space I(X)d is the linear system of plane curves of degree

d passing through each point Pi’s with multiplicity at least mi. The expected dimension in-

forms us whether we can expect the existence of such curves, and in general dim I(X)d ≥

expdim I(X)d.

Definition 5.2.4. Let d be a non-negative integer. We say that a finite set of points Z in the

complex projective plane admits an unexpected curve in degree d with a general point P of

multiplicity d− 1 if

dim(I(Z + (d− 1)P ))d > max

{
dim I(Z)d −

(
d

2

)
, 0

}
.

Definition 5.2.5. We say that an arrangement of lines L ⊂ P2
C admits an unexpected curve if

the set of points Z is the dual configuration to lines in L.

In the context of supersolvable line arrangements, Di Marca, Malara, and Oneto [10] proved

the following result.

Theorem 5.2.6. A supersolvable line arrangement L admits an unexpected curve if and only

if d > 2m where d is the number of lines and m is the maximum multiplicity of an intersection

point of the lines in L.

This theorem provides as a very nice criterion for the existence of unexpected curves and

once we are able to extend a well-known arrangement in such a way that the resulting object

is supersolvable and satisfies the condition that d > 2m, then we have a new example of an

unexpected curve. Let us start with a baby-case of Fermat arrangements of lines.

Example 5.2.7. Fermat arrangement of lines is defined in the complex projective plane by the

linear factors of the following polynomial

F (x, y, z) = (xn − yn)(yn − zn)(zn − xn),

where n ≥ 3. It is well-known that the arrangement consists of 3n lines and tn = 3, t3 = n2.

It is easy to observe that this is not a supersolvable arrangement since the three fundamental
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points (which are the intersection points) cannot be joined by lines from the arrangement. One

of the smallest extension of Fermat arrangements looks as follows:

F̃ (x, y, z) = xy(xn − yn)(yn − zn)(zn − xn),

where as previously n ≥ 3. The new arrangement consists of 3n+ 2 lines and

t2 = 2n, t3 = n2, tn+1 = 2, tn+2 = 1.

This arrangement is clearly supersolvable and the exponents are d1 = n+1, d2 = 2n. Moreover,

we see that 3n + 2 = d > 2m = 2n + 4, since n ≥ 3, so our new family of line arrangements,

denoted in the literature by A2
3(n), leads to new examples of unexpected curves.

Let us come back to the numbers extSS(·). Using some particular symmetries of Böröczky

arrangements of n = 6k lines with k ≥ 2 we can show the following result. Observe in the

meantime that for k = 1 our arrangement B6 is obviously supersolvable.

Theorem 5.2.8. Let n = 6k for k ≥ 2. Then

extSS(B6k) ≤ 6k2 − 6k.

In our construction, the arrangements BCS
6k have 6k2 lines and the following weak combinatorics:

t3+6k2−6k = 1, t4 = 6(k − 1)2, t3 = 15k − 12, t2 = 36k3 − 72k2 + 42k − 3.

Finally, the exponents of free arrangement BCS
6k are d1 = 6k − 3, d2 = 6k2 − 6k + 2.

Proof. Here we present a detailed sketch of our construction. Take one of the three headlights

= points of multiplicity 3 of B6k and denote this point by O. Take the three lines passing

through O. Observe that each of the three lines possesses exactly 3k singular points from the

arrangement. Since the only intersection point of the three lines is O, then on the three lines

we have altogether exactly 9k − 2 intersection points, among them exactly 3 double points.

Now we construct our extension BCS
6k by joining O with each singular point except those 9k− 2

lying on the three lines. A simple calculation tells us that we add the following number of lines

6k − 3 +
6k(6k − 3)

6
+ 1− (9k − 2) = 6k − 3 + 6k2 − 3k + 1− 9k + 2 = 6k2 − 6k.
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Now we can describe the combinatorics of BCS
6k . By the construction, the vertex O has multi-

plicity 6k2 − 6k + 3, and this is the only point of such multiplicity. Next, we obtain quadruple

points by joining the previous triple points with the vertex O, we have altogether

t4 = 6k2 − 3k + 1− (9k − 5) = 6k2 − 12k + 6 = 6(k − 1)2.

We get also new triple points (out of old double points), there are exactly 6k − 6 such points.

Altogether we have

t3 = 6k − 6 + 9k − 5− 1 = 15k − 12,

where the last −1 in the middle equality comes from the fact that O is no longer a triple point.

Finally, we can compute the number of double points. Using the combinatorial count we obtain

that

t2 =
6k2(6k2 − 1)

2
− 3 · (15k− 12)− 6 · (6(k− 1)2)−

(
6k2 − 6k + 3

2

)
= 36k3 − 72k2 + 42k− 3.

By the construction, BCS
6 is supersolvable and by Jambu-Terao’s result [24], the arrangement

is free. We compute the exponents of the arrangement with use of the Poincaré polynomial.

Observe that

π(BCS
6 ; t) = (1 + t)

(
1 + (6k2 − 1)t+ (36k3 − 54k2 + 30k − 6)t2

)
.

Since 4t = (6k2 − 12k + 5)2 and 6k2 − 12k + 5 is non-negative for k ≥ 2, we can compute

rational roots of the polynomial, namely

a1 =
−6k2 + 1 + 6k2 − 12k + 5

12(2k − 1)(3k2 − 3k − 1)
=

−(2k − 1)

2(2k − 1)(3k2 − 3k + 1)
=

−1

6k2 − 6k + 2
,

a2 =
−6k2 + 1− 6k2 + 12k − 5

12(2k − 1)(3k2 − 3k − 1)
=

−12k2 + 12k − 4

12(2k − 1)(3k2 − 3k + 1)
=

−1

3(2k − 1)
.

This gives us finally that

π(BCS
6 ; t) = (1 + t)(1 + (6k − 3)t)(1 + (6k2 − 6k + 2)t),

and the exponents are d1 = 6k − 3, d2 = 6k2 − 6k + 2.

Now we turn to the Klein arrangement of lines K (see [26]). We determine explicitly an

upper bound on the value of extSS(K). Let us recall that the arrangement K consists of d = 21

lines and t3 = 28, t4 = 21.
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Proposition 5.2.9. For the Klein arrangement of lines K we have extSS(K) ≤ 20.

Proof. Let us recall the most crucial fact about Klein’s arrangement of lines about the singular

points. It can be observed that each line from the arrangement contains exactly 4 triple

and 4 quadruple singular points. Choose one of the quadruple points (due to the mentioned

remarkable property) and the four lines passing through it. Denoting this quadruple point by

O, we observe that these four lines contain exactly 4 · 8− 3 = 29 singular points, so we are left

with 12 triple points and 8 quadruple points. Next, we join each of the remaining 20 singular

points with O, so altogether our line arrangement KCS consists of 21 + 20 = 41 lines and it has

the following weak combinatorics:

t24 = 1, t5 = 8, t4 = 24, t3 = 16, t2 = 272.

By the construction, KCS is supersolvable, and we can compute the exponents. Observe that

π(KCS; t) = (1 + t)

(
1 + 40t+ 391t2

)
= (1 + t)(1 + 17t)(1 + 23t),

so the exponents are d1 = 17, d2 = 23.

Finally, we consider the last arrangement of our interests, namely the Wiman arrangement

of lines [37], denoted by W. This remarkable arrangement consists of 45 lines and it has

t3 = 120, t4 = 45, t5 = 36.

Proposition 5.2.10. For the Wiman arrangement of lines W one has extSS(W) ≤ 125.

Proof. Let us recall the most crucial fact about the singular points of Wiman’s arrangement

of lines. We observed that each line from the arrangement contains exactly 4 quintuple, 4

quadruple, and 8 triple singular points. Choose one of the quintuple points and the five lines

passing through this point. Denoting this point by O, we observe that these five lines contain

exactly 76 singular points, so we are left with 80 triple points, 25 quadruple points, and 20

quintuple points. Next, we join each of the mentioned singular points with O, so altogether

our line arrangement WCS consists of 45 + 125 = 170 lines and it has the following weak

combinatorics:

t130 = 1, t6 = 20, t5 = 40, t4 = 100, t3 = 40, t2 = 4560.
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By the construction, WCS is supersolvable, and we can compute the exponents. Observe that

π(WCS; t) = (1 + t)

(
1 + 169t+ 5160t2

)
= (1 + t)(1 + 40t)(1 + 129t),

so the exponents are d1 = 40, d2 = 129.
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[19] Füredi, Z., Palásti, I.: Arrangements of lines with a large number of triangles. Proc. Amer.

Math. Soc. 92(4): 561 – 566 (1984).

[20] Green, B., Tao, T.: On Sets Defining Few Ordinary Lines. Discrete Comput Geom 50:

409 – 468 (2013).

[21] Grifo, E., Huneke, C., Mukundan, V.: Expected resurgences and symbolic powers of ideals.

accepted in J. London Math. Soc., doi:10.1112/jlms.12324.



References. 79

[22] Hirzebruch, F.: Arrangements of lines and algebraic surfaces. Arithmetic and geometry,

Vol.II, Progr. Math., vol. 36, Birkhäuser Boston, Mass.: 113 – 140 (1983).
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