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PRQTSVU W XZY U [
We present an example of the Riemann integrable multifunc-

tion which is discontinuous at each point with respect to the Hausdorff
metric. The constructed multifunction is neither lower nor upper semi-
continuous.

\^]`_ aRbVcZd0e0f0gZbVh d0a

The Riemann integral for multifunctions with compact convex values was
investigated by A. Dinghas [3] and M. Hukuhara [4]. Some properties of Rie-
mann integral of multifunctions with convex closed bounded values may be
found in [5]. The Riemann integrability of multifunctions with compact convex
values was presented in [6].

Our main goal is to show that the continuity for almost all x ∈ [a, b] of a
bounded multifunction is not a necessary condition for the Riemann integra-
bility. The same example shows also that the monotonicity does not imply the
almost everywhere continuity of multifunctions.

i ]`j0kml0h g�e0nRoVh a0h bVh d0a0l

Let X be a real Banach space. Denote by clb(X) the set of all nonempty
convex closed bounded subsets of X . For given A, B ∈ clb(X), we set

A + B = {a + b | a ∈ A, b ∈ B},

λA = {λa | a ∈ A} for λ ≥ 0

and

A
∗
+ B = cl(A + B),

where cl A means the closure of A in X . It is easy to see that (clb(X),
∗
+, ·)

satisfies the following properties

AMS (2000) Subject Classification: 28B20, 26A48.
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λ(A
∗
+ B) = λA

∗
+ λB,

(λ + µ)A = λA
∗
+ µA,

λ(µA) = (λµ)A,

1 · A = A

for each A, B ∈ clb(X) and λ, µ ≥ 0. If A, B, C ∈ clb(X), then the equality

A
∗
+ C = B

∗
+ C implies A = B, thus clb(X) with addition

∗
+ satisfies the

cancellation law (see [1, Theorem II-17] and [8, Corollary 2.3]).
clb(X) is a metric space with the Hausdorff metric h defined by the relation

h(A, B) = max{e(A, B), e(B, A)},

where e(A, B) = supa∈A d(a, B) and d(a, B) = infb∈B ‖a−b‖. The metric space
(clb(X), h) is complete (see e.g. [1, Theorem II-3]). Moreover, the Hausdorff
metric h is translation invariant since

h(A
∗
+ C, B

∗
+ C) = h(A + C, B + C) = h(A, B)

(cf. [7, Lemma 3], [2, Lemma 2.2]) and positively homogeneous

h(λA, λB) = λh(A, B)

for all A, B, C ∈ clb(X) and λ ≥ 0 (cf. [2, Lemma 2.2]).

Lemma 1

Let X be a normed vector space. If A, B, C ∈ clb(X) and A ⊂ B ⊂ C, then

h(B, C) ≤ h(A, C) and h(A, B) ≤ h(A, C).

Proof. Since e(B, C) = 0 and d(c, B) ≤ d(c, A), c ∈ C, we have

h(B, C) = e(C, B) ≤ e(C, A) = h(A, C).

The proof of the second inequality is analogous.

Let F be a multifunction defined on the interval [a, b] with nonempty convex
closed bounded values in X . A set ∆ = {x0, x1, . . . , xn}, where a = x0 <

x1 < . . . < xn = b, is said to be a partition of [a, b]. For a given partition
∆ = {x0, x1, . . . , xn} we set δ(∆) = max{xi − xi−1 | i = 1, . . . , n}. ∆′ is said
to be a subpartition of ∆ if ∆′ is a partition of the same interval and ∆ ⊂ ∆′.
For the partition ∆ and for a system τ = (τ1, . . . , τn) of intermediate points
τi ∈ [xi−1, xi] we create the Riemann sum

S(∆, τ) = (x1 − x0)F (τ1)
∗
+ . . .

∗
+ (xn − xn−1)F (τn).
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If for every sequence ((∆ν , τν)), where ∆ν = {xν
0 , xν

1 , . . . , xν
nν

} are parti-
tions of [a, b] such that limν→∞ δ(∆ν) = 0 and τν = (τν

1 , . . . , τν
nν

) are systems
of intermediate points (τν

i ∈ [xν
i−1, x

ν
i ]), the sequence of the Riemann sums

(S(∆ν , τν)) tends to the same limit I with respect to the Hausdorff metric,

then F is said to be Riemann integrable over [a, b] and I =:
∫ b

a
F (x) dx. Ob-

viously, if the limit I exists, then I ∈ clb(X).

Lemma 2

Let X be a real Banach space and F : [a, b] −→ clb(X). Then the following con-

ditions are equivalent:

(i) F is Riemann integrable on [a, b];

(ii) for each ε > 0 there exists δ > 0 such that for every partition ∆ satis-

fying δ(∆) < δ, for every subpartition ∆′ of ∆ and for all corresponding

systems τ, τ ′ of intermediate points, the inequality

h (S(∆, τ), S(∆′, τ ′)) < ε

is satisfied.

The easy proof is omitted. The completeness of (clb(X), h) is needed only
in the proof of sufficiency.

We say that a multifunction F : [a, b] −→ clb(X) is increasing if

F (s) ⊂ F (t)

holds true for all a ≤ s ≤ t ≤ b.

Proposition 1

An increasing multifunction F : [a, b] −→ clb(X) is right-hand side lower semi-

continuous at each point of the interval [a, b).

Proof. Let t0 ∈ [a, b) and let U be an open subset of X such that
F (t0) ∩ U 6= ∅. Since F (t0) ⊂ F (t) when t > t0, F (t) ∩ U 6= ∅ for each
t ∈ [t0, b] which implies the right-hand side lower semi-continuity of F at t0 .

Proposition 2

An increasing multifunction F : [a, b] −→ clb(X) is left-hand side upper semi-

continuous at each point of the interval (a, b].

Proof. Let t0 ∈ (a, b] and let U be an open subset of X such that
F (t0) ⊂ U . Since F (t) ⊂ F (t0) for t ∈ [a, t0], F (t) ⊂ U for the same t

and F is left-hand side upper semi-continuous at t0 .

For an increasing multifunction F : [a, b] −→ clb(X) and for each partition
∆ = {x0, x1, . . . , xn} of [a, b] we may create two sums
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S(∆) := (x1 − x0)F (x1)
∗
+ . . .

∗
+ (xn − xn−1)F (xn)

and

s(∆) := (x1 − x0)F (x0)
∗
+ . . .

∗
+ (xn − xn−1)F (xn−1).

�0]`�9kmh a�cZn0l0f0� bVl

Let Y be a Banach space defined as the set of all bounded functions
x: [0, 1] −→ R with the norm ||x|| = supt∈[0,1] |x(t)|.

Let F : [0, 1] −→ 2Y be a multifunction with values defined as follows

F (t) := {x: [0, 1] −→ [0, 1] | x(s) = 0 for all s > t}, t ∈ [0, 1),

F (1) := {x ∈ Y | x: [0, 1] −→ [0, 1]}.

In particular, F (0) is equal to {x: [0, 1] −→ [0, 1] | x(s) = 0 for each s ∈ (0, 1]}.
It is not difficult to see that the set F (t) is an element of clb(Y ) for all t ∈ [0, 1].

Now we consider some properties of the multifunction F .

Remark 1

F is increasing on [0, 1]. Indeed, let s < t and s, t ∈ [0, 1]. If t = 1, then F (s) ⊂
F (1) for all s ∈ [0, 1]. Assume that t < 1 and x ∈ F (s). We have x(u) = 0 for
all u > s and, in particular, for all u > t. Consequently F (s) ⊂ F (t).

Remark 2

By Proposition 1 and Remark 1 the multifunction F is right-hand side lower
semi-continuous at each point of [0, 1). We shall show that it is not left-hand
side lower semi-continuous in (0, 1]. Let t0 ∈ (0, 1]. Define x(t) = 1 for t ∈ [0, t0]
and x(t) = 0 for t ∈ (t0, 1], if t0 ∈ (0, 1). Let S(x, 1

2 ) be an open ball in Y

centered at x with the radius 1
2 . Of course S(x, 1

2 ) ∩ F (t0) 6= ∅. Now take an
arbitrary s ∈ [0, t0). If y ∈ F (s), then

1 ≥ ‖x − y‖ = sup
u∈[0,1]

|x(u) − y(u)| ≥ sup
u∈(s,t0)

|x(u) − y(u)| = 1.

Consequently, ‖x − y‖ = 1 and y 6∈ S(x, 1
2 ), i.e., S(x, 1

2 ) ∩ F (s) = ∅ for all
0 ≤ s < t0 .

Remark 3

By Proposition 2 and Remark 1 the multifunction F is left-hand side upper
semi-continuous at each point of the interval (0, 1]. We will show that F is not
right-hand side upper semi-continuous in [0, 1). Indeed, let t0 ∈ [0, 1) and let U

be an open set defined by U =
⋃

x∈F (t0)
{y ∈ Y | ‖y − x‖ < 1

2}. It is clear that

F (t0) ⊂ U , but F (t) 6⊂ U for each t > t0 . It is sufficient to choose z ∈ F (t)
such that z(u) = 1 for u ∈ [t0, t]. Thus for each x ∈ F (t0)
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‖z − x‖ ≥ sup
u∈[t0,t]

|z(u) − x(u)| = 1

and consequently z 6∈ U .

Remark 4

F is non-continuous at each point of the interval [0, 1] with respect to the
Hausdorff metric.

By Remark 2 it follows that h(F (s), F (t)) = 1 for all s, t ∈ [0, 1] such that
0 ≤ s < t ≤ 1. Thus h(F (s), F (t)) = 1 if s 6= t and limt→s h(F (s), F (t)) = 1
for all s ∈ [0, 1].

Theorem 1

The multifunction F defined by formulas

F (t) := {x: [0, 1] −→ [0, 1] | x(s) = 0 for all s > t}, t ∈ [0, 1)

and

F (1) := {x ∈ Y | x: [0, 1] −→ [0, 1]}

is Riemann integrable on [0, 1].

Proof. Let ε > 0 and let ∆ = {t0, t1, . . . , tn} be an arbitrary partition of
[0, 1] such that δ(∆) < ε. It is sufficient (see Lemma 2) to show that for each
subpartition ∆′ and for each systems of intermediate points τ , τ ′ corresponding
to ∆, ∆′, respectively,

h (S(∆, τ), S(∆′, τ ′)) < 2ε.

At first we are going to show that

s(∆) = {x: [0, 1] −→ [0, 1] | x(t) ∈ [0, 1− tk] for t ∈ (tk−1, tk],

k ∈ {1, . . . , n} and x(0) ∈ [0, 1]},
(1)

S(∆) = {y: [0, 1] −→ [0, 1] | y(t) ∈ [0, 1− tk−1] for t ∈ (tk−1, tk],

k ∈ {1, . . . , n} and y(0) ∈ [0, 1]}.
(2)

Let us take a ∈ s(∆). We can find n sequences (aν
k), such that aν

k ∈
(tk−tk−1)F (tk−1), and

∑n

k=1 aν
k → a if ν → ∞. Obviously aν

k(t) ∈ [0, tk−tk−1]
for t ≤ tk−1 and aν

k(t) = 0 if t > tk−1. Summing up over k ∈ {1, . . . , n} we
have

0 ≤

( n
∑

k=1

aν
k

)

(t) =

n
∑

k=1

aν
k(t) =

n
∑

j=k+1

aν
j (t) ≤

n
∑

j=k+1

(tj − tj−1) = 1 − tk
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for each t ∈ (tk−1, tk] and

0 ≤

( n
∑

k=1

aν
k

)

(0) =
n

∑

k=1

aν
k(0) ≤

n
∑

k=1

(tk − tk−1) = 1.

Thus
∑n

k=1 aν
k belong to the right-hand side of (1) which is a closed set, so a

also belongs there.
Conversely, let a belongs to the right-hand side of (1). We define functions

b: [0, 1] −→ [0, 1], bk: [0, 1] −→ [0, 1], k ∈ {0, . . . , n − 1}, by formulas

b(t) =



















a(t), t = 0,

a(t)

1 − tk
, t ∈ (tk−1, tk], k = 1, . . . , n − 1,

0, t ∈ (tn−1, 1]

and

bk(t) =

{

b(t), t ∈ [0, tk],

0, t ∈ (tk, 1].

Obviously, bk ∈ F (tk) for each k ∈ {0, . . . , n − 1}.
For t ∈ (tj−1, tj ], where j ∈ {1, . . . , n − 1}, we have

[(t1 − t0)b0 + . . . + (tn − tn−1)bn−1](t)

= [(tj+1 − tj)bj + . . . + (tn − tn−1)bn−1](t)

= [(tj+1 − tj)b + . . . + (tn − tn−1)b](t)

= (1 − tj)b(t)

= a(t),

and for u ∈ (tn−1, tn] the equality

[(t1 − t0)b0 + . . . + (tn − tn−1)bn−1](u) = 0 = a(u)

holds. Moreover

[(t1 − t0)b0 + . . . + (tn − tn−1)bn−1](0) = b(0) = a(0).

Thus a ∈ s(∆) and the proof of (1) is complete.
The equality (2) can be established similarly.
Since F is increasing (by Remark 1) the following inclusions are valid

s(∆) ⊂ S(∆, τ) ⊂ S(∆). (3)

We will show that

s(∆) ⊂ S(∆′, τ ′) ⊂ S(∆). (4)
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There is no loss of generality in assuming that ∆′ = ∆ ∪ {u}, where u ∈
(tn−1, 1) and τ ′ = (τ1, . . . , τn+1), where τi ∈ [ti−1, ti], i ∈ {1, . . . , n − 1},
τn ∈ [tn−1, u], τn+1 ∈ [u, 1]. By definitions of s(∆), S(∆) and S(∆′, τ ′) we
have

s(∆) = (t1 − t0)F (t0)
∗
+ . . .

∗
+ (tn−1 − tn−2)F (tn−2)

∗
+ (u − tn−1)F (tn−1)

∗
+ (tn − u)F (tn−1)

⊂ (t1 − t0)F (τ1)
∗
+ . . .

∗
+ (tn−1 − tn−2)F (τn−1)

∗
+ (u − tn−1)F (τn)

∗
+ (tn − u)F (τn+1)

= S(∆′, τ ′)

⊂ (t1 − t0)F (t1)
∗
+ . . .

∗
+ (tn−1 − tn−2)F (tn−1)

∗
+ (u − tn−1)F (tn)

∗
+ (tn − u)F (tn)

= S(∆).

Now, by Lemma 1, (3) and (4) we have

h (S(∆, τ), S(∆′, τ ′)) ≤ h (S(∆, τ), S(∆)) + h (S(∆), S(∆′, τ ′))

≤ 2h (S(∆), s(∆)) .

We are going to show that

e (S(∆), s(∆)) = δ(∆).

Let x0, y0: [0, 1] −→ [0, 1] be defined by

x0(t) =

{

1, t = 0,

1 − tk , t ∈ (tk−1, tk],
y0(t) =

{

1, t = 0,

1 − tk−1, t ∈ (tk−1, tk].

Obviously x0 ∈ s(∆) and y0 ∈ S(∆).
In order to see that

‖y0 − x0‖ = d (y0, s(∆)) (5)

suppose that x ∈ s(∆). Then for t = 0 we have

y0(t) − x(t) = 1 − x(t) ≥ 0 = y0(t) − x0(t)

and if t ∈ (tk−1, tk], we obtain

y0(t) − x(t) = 1 − tk−1 − x(t) ≥ 1 − tk−1 − (1 − tk) = y0(t) − x0(t).

Hence

‖y0 − x‖ ≥ ‖y0 − x0‖

for each x ∈ s(∆), which completes the proof of (5).
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Now for each y ∈ S(∆) we will find x ∈ s(∆) such that

‖y0 − x0‖ ≥ ‖y − x‖ ≥ d(y, s(∆)). (6)

Let x be defined by

x(t) =

{

x0(t), y(t) ∈ [x0(t), y0(t)],

y(t), y(t) ∈ [0, x0(t)).

It is clear that

|y0(t) − x0(t)| ≥ |y(t) − x0(t)| = |y(t) − x(t)|

if y(t) ∈ [x0(t), y0(t)] and

|y0(t) − x0(t)| ≥ 0 = |y(t) − x(t)|

for y(t) ∈ [0, x0(t)). Thus ‖y0 − x0‖ ≥ ‖y − x‖ and (6) holds.
By (5) and (6) we obtain

e (S(∆), s(∆)) = ‖y0 − x0‖ = sup
t∈[0,1]

|y0(t) − x0(t)|

= max
k∈{1,...,n}

tk − tk−1 = δ(∆)

< ε

and

h (S(∆, τ), S(∆′, τ ′)) < 2ε,

which completes the proof.

���s�$� �,� ¡ ¢s� £
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_a`<bdc e fhg c i
Let D be a regular closed set in the open subspace G ⊂ R

n

and Cm(D) be the space of functions f |D such that f ∈ Cm(G). The
representation formulas for locally defined operators mapping Cm(D)
into C0(D) and into C1(D) are given.

jlknm oapdqhr0s0t0uhpdv r0o

For a real interval I ⊂ R and a nonnegative integer m, we denote by Cm(I)
the set of all m-times continuously differentiable functions ϕ: I −→ R. An
operator K:Cm(I) −→ C0(I) or Cm(I) −→ C1(I) is said to be locally defined
if for every two functions ϕ, ψ ∈ Cm(I) and for every open subinterval J ⊂ I

the relation ϕ|J = ψ|J implies that K(ϕ)|J = K(ψ)|J . Answering a question
posed by F. Neuman, the authors of [1] gave a representation formula for locally
defined operatorsK:Cm(I) −→ C0(I). Namely, they proved that: every locally

defined operator K:Cm(I) → C0(I) must be of the form

K(ϕ)(x) = h(x, ϕ(x), ϕ′(x), . . . , ϕ(m)(x))

for a certain function h: I × R
m+1 −→ R. Moreover, they proved that every

locally defined operator K:Cm(I) −→ C1(I) must be of the form

K(ϕ)(x) = h(x, ϕ(x), . . . , ϕ(m−1)(x)).

In this paper we generalize this result showing that analogous representation
theorems hold true for locally defined operators K:Cm(D) −→ C0(D) and
Cm(D) into C1(D), where D is a regular closed set in the open subspace
G ⊂ R

n and Cm(D) is the space of functions f |D such that f ∈ Cm(G). The
proofs of our theorems are similar in spirit to the proofs of Theorems 2 and 3
in [1].

AMS (2000) Subject Classification: 47H30.
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Let N0 be a set of nonnegative integers and let N
n
0 :=

∏n
i=1 N0 for n ∈ N.

In this paper, for k = (k1, . . . , kn) ∈ N
n
0 and i = (i1, . . . , in) ∈ N

n
0 , we put

|k| := k1 + . . .+ kn ,

k! := (k1!) · . . . · (kn!),

k + i := (k1 + i1, . . . , kn + in),

k − i := (k1 − i1, . . . , kn − in) for all i ≤ k,

where the notation i ≤ k means that is ≤ ks for every s ∈ {1, . . . , n}.
Moreover, for i = (i1, . . . , in) ∈ N

n
0 and x = (x1, . . . , xn) ∈ R

n, we put

xi := xi1
1 · . . . · xin

n and ‖x‖ :=

√

√

√

√

n
∑

i=1

x2
i .

As a consequence of the Whitney Extension Theorem (cf. [2]) we get the
following lemma.

Lemma 1

Let B ⊂ R
n be a compact set with only one cluster point z ∈ R

n. Suppose that

m ∈ N0 and

{fk | fk : B 7−→ R, k ∈ N
n
0 , |k| ≤ m} where f (0,...,0) = f

is a family of functions satisfying the condition

fk(x) −
∑

|i|≤m−|k|

fk+i(z)

i!
(x− z)i = o(‖x− z‖m−|k|) as x → z (1)

for all x ∈ B, |k| ≤ m, k ∈ N
n
0 . If for some α > 0,

x 6= y =⇒ ‖x− y‖ ≥ αmax{‖x− z‖, ‖y − z‖}, x, y ∈ B,

then there exists a function g of the class Cm on R
n satisfying the condition

∂|k|g

∂xk1

1 . . . ∂x
kn

n

(x) = fk(x) for all x ∈ B, k ∈ N
n
0 and |k| ≤ m. (2)

�0kn�ar0ua�L� � ��s0�a�dv o0�0s�r0�0�0qh��pdr0qh���\�L�0�0v o0�
C

m(D)
v oapdr

C
0(D)

�Lo0s�v oapdr
C

1(D)

Let G be a nonempty and open set in the Euclidean space R
n. By Cm(G)

we denote the space of m-times continuously differentiable functions on G.
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Definition 1

Let G be an open set in the Euclidean space R
n and let D ⊂ G be a regular

closed set in the subspace G, i.e., D = G ∩ cl intD. A function f :D −→ R is
said to be of the class Cm on D if there exists a function g ∈ Cm(G) such that
g|D = f , i.e.,

Cm(D) = {f |D : f ∈ Cm(G)}.

Let Ji ⊂ R, i = 1, . . . , n, be open (closed) intervals. A set J ⊂ R
n,

J =
n

∏

i=1

Ji ,

the Cartesian product of the intervals Ji , will be called an open (closed) inter-

val in R
n.

Now, we introduce the definition of locally defined operators of the type
K:Cm(D) −→ Ck(D).

Definition 2

Let m, k ∈ N0 and let D be a regular closed set in the open subspace G ⊂ R
n.

An operator K:Cm(D) −→ Ck(D) is said to be locally defined if for every two
functions ϕ, ψ ∈ Cm(D) and for every open interval J ⊂ R

n

ϕ|D∩J = ψ|D∩J =⇒ K(ϕ)|D∩J = K(ψ)|D∩J .

We shall need the following lemma.

Lemma 2 (cf. [3], Theorem)
Let m, k ∈ N0 and a closed interval D ⊂ R

n be fixed and let K:Cm(D) −→

Ck(D) be a locally defined operator. Then for every xo ∈ D, ϕ, ψ ∈ Cm(D), if

∂|j|ϕ

∂x
j1
1 . . . ∂x

jn

n

(xo) =
∂|j|ψ

∂x
j1
1 . . . ∂x

jn

n

(xo) for all j ∈ N
n
0 , |j| ≤ m,

then

∂|i|K(ϕ)

∂xi1
1 . . . ∂x

in

n

(xo) =
∂|i|K(ψ)

∂xi1
1 . . . ∂x

in

n

(xo) for all i ∈ N
n
0 , |i| ≤ k.

Before formulating the main theorems we have to introduce the following
notation. Let m ∈ N0 be fixed. Then

S(k) :=

m−k
∑

s=0

(

n+ s− 1

s

)

denotes the cardinality of the set of all partial derivatives of m − k times
continuously differentiable function ϕ: Rn −→ R.
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Theorem 1

Let m ∈ N0 , n ∈ N and let D be a regular closed set in the open subspace

G ⊂ R
n. If an operator K:Cm(D) −→ C0(D) is locally defined, then there

exists a unique function h:D × R
S(0) −→ R such that

K(φ)(x) = h

(

x, φ(x),
∂φ

∂x1
(x), . . . ,

∂φ

∂xn

(x), . . . ,
∂mφ

∂xm
1

(x), . . . ,
∂mφ

∂xm
n

(x)

)

for all φ ∈ Cm(D) and x ∈ D.

Proof. The proof is based on the concept of Theorem 2 in [1]. In order to

define a function h:D × R
S(0) −→ R let us fix arbitrarily z = (z1, . . . , zn) ∈ D

and y(j1,...,jn) ∈ R such that j1, . . . , jn ∈ {0, . . . ,m}, |j| ≤ m. Let us take a
polynomial

Pz1,...,zn,y(0,...,0),...,y(0,...,m)
(x1, . . . , xn)

:=

m
∑

j1,...,jn=0

j1+...+jn≤m

y(j1,...,jn)

j1! . . . jn!
(x1 − z1)

j1 · . . . · (xn − zn)jn , (x1, . . . , xn) ∈ R
n

and put

h(z1, . . . , zn, y(0,...,0), . . . , y(0,...,m)) := K(Pz1,...,zn,y(0,...,0),...,y(0,...,m)
)(z1, . . . , zn).

For any φ ∈ Cm(D), j ∈ N
n
0 and |j| ≤ m

∂|j|φ

∂x
j1
1 . . . ∂x

jn

n

(z1, . . . , zn) =
∂|j|P

z1,...,zn,φ(z), ∂φ

∂x1
(z),..., ∂

m
φ

∂x
m

n

(z)

∂x
j1
1 . . . ∂x

jm

n

(z1, . . . , zn).

Hence, by Lemma 2 for |i| = 0, we obtain

K(φ)(z1, . . . , zn) = K
(

P
z1,...,zn,φ(z), ∂φ

∂x1
(z),..., ∂

m
φ

∂x
m

n

(z)

)

(z1, . . . , zn)

and therefore

K(φ)(z1, . . . , zn) = h

(

z1, . . . , zn, φ(z),
∂φ

∂x1
(z), . . . ,

∂mφ

∂xm
n

(z)

)

.

Now, we prove the uniqueness of h. Let h1:D × R
S(0) −→ R be a function

such that

K(φ)(z1, . . . , zn) = h1

(

z1, . . . , zn, φ(z),
∂φ

∂x1
(z), . . . ,

∂mφ

∂xm
n

(z)

)

for all φ ∈ Cm(D) and z = (z1, . . . , zn) ∈ D. In order to show that h = h1 , let
us fix an arbitrary (z1, . . . , zn) ∈ D and y(j1,...,jn) ∈ R, j1, . . . , jn ∈ {0, . . . ,m},
|j| ≤ m.
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According to the definitions of h1 and h, we have

h1(z1, . . . , zn, y(0,...,0), . . . , y(0,...,m)) = K(Pz1,...,zn,y(0,...,0),...,y(0,...,m)
)(z1, . . . zn)

= h(z1, . . . , zn, y(0,...,0), . . . , y(0,...,m)),

which completes the proof.

Corollary 1

Let m ∈ N0 , n ∈ N and an open set G ⊂ R
n be fixed. If an operator

K:Cm(G) −→ C0(G) is locally defined, then there exists a unique function

h:G× R
S(0) −→ R such that

K(φ)(x) = h

(

x, φ(x),
∂φ

∂x1
(x), . . . ,

∂φ

∂xn

(x), . . . ,
∂mφ

∂xm
1

(x), . . . ,
∂mφ

∂xm
n

(x)

)

for all φ ∈ Cm(G) and x ∈ G.

The following result may be proved in much the same way as Theorem 3
in [1].

Theorem 2

Let m,n ∈ N and let D be a regular closed set in the open subspace G ⊂ R
n. If

an operator K:Cm(D) −→ C1(D) is locally defined, then there exists a unique

function h:D × R
S(1) −→ R such that

K(φ)(x) = h

(

x, φ(x), . . . ,
∂m−1φ

∂xm−1
1

(x), . . . ,
∂m−1φ

∂xm−1
n

(x)

)

for all φ ∈ Cm(D) and x = (x1, . . . , xn) ∈ D.

Proof. By Theorem 1 there exists a unique function h:D × R
S(0) −→ R

such that for all φ ∈ Cm(D) and (x1, . . . , xn) ∈ D

K(φ)(x1, . . . , xn)

= h

(

x1, . . . , xn, φ(x1, . . . , xn), . . . ,
∂mφ

∂xm
1

(x1, . . . , xn), . . . ,
∂mφ

∂xm
n

(x1, . . . , xm)

)

.

In order to prove this theorem it is enough to show that for all i ∈ N
n
0 such

that |i| = m we have

∂h

∂yi

(x1, . . . , xn, y(0,...,0), . . . , y(m,0,...,0), . . . , y(0,...,0,m)) = 0. (3)

Let us fix xo ∈ D and yi ∈ R where i ∈ N
n
0 , |i| ≤ m and let us choose an

arbitrary i0 , |i0| = m, and a real sequence (yi0,N )∞N=0 such that

yi0,0 = yi0 ; yi0,N 6= yi0 , N ∈ N; lim
N→∞

yi0,N = yi0,0 .
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Let φN , for every N ∈ N0, denotes the polynomial

φN (x) :=
∑

|r|≤m

r 6=i0

yr

r!
(x− xo)

r +
yi0,N

i0!
(x − xo)

i0 , x ∈ D.

Fix an ε > 0. Since all functions K(φN ) are continuous, for all N ∈ N there
exists δN > 0 such that

‖x− xo‖ < δN ⇒ |K(φN )(x) −K(φN )(xo)| < ε|yi0,N − yi0,0|, x ∈ D. (4)

Take an arbitrary α > 0 and choose a set B = {xN : N ∈ N0} ⊂ D satisfying
all the conditions listed in Lemma 1 with z = xo and such that

‖xN − xo‖ < δN , N ∈ N (5)

and

lim
N→∞

yi0,N − yi0,0

‖xN − xo‖
= ∞. (6)

Now define functions f i: B −→ R, i ∈ N
n
0 , |i| ≤ m, by the formula

f i(xN ) := φi
N (xN ), N ∈ N0 .

First we show that the family {f i | f i: B −→ R, i ∈ N
n
0 , |i| ≤ m} fulfills

(1) for all i ∈ N
n
0 such that i ≤ i0 .

Since for all N ∈ N0

f i(xN ) =
∑

|r|≤m−|i|
r 6=i0−i

yi+r

r!
(xN − xo)

r +
yi0,N

(i0 − i)!
(xN − xo)

i0−i,

and

∑

|r|≤m−|i|

f i+r(xo)

r!
(xN−xo)

r =
∑

|r|≤m−|i|
r 6=i0−i

yi+r

r!
(xN−xo)

r+
yi0,0

(i0 − i)!
(xN−xo)

i0−i,

we infer that
∣

∣

∣

∣

f i(xN ) −
∑

|r|≤m−|i|

f i+r(xo)

r!
(xN − xo)

r

∣

∣

∣

∣

=

∣

∣

∣

∣

yi0,N − yi0,0

(i0 − i)!
(xN − xo)

i0−i

∣

∣

∣

∣

=
|yi0,N − yi0,0|

(i0 − i)!
|(xN − xo)

i0−i|

≤
|yi0,N − yi0,0|

(i0 − i)!
‖xN − xo‖

|i0−i|

=
|yi0,N − yi0,0|

(i0 − i)!
‖xN − xo‖

m−|i|

= o(‖xN − xo‖
m−|i|).
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In the second case, when i ∈ N
n
0 is such that |i| ≤ m does not satisfy the

inequality i ≤ i0 , we have

f i(xN ) =
∑

|r|≤m−|i|

yi+r

r!
(xN − xo)

r =
∑

|r|≤m−|i|

f i+r(xo)

r!
(xN − xo)

r

and therefore

f i(xN ) −
∑

|r|≤m−|i|

f i+r(xo)

r!
(xN − xo)

r = 0.

Thus the family {f i | f i: B −→ R, i ∈ N
n
0 , |i| ≤ m} fulfills (1) and

according to Lemma 1 there exists a function g ∈ Cm(Rn) such that

∂|i|g

∂xi1
1 . . . ∂x

in

n

(xN ) =
∂|i|φN

∂xi1
1 . . . ∂x

in

n

(xN ), N ∈ N0 , i ∈ N
n
0 , |i| ≤ m. (7)

Hence and by (4), (5), (7) and Lemma 2 we have
∣

∣

∣

∣

h(xo, y(0,...,0), . . . , yi0,N , . . . , y(0,...,m)) − h(xo, y(0,...,0), . . . , yi0,0, . . . , y(0,...,m))

yi0,N − yi0,0

∣

∣

∣

∣

=

∣

∣

∣

∣

K(φN )(xo) −K(φ0)(xo)

yi0,N − yi0,0

∣

∣

∣

∣

≤

∣

∣

∣

∣

K(φN )(xN ) −K(φN )(xo)

yi0,N − yi0,0

∣

∣

∣

∣

+

∣

∣

∣

∣

K(φN )(xN ) −K(φ0)(xo)

yi0,N − yi0,0

∣

∣

∣

∣

≤ ε+

∣

∣

∣

∣

K(g)(xN ) −K(g)(xo)

yi0,N − yi0,0

∣

∣

∣

∣

= ε+
|K(g)(xN ) −K(g)(xo)|

‖xN − xo‖
·

‖ xN − xo‖

|yi0,N − yi0,0|
.

Since K(g) ∈ C1(D), we conclude that

lim
N→∞

|K(g)(xN ) −K(g)(xo)|

‖xN − xo‖
<∞.

Hence and by (6) we obtain (3) for i = i0 ∈ N
n
0 such that |i0| = m and the

proof is completed.

Corollary 2

Let m,n ∈ N and an open set G ⊂ R
n be fixed. If an operator K:Cm(G) −→

C1(G) is locally defined, then there exists a unique function h:G×R
S(1) −→ R

such that

K(φ)(x) = h

(

x, φ(x), . . . ,
∂m−1φ

∂xm−1
1

(x), . . . ,
∂m−1φ

∂xm−1
n

(x)

)

for all φ ∈ Cm(G) and x ∈ G.
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In this note we consider sets of linear extensions of dynamical

systems on a torus. We examine regularity of the systems by means of a
given sign-changing Lyapunov function. The main result of the paper is
to give conditions of regularity for the set of differential equations with
degenerated matrix of coefficients.

Let us consider a system of differential equations















dx

dt
= f(x),

dy

dt
= A(x)y,

(1)

where x = (x1, . . . , xk), y = (y1, . . . , yn), A(x) is a square, n-dimensional
matrix, which elements are periodic with period 2π, continuous with respect
to each variable xj , j = 1, . . . , k, it means it is specified on an k-dimensional
torus Tk . The set of all such functions which are continuous and periodic
with period 2π with respect to each variable xj , j = 1, . . . , k, is denoted by
C0(Tk) . We assume that the function f(x) satisfies the Lipschitz inequality
||f(x)−f(x̄)|| ≤ L||x− x̄|| for all x, x̄ ∈ Tk, L = const > 0, where ||y||2 = 〈y, y〉
is the Euclidean norm in the space R

n, y ∈ R
n, and 〈x, y〉 =

∑n

j=1 xjyj is
an inner product in R

n. We denote by CLip(Tk) a space of functions f(x) ∈
C0(Tk), which satisfy the Lipschitz inequality. It follows that f(x) ∈ CLip(Tk)
and A(x) ∈ C0(Tk). Let us also denote by ||A|| = max

||y||=1
||Ay|| the norm of

a n×n-dimensional matrix A taken as an operator. In C0(Tk) we distinguish
a subspace C ′(Tk; f) of functions F (x) such that the superposition F (x(t;x))
is continuously differentiable with respect to t ∈ R, where x(t;x) is a solution
to the Cauchy problem

AMS (2000) Subject Classification: 34C99, 37C40, 37C99.
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dx

dt
= f(x), x

∣

∣

t=0
, ∀x ∈ Tk .

We define

Ḟ (x) =
df dF (x(t;x))

dt

∣

∣

∣

t=0
for Ḟ (x) ∈ C0(Tk).

In C0(Tk) we also distinguish a subspace C1(Tk) of functions F (x), which have
continuous first derivatives with respect to each variable xj , j = 1, . . . , k. Let

u(ϕ) ∈ C1(Tk). Then u̇(ϕ) =
∑k

j=1
∂u(ϕ)
∂ϕ

fj(ϕ) = ∂u
∂ϕ
f(ϕ).

Definition 1

We say that the system of differential equations














dx

dt
= f(x),

dy

dt
= A(x)y + h(x), h(x) ∈ C0(Tk)

(2)

possesses a torus

y = u(x),

if u(x) ∈ C ′(Tk; f) and the identity

u̇(x) ≡ A(x)u(x) + h(x), ∀x ∈ Tk

holds.

Example

Let us consider a system of differential equations



































dx1

dt
= 1,

dx2

dt
=

√
3,

dy

dt
= (γ − sin(x1 + x2))y + h(x1, x2),

where γ = const ∈ R, h(x1, x2) ∈ C1(T2). An invariant torus for the system
has the following form.

I. Case γ > 0.

y = u(x1, x2)

= −

∞
∫

0

e
−γτ− 1

1+
√

3
[cos((1+

√
3)τ+x1+x2)−cos(x1+x2)]h(τ + x1,

√
3τ + x2) dτ.

II. Case γ < 0.
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y = u(x1, x2)

=

0
∫

−∞

e
γτ+ 1

1+
√

3
[cos((1+

√
3)τ+x1+x2)−cos(x1+x2)]h(τ + x1,

√
3τ + x2) dτ.

III. Case γ = 0. The invariant torus for the system fails to exists for every
h(x) ∈ C1(T2). For example, when h ≡ 2, the torus does not exist.

Definition 2

Let C(x) be an n×n-dimensional continuous matrix, C(x) ∈ C0(Tk). Then the
function G0(τ, x) defined by

G0(τ, x) =

{

Ω0
τ (x)C(x(τ, x)), τ ≤ 0,

Ω0
τ (x)[C(x(τ, x)) − In], τ > 0,

(3)

which satisfies the estimate

||G0(τ, x)|| ≤ Ke−γ|x|, (4)

where K and γ are positive constants, is called the Green function of the
invariant torus for the system (1).

Ωtx(x) is the fundamental matrix of the solutions of the system dy
dt

=
A(x(t;x))y which takes the value of the n-dimensional identity matrix for t = x

Ωtx(x)
∣

∣

t=x
= In .

If the Green function (3) exists, then for every vector function h(x) ∈ C0(Tk)
an invariant torus for the system (2) exists and it is defined by the formula

y = u(x) =

∞
∫

−∞

G0(τ, x)h(x(τ, x)) dτ.

Definition 3

We say that the system (1) is regular if there exists a unique Green function
(3) satisfying (4).

It is obvious [3], that the system (1) is regular when the square form

V = 〈S0(x)y, y〉 , (5)

with the symmetric matrix S0(x) ∈ C1(Tk), exists and its derivative along the
solutions of the system (1) is positive definite:

V̇ =

〈[

∂S0(x)

∂x
f(x) + S0(x)A(x) +AT (x)S0(x)

]

y, y

〉

≥ ε||y||2, (6)

ε = const > 0, and the matrix S0(x) satisfies the condition

detS0(x) 6= 0, ∀x ∈ Tk .
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Dealing with problems of regularity of systems we find out issues which
have not been touched upon in researches. We shall prove the existence of the
regular system (1) for which detA(x) ≡ 0 for all x ∈ Tk . The next problem is
the analysis of right-hand sides of the system (1) for the which the derivative
of the square form (5) along the solutions of the system is positive definite.

First of all, let us notice that the inequality (6) does not change for small
perturbations of the vector function f(x) and the matrix A(x). We will show
that in the right-hand side of the system (1), f(x) can be substituted by any
different function b(x) ∈ CLip(Tk) and at the same time the matrix A(x) can
be chosen in such a way that the derivative of the square form (5) along the
solutions of the system is positive definite. Thus the matrix A(x) has the form

A(x) = S−1
0 (x)

[

B(x) +M(x) − 0.5
∂S0(x)

∂x
b(x)

]

, (7)

where B(x),M(x) ∈ C0(Tk) are any matrices which satisfy

BT (x) ≡ B(x), 〈B(x)x, x〉 ≥ λ||x||2, λ = const > 0, (8)

MT (x) ≡ −M(x). (9)

Let us check whether it is true. We consider the left-hand side of (6), substi-
tuting the function f(x) with any vector function b(x). We also assume the
form of the matrix A(x) to be like the one in (7):

∂S0(x)

∂x
f(x) + S0(x)A(x) +AT (x)S0(x) =

∂S0(x)

∂x
b(x) +B(x) +M(x)

− 0.5
∂S0(x)

∂x
b(x) +B(x) +MT (x)

− 0.5
∂S0(x)

∂x
b(x)

= 2B(x).

It follows that, when (8) is fulfilled, the inequality (6) is fulfilled for ε = 2λ.
Then we get the following lemma.

Lemma

To any non-degenerate matrix S0(x) ∈ C1(Tk) there corresponds the set of

regular systems



















dx

dt
= b(x),

dy

dt
= S−1

0 (x)

[

B(x) +M(x) − 0.5
∂S0(x)

∂x
b(x)

]

y,

(10)
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where b(x) is any vector function, b(x) ∈ CLip(Tk), B(x),M(x) are any con-

tinuous matrices satisfying (8) and (9).

Remark 1

The derivative of the square form (5) with the symmetric non-degenerate matrix

S0(x) ∈ C1(Tk) along the solutions of the system (10) has the form V̇ =
2 〈By, y〉.

Theorem 1

Systems (1), in which detA(x) ≡ 0 for all x ∈ Tk , exist.

Proof. We define

S0(ψ) =

(

cosψ sinψ

sinψ − cosψ

)

, ψ = x1 + x2 + x3 + . . .+ xk . (11)

We shall consider the system (10) of the form






















dxi

dt
= ωi ,

dy

dt
= S−1

0 (ψ)

[

B +M −
1

2
·
dS0(ψ)

dψ

k
∑

j=1

ωj

]

y,

ωi = const, (12)

where i = 1, . . . , k and y ∈ R
2. Let B and M be constant matrixes

B =

(

b 0

0 b

)

, b > 0, M =

(

0 −m

m 0

)

. (13)

The derivative of the non-degenerate square form V = y2
1 cosψ + 2y1y2sinψ −

y2
2 cosψ along the solutions of the system (12) is positive definite, hence the

system (12) is regular. Taking ω =
∑

ωj we obtain

A(x) =

(

cosψ sinψ

sinψ − cosψ

){(

b 0

0 b

)

+

(

0 −m

m 0

)

− 0.5ω

(

− sinψ cosψ

cosψ sinψ

)}

=

(

b cosψ +m sinψ b sinψ −m cosψ − 0.5ω

b sinψ −m cosψ + 0.5ω −b cosψ −m sinψ

)

. (14)

We have detA(x) = −b2 −m2 + 0.25ω2. Therefore, the identity detA(x) ≡ 0
holds when ω2 = 4(b2 +m2).

Remark 2

Using change of variables

y =

(

cos ψ2 sin ψ
2

sin ψ
2 − cos ψ2

)

z, z ∈ R
2,
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the system (12) with matrices (11) and (13) can be transformed into the fol-
lowing system with constant coefficients



































dxi

dt
= ωi ,

dz1

dt
= bz1 +mz2 ,

dz2

dt
= mz1 − bz2 .

Remark 2 confirms once again that the system (1) is a regular one, because

eigenvalues λi of the matrix of coefficients
(

b m

m −b

)

for the given system satisfy

the condition Reλi = λi 6= 0.

Remark 3

If the Green function (3) with the estimate (4) exists, then the function

Gt(τ, x) =

{

ΩtτC(x(τ, x)), τ ≤ t,

Ωtτ [C(x(τ, x)) − In], τ > t

is called (cf. [3]) the Green function of the problem of the bounded solutions
of the system dy

dt
= A(x(t;x))y. It means that for any function h(t), which is

continuous and bounded, the system

dy

dt
= A(x(t;x))y + h(t), ∀x ∈ Tk

has the unique bounded solution

y =

∞
∫

−∞

Gt(τ, x)h(τ) dτ.

Based on the previous considerations let us note, that the linear system
which corresponds to the system (12) with the matrix A(2ωt) given by (14)
after replacing ω by 2ω can be written in the form

{

ẏ1 = (b cos 2ωt+m sin 2ωt)y1 + (−m cos 2ωt+ b sin 2ωt− ω)y2 ,

ẏ2 = (−m cos 2ωt+ b sin 2ωt+ ω)y1 + (−b cos 2ωt−m sin 2ωt)y2
(15)

with constants ω,m, b ∈ R, (b 6= 0). Let us note that detA(2ωt) ≡ 0 when the
condition

ω2 = b2 +m2 (16)
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holds. The derivative of the non-degenerate square form V = y2
1 cosωt +

2y1y2 sinωt − y2
2 cosωt along the solutions of the system is positive definite,

thus the system is exponentially dichotomous in R (cf. [1], [3]). It means that
the non-homogenous system



















ẏ1 = (b cos 2ωt+m sin 2ωt)y1 + (−m cos 2ωt+ b sin 2ωt− ω)y2

+ h1(t),

ẏ2 = (−m cos 2ωt+ b sin 2ωt+ ω)y1 + (−b cos 2ωt−m sin 2ωt)y2

+ h2(t)

(17)

has a unique bounded solution in R for any vector function h(t) which is con-
tinuous and bounded in R.

Since we want to write down the solution of the system (17), we simplify
the system (15). On the basis of Remark 2 we use the change of variables

(

y1

y2

)

=

(

cosωt sinωt

sinωt − cosωt

)(

z1

z2

)

and the system (15) results in the system with constant coefficients

{

ż1 = bz1 +mz2 ,

ż2 = mz1 − bz2 .
(18)

Then another change of variables in the system (18) can be used:

z = Tr,

where

T =



















(

ω + b −m
m ω + b

)

, b > 0,

(

m b− ω

ω − b m

)

, b < 0

and we obtain the system with separated variables

{

ṙ1 = ωr1 ,

ṙ2 = − ωr2 .

Therefore, the bounded solution of the system (17) has the form

y = y∗(t) = L(t)T

∞
∫

−∞

G(t, τ)T−1L−1(τ)h(τ) dτ,

where
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G(t, τ) =



















(

0 0
0 1

)

exp{−ω(t− τ)}, τ ≤ t,

(

−1 0
0 0

)

exp{ω(t− τ)}, τ > t,

L(t) =

(

cosωt sinωt

sinωt − cosωt

)

.

Under the condition (16) the system (17) can be transformed into the scalar
equation

(

dy1

dt
− h1(t)

)

[m cos(2ωt) − b sin(2ωt) − ω]

+

(

dy2

dt
− h2(t)

)

[b cos(2ωt) +m sin(2ωt)] = 0.

(19)

Remark 4

The equation (19) can be transformed into the form

(

dy1

dt
− h̄1(t)

)

sin t+

(

dy2

dt
− h̄2(t)

)

cos t = 0, (20)

where h̄i(t) = 1
ω
hi
(

1
ω
t− ∆+π

2ω

)

, i = 1, 2, cos∆ = m
ω

, sin∆ = m
ω

.

Now we consider (20) as a separate equation and we obtain that, apart from
the solution y = y∗(t) = (y∗1(t), y∗2(t)), there exists the whole set of bounded
solutions.

Remark 5

In the system (10) the variable ξ ∈ Tl can be added to the variable x. Then
we consider the system



































dx

dt
= b(x, ξ),

dξ

dt
= b̄(x, ξ),

dy

dt
= S−1

0

[

B(x, ξ) +M(x, ξ) − 0.5
∂S0(x)

∂x
b(x, ξ)

]

y,

(21)

where b(x, ξ), b̄(x, ξ) ∈ CLip(Tk+l) are any vector functions and for matrices
B(x, ξ),M(x, ξ) ∈ C0(Tk × Tl) identities BT ≡ B, MT ≡ −M hold. The
derivative of the square form (5) along the solutions of (21) has the form V̇ =
2 〈B(x, ξ)y, y〉.
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Remark 6

If the derivative of the non-degenerate square form (5) along the solutions of
the system



































dx

dt
= b(x, ξ),

dξ

dt
= b̄(x, ξ),

dy

dt
= P (x, ξ)y,

where x ∈ Tk, ξ ∈ Tl, is positive definite, then

P (x, ξ) = S−1
0 (x)

[

B(x, ξ) +M(x, ξ) − 0.5
∂S0(x)

∂x
b(x, ξ)

]

, (22)

where the matrix B(x, ξ) is symmetric positive definite and the matrix M(x, ξ)
is skew-symmetric.

If the derivative of the square form (5) along the solutions of the system
(21) is positive definite, then

V̇ =

〈[

∂S0(x)

∂x
B(x, ξ) + S0(x)P (x, ξ) + P T (x, ξ)S0(x)

]

y, y

〉

≥ ε||y||2,

ε = const > 0. Let us take matrices B and M of the following forms:

B(x, ξ) = 0.5

[

∂S0(x)

∂x
B(x, ξ) + S0(x)P (x, ξ) + P T (x, ξ)S0(x)

]

, (23)

M(x, ξ) = 0.5
[

S0(x)P (x, ξ) − P T (x, ξ)S0(x)
]

. (24)

Then, above-mentioned matrixes (23) and (24) satisfy conditions (8) and (9)
(λ = ε

2 ) and the equality (22) also holds.

Remark 7

If for the non-degenerate square form (5) we consider the set of systems (1),
where the derivative of the form along the solutions of these systems is positive
definite, we are able only to increase the number of variables x. Decreasing the
number of variables x is not always possible.

This is confirmed by the following example. We consider the matrix S0(ψ) of
the form (11). Let x̃ = (x2, . . . , xk), x = (x1, x̃). Let us assume that functions
fj(x̃) with respect to x̃, fj(x̃) ∈ CLip(Tk−1), j = 2, . . . , k exist and, moreover,
matrices A(x̃) for which inequalities

〈[ k
∑

j=2

∂S0(ψ)

∂xj
fj(x̃) + S0(ψ)A(x̃) +AT (x̃)S0(ψ)

]

y, y

〉

≥ ε||y||2,

ε = const > 0, ψ = x1 + x2 + x3 + . . .+ xk .

(25)



� e�g0hjilknm o p]q�rnhjslpjtvu]wnx y[o znwnu]wn{np

hold, exist. Taking into account the identities

S0(ψ)
∣

∣

x1=0
≡ − S0(ψ)

∣

∣

x1=π
,

∂S0(ψ)

∂xj

∣

∣

∣

∣

x1=0

≡ −
∂S0(ψ)

∂xj

∣

∣

∣

∣

x1=π

j = 2, . . . , k,

we obtain a contradiction to the formula (25):

〈[ k
∑

j=2

∂S0(ψ)

∂xj
fj(x̃) + S0(ψ)A(x̃) +AT (x̃)S0(ψ)

]

y, y

〉∣

∣

∣

∣

x1=0

≡ −

〈[ k
∑

j=2

∂S0(ψ)

∂xj
fj(x̃) + S0(ψ)A(x̃) +AT (x̃)S0(ψ)

]

y, y

〉∣

∣

∣

∣

x1=π

≥ ε||y||2.

Let us take note of the fact that because of the form of the matrix (11) matrices
A(x̃) are also continuous with respect to x̃ variables, thus a smaller number of
variables than x, for which the inequality

〈

[S0(ψ)A(x̃) +AT (x̃)S0(ψ)]y, y
〉

≥ ε||y||2, ε = const > 0

holds, does not exist. Let 2n×2n-dimensional matrices B(x),M(x) ∈ C0(Tk)
have the following forms:

B(x) =

[

B1(x) B12(x)

BT12(x) B2(x)

]

, M(x) =

[

0 M(x)

−MT (x) 0

]

. (26)

Theorem 2

Let B(x),M(x) ∈ C0(Tk) be of the form (26) and satisfy conditions (8) and

(9). Then the system of equations






























































































dy1

dt
=
[

− SB1 sinψ +
[

BT12(x) −MT (x)
]

y1
]

+

+

[

− S [B12(x) +M(x)] sinψ

+

(

B2(x) − 0.5S

( k
∑

j=1

fj(x)

)

cosψ

)]

y2 ,

dy2

dt
= B1(x)y1 + [B12(x) +M(x)] y2 ,

dx

dt
= f(x),

ψ =

k
∑

j=1

xj

(27)
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is regular for any vector function f(x) ∈ CLip(Tk) and any symmetric constant

matrix S.

Proof. Let us consider the square forms

V = 2 〈y1, y2〉 + 〈Sy2, y2〉 sinψ, y1, y2 ∈ R
n, ψ = x1 + . . .+ xk , (28)

where the matrix S is n×n-dimensional, constant and symmetric.
The matrix

S0(x) =

[

0 In

In S sinψ

]

, ψ =

k
∑

j=1

xj ,

which corresponds to the form (28), is non-degenerate. Obviously, the inverse
matrix has the form

S−1
0 (x) =

[

−S sinψ In

In 0

]

.

We determine the matrix (7), when b(x) = f(x):

S−1
0 (x)

[

B(x) +M(x) − 0.5
∂S0(x)

∂x
f(x)

]

=







−S sinψ + (BT

12 −MT ) − S(B12 +M) sinψ +

(

B2 − 0.5S

( k
∑

j=1

fj

)

cosψ

)

B1 B12 +M






.

Therefore the derivative of the square form (28) along the solutions of the
system (27) is positive definite. Thus the system (27) is regular (cf. [3]).
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The present paper gives a historical account on extending the

factorial function to complex numbers by Gauss.
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Complex numbers (more exactly, square roots of negative numbers) have
been used since the mid of the 16th century in mathematics. These numbers
appeared when Italian mathematicians tried to solve polynomial equations of
higher degrees. The use of complex numbers sometimes led to certain obscuri-
ties. A change of the perception of the complex numbers came around the turn
of the 18th and 19th century when Karl Friedrich Gauss (1777-1855) published
several papers where he used an idea of complex numbers.

Further progress came with representation of complex numbers by points or
vectors in the plane. This idea occurred for the first time in the works of Caspar
Wessel (1745-1818) and Jean Robert Argand (1768-1822); Argand introduced
the term textitle module for an absolute value of the complex numbers. Both
Wessel’s and Argand’s articles were written probably independently and these
works have never received general awareness. The geometric interpretation of
complex numbers was completely accepted when Gauss wrote his treatise Theo-

ria residuorum biquadraticorum (Theory of the biquadratic residues) (1831),
see [1].

In 1837 William Rowan Hamilton (1805-1865) introduced complex num-
bers as ordered pairs of real numbers. In 1847 Louis Augustin Cauchy (1789-
1857) presented an algebraic definition of complex numbers.

Y7o"pqd0Z0Zsr Z�m `P^ ^T`0]=^T\it0`0Z0Z0`0m

On 21st November 1811 Karl Friedrich Gauss wrote a letter to Friedrich
Wilhelm Bessel (1784-1846) about his development on general factorials, see
[3]. Gauss wrote the following text in that letter (authors translation).

AMS (2000) Subject Classification: 01A55.
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Thus the product

1 · 2 · 3 · . . . · x =
∏

x

is the function that, in my opinion, must be introduced into Calculus,
(. . . ). But if one wants to avoid countless Kramp’s paradigms and para-
doxes and contradictions, 1 ·2 ·3 · . . . ·x must not be used as the definition
of

∏

x, because such a definition has a precise meaning only when x is
an integer; rather, one must start with a more general definition, which
is applicable even to imaginary values of x, of which that one is a special
case. I have chosen the following one

∏

x =
1 · 2 · 3 · . . . · k · kx

(x + 1)(x + 2)(x + 3) · . . . · (x + k)
,

where k tends to infinity.

Let us remark that Christian Kramp (1760-1826) was one of the mathe-
maticians who sought a general rule for non-integer values of factorials. He
introduced so-called “numerical factorial” by the form

a
b

c = a(a + c)(a + 2c) · . . . · (a + (b − 1)c) (1)

in the book [4]. The product on the right-hand side of (1) was studied in
the first half of the 19th century under the name “analytic factorial”. In 1856
Karl Weierstrass (1815-1897) finished these activities, when he demonstrated
nonsense resulting from that definition, see [8]. Moreover, Kramp was the first
mathematician who used the notation n! for n-factorials in the book [5].

Gauss acquired his knowledge about the function
∏

x during an investiga-
tion of properties of the hypergeometric series. The generalized hypergeometric
function

pFq(α1, . . . , αp, β1, . . . , βp, x)

is defined by the sum of a hypergeometric series, i.e., series
∑∞

k=0 akxk for
which a0 = 1 and the ratio of consecutive terms ak+1

ak

can be expressed as the
fraction

ak+1

ak

=
(α1 + k)(α2 + k) · . . . · (αp + k)

(k + 1)(β1 + k)(β2 + k) · . . . · (βq + k)
x.

If p = 2 and q = 1, we get Gauss’s hypergeometric function 2F1(α, β, γ, x),
which is the sum of the series

1+
αβ

1 · γ
x+

α(α + 1)β(β + 1)

1 · 2 · γ(γ + 1)
x2+

α(α + 1)(α + 2)β(β + 1)(β + 2)

1 · 2 · 3 · γ(γ + 1)(γ + 2)
x3+. . . . (2)

Gauss dealt with that series in [2]. He stated a condition for the convergence of
(2) in the terms of the coefficients α, β, γ, x, which is described in the following
theorem.
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Theorem

Let x ∈ C and γ ∈ C\{0,−1,−2,−3, . . .}. If |x| < 1, then the series (2) is

convergent. If |x| = 1, then the series (2) is convergent if and only if |γ − α −
β| > 0 holds. In case of |x| > 1, the series (2) is divergent.
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Gauss derived a following formula for hypergeometric series

F (α, β, γ, 1) =
(γ − α)(γ − β)

γ(γ − α − β)
F (α, β, γ + 1, 1). (3)

Then he generalized equation (3) into the form

F (α, β, γ, 1)

=
(γ − α)(γ + 1 − α) · . . . · (γ + k − 1 − α)

γ(γ + 1) · . . . · (γ + k − 1)
(4)

×
(γ − β)(γ + 1 − β) · . . . · (γ + k − 1 − β)

(γ − α − β)(γ + 1 − α − β) · . . . · (γ + k − 1 − α − β)
F (α, β, γ + k, 1),

where k ∈ N. This recurrence formula became a starting point for his next
investigation about the gama function.

For k ∈ N, z ∈ C, Gauss introduced the function
∏

(k, z) by

∏

(k, z) =
1 · 2 · 3 · . . . · k

(z + 1)(z + 2)(z + 3) · . . . · (z + k)
kz.

A simple calculation shows that the expression

∏

(k, γ − 1) ·
∏

(k, γ − α − β − 1)
∏

(k, γ − α − 1) ·
∏

(k, γ − β − 1)

can be reduced to the fraction

(γ − α)(γ + 1 − α) · . . . · (γ + k − 1 − α)

γ(γ + 1) · . . . · (γ + k − 1)

×
(γ − β)(γ + 1 − β) · . . . · (γ + k − 1 − β)

(γ − α − β)(γ + 1 − α − β) · . . . · (γ + k − 1 − α − β)
.

It means that the equation (4) can be transformed to the form

F (α, β, γ, 1) =

∏

(k, γ − 1) ·
∏

(k, γ − α − β − 1)
∏

(k, γ − α − 1) ·
∏

(k, γ − β − 1)
· F (α, β, γ + k, 1).
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It is easily seen that
∏

(k, z) is defined for all z ∈ C except the negative
integers. If z is a nonnegative integer, we get (for all k ∈ N)

∏

(k, 0) = 1,

∏

(k, 1) =
1 · k

k + 1
=

1

1 + 1
k

,

∏

(k, 2) =
1 · 2 · k2

(k + 1)(k + 2)
=

1 · 2
(

1 + 1
k

) (

1 + 2
k

) ,

...
∏

(k, z) =
1 · 2 · 3 · . . . · z

(

1 + 1
k

) (

1 + 2
k

) (

1 + 3
k

)

· . . . ·
(

1 + z
k

) .

Gauss determined the values of the function
∏

(k, z + 1) for given k and z by
the recurrence formula

∏

(k, z + 1) =
∏

(k, z) ·
z + 1

1 + z+1
k

.

In a similar way, Gauss found a recurrence formula with respect to k

∏

(k + 1, z) =
∏

(k, z) ·

(

1 + 1
k

)z+1

1 + 1+z
k

. (5)

The formula (5) yields the following equalities

∏

(1, z) =
1

1 + z
,

∏

(2, z) =
1

1 + z
·

(

2
1

)z+1

2+z
1

=
1

1 + z
·

2z+1

2 + z
,

...
∏

(k, z) =
1

z + 1
·

2z+1

1z · (2 + z)
·

3z+1

2z · (3 + z)
· . . . ·

kz+1

(k − 1)z · (k + z)
.

Then Gauss supposed k → ∞, z as fixed point and set k = h, z < h. If h

increase to h + 1, then the value of log
∏

(k, z) increase too. It holds by (5)

log
∏

(h + 1, z)− log
∏

(h, z) = log

(

1 + 1
h

)z+1

1 + 1+z
h

= log

(

1 + 1
h

)z

1 + z
h+1

. (6)

According to the equality h+1
h

= 1
h

h+1

and the equation (6), Gauss got

log
∏

(h + 1, z) − log
∏

(h, z) = −z log

(

1 −
1

h + 1

)

− log

(

1 +
z

h + 1

)

. (7)
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Both logarithms on the right-hand side of (7) can be expressed in the form of
power series

z

(

1

h + 1
+

1

2(h + 1)2
+ . . .

)

−

(

z

h + 1
−

z2

2(h + 1)2
+ . . .

)

.

Assuming the absolute convergence of both series, Gauss got for the increase
of log

∏

(h, z) the convergent series

z(1 + z)

2(h + 1)2
+

z(1− z2)

3(h + 1)3
+

z(1 + z3)

4(h + 1)4
+

z(1 − z4)

5(h + 1)5
+ . . . . .

If the value k increases from h + 1 to h + 2, then one has

log
∏

(h +2, z)− log
∏

(h + 1, z) =
z(1 + z)

2(h + 2)2
+

z(1 − z2)

3(h + 2)3
+

z(1 + z3)

4(h + 2)4
+ . . . . .

Generally, if the value k increases from h to h+n, then the difference log
∏

(h+
n, z) − log

∏

(h, z) equals

1

2
z(1 + z)

(

1

(h + 1)2
+

1

(h + 2)2
+

1

(h + 3)2
+ . . . +

1

(h + n)2

)

+
1

3
z(1 − z2)

(

1

(h + 1)3
+

1

(h + 2)3
+

1

(h + 3)3
+ . . . +

1

(h + n)3

)

+
1

4
z(1 + z3)

(

1

(h + 1)4
+

1

(h + 2)4
+

1

(h + 3)4
+ . . . +

1

(h + n)4

)

+ . . . .

For n → ∞ Gauss obtained an absolute convergent double series

∞
∑

i=1

[ ∞
∑

j=1

(

z + z2i

2i(h + j)2i
+

z − z2i+1

(2i + 1)(h + j)2i+1

) ]

.

Gauss proved the finitness of limk→∞

∏

(k, z) for every C\{−1,−2,−3, . . .}.
Value of this limit depends on z only, hence the function limk→∞

∏

(k, z) de-
pends also only on z. Thus Gauss introduced the function

∏

z by equation

∏

z = lim
k→∞

1 · 2 · 3 · . . . · k · kz

(z + 1)(z + 2)(z + 3) · . . . · (z + k)
,

or by an infinite product

∏

z =
1

z + 1
·

2z+1

1z(2 + z)
·

3z+1

2z(3 + z)
·

4z+1

3z(4 + z)
· . . . ,

which represents an analog of the Euler’s definition, see [7]. But there is an
important difference in the domain of definition in comparison to Euler’s defi-
nition. Euler considered reals without the negative integers, while Gauss took
the set C\{−1,−2,−3, . . .} as the domain of the function

∏

z.
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This definition of Gauss played an important role in later development of
the theory of functions. For example, it was the impuls which led Karl Weier-
strass to the idea about elementary factors used in his factorization theorem.
The notation

∏

z comes from Gauss. Later, in 1809, Adrien-Marie Legendre
(1752-1833) introduced a standard notation Γ(z) instead of

∏

(z − 1), see [6].
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P (1, 4)

VXWZY\[ ] ^`_ [ a
It is established which functional bases of the first-order differen-

tial invariants of the splitting and non-splitting subgroups of the Poincaré
group P (1, 4) are invariant under the subgroups of the extended Galilei

group ˜G(1, 3) ⊂ P (1, 4). The obtained sets of functional bases are clas-
sified according to dimensions.

bdcfe gXh\i`j0k0l0m`h\n j0g
It is well known (see, for example, [10, 11, 12, 13]), that functional bases

of differential invariants of Lie groups of the point transformations play an im-
portant role in group analysis of differential equations, theorethical and math-
ematical physics, geometry, etc.

The group P (1, 4) is the group of rotations and translations of the five-
dimensional Minkowski space M(1, 4). Some applications of this group in the
theoretical and mathematical physics can be found in [7, 8, 9].

Continuous subgroups of the group P (1, 4) have been described in [3, 4, 6].
One of important consequences of the study of the non-conjugate subalgebras
of the Lie algebra of the group P (1, 4) is that the Lie algebra of the group
P (1, 4) contains, as subalgebras, the Lie algebra of the Poincaré group P (1, 3)
(group symmetry of relativistic physics) and the Lie algebra of the extended

Galilei group G̃(1, 3) (group symmetry of non-relativistic physics) (see also [7]).
Recently the functional bases of the first-order differential invariants for

all continuous subgroups of the group P (1, 4) have been constructed. Some of
them can be found in [2, 1].

The present paper is devoted to the classification of the functional bases
of the first-order differential invariants of continuous subgroups of the group
P (1, 4). It is established which functional bases of the first-order differential

AMS (2000) Subject Classification: 17B05, 17B81.
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invariants of the splitting and non-splitting subgroups of the group P (1, 4) are

invariant under the subgroups of the extended Galilei group G̃(1, 3) ⊂ P (1, 4).
The obtained sets of functional bases are classified according to dimensions.

In order to present some of obtained results, we consider the Lie algebra of
the group P (1, 4).

� cf�"�0���Xn ���B� �0�0�0i`��jX� h\�0���0i`j0l0�
P (1, 4)

�Bg0k�n h\��g0j0g0�\mXj0g`�\l0�0��h\���0l0�0�B� �0�0�0i`�B�
The Lie algebra of the group P (1, 4) is given by the 15 basis elements

Mµν = −Mνµ (µ, ν = 0, 1, 2, 3, 4) and P ′
µ (µ = 0, 1, 2, 3, 4), satisfying the com-

mutation relations
[
P ′

µ , P ′
ν

]
= 0,

[
M ′

µν , P ′
σ

]
= gµσP ′

ν − gνσP ′
µ ,

[
M ′

µν , M ′
ρσ

]
= gµρM

′
νσ + gνσM ′

µρ − gνρM
′
µσ − gµσM ′

νρ ,

where g00 = −g11 = −g22 = −g33 = −g44 = 1, gµν = 0, if µ 6= ν. Here, and in
what follows, M ′

µν = iMµν .
All non-conjugate subalgebras of the Lie algebra of the group P (1, 4) are

divided into splitting and non-splitting ones.
Splitting subalgebras Pi,a of the Lie algebra of the group P (1, 4) can be

written in the following form:

Pi,a = Fi

◦
+ Nia ,

where Fi are subalgebras of the Lie algebra of the group O(1, 4), Nia are sub-

algebras of the Lie algebra of the translations group T (5) ⊂ P (1, 4) and
◦
+ is

the semi-direct sum.
Non-splitting subalgebras P̃j,k are subalgebras, for which a basis can be

chosen in the form:

B̃k = Bk +
∑

i

ckiXi ,
∑

j

drjXj ,

where cki and drj are fixed real constants (not equal zero simultaneously). Bk

are bases of subalgebras of the Lie algebra of the group O(1, 4), Xi are bases
of subalgebras of the Lie algebra of the group T (5).

We consider the following representation of the Lie algebra of the group
P (1, 4):

P ′
0 =

∂

∂x0
, P ′

1 = −
∂

∂x1
, P ′

2 = −
∂

∂x2
, P ′

3 = −
∂

∂x3
, P ′

4 = −
∂

∂x4
,

M ′
µν = − (xµP ′

ν − xνP ′
µ).
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Further, we will use the following basis elements:

G = M ′
40 ,

L1 = M ′
32 , L2 = −M ′

31 , L3 = M ′
21 ,

Pa = M ′
4a − M ′

a0 , (a = 1, 2, 3),

Ca = M ′
4a + M ′

a0 , (a = 1, 2, 3),

X0 =
1

2
(P ′

0 − P ′
4), Xk = P ′

k (k = 1, 2, 3), X4 =
1

2
(P ′

0 + P ′
4).

The Lie algebra of the group G̃(1, 3) is generated by the following basis ele-
ments:

L1 , L2 , L3 , P1 , P2 , P3 , X0 , X1 , X2 , X3 , X4 .

�0cf�"�0� �\n i`�Xh\�\j0i`k0�0i�k0n � �\�0i`�0gXh\n �B�/n g;¡@�Bi`n �BgXh\�¢jX���0�0� n h h\n g0�¢�0l0�0�0i`j0l0�0�£jX�Qh\�0�£�0i`j0l0�
P (1, 4)

The first-order differential invariants J of any non-conjugate k-parametrical
subgroup of the group P (1, 4) can be obtained as solutions of the following
systems of differential equations:





X̃1J(x0, x1, x2, x3, x4, u, u0, u1, u2, u3, u4) = 0,

X̃2J(x0, x1, x2, x3, x4, u, u0, u1, u2, u3, u4) = 0,
...

X̃kJ(x0, x1, x2, x3, x4, u, u0, u1, u2, u3, u4) = 0,

where {X̃1, X̃2, . . . , X̃k, (k = 1, . . . , 12, 15)} are one times prolonged basis op-
erators of any k-dimensional subalgebras of the Lie algebra of group P (1, 4), u

is an arbitrary smooth function on M(1, 4), uµ ≡ ∂u
∂xµ

, µ = 0, 1, 2, 3, 4.

Any solution of this system can be written in the following form:

J(x0, x1, x2, x3, x4, u, u0, u1, u2, u3, u4) = F (J1, J2, . . . , Jt),

where {J1, J2, . . . , Jt} is a functional basis of the first-order differential invari-
ants of the considered subalgebra, F is an arbitrary smooth function. In this
formula

Ji = Ji(x0, x1, x2, x3, x4, u, u0, u1, u2, u3, u4), i = 1, . . . , t.

More details about solutions construction of the above mentioned type
systems as well as the solved examples can be found in [10, 12, 13].

Using the prolongation theory (see, for example, [12, 13]) we have con-
structed the first prolongation for basis operators of the Lie algebra of the
group P (1, 4). One times prolonged bases operators of the Lie algebra of the
group P (1, 4) have the following form:
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G̃ = − x4
∂

∂x0
− x0

∂

∂x4
+ u4

∂

∂u0
+ u0

∂

∂u4
,

L̃1 = x3
∂

∂x2
− x2

∂

∂x3
+ u3

∂

∂u2
− u2

∂

∂u3
,

L̃2 = − x3
∂

∂x1
+ x1

∂

∂x3
− u3

∂

∂u1
+ u1

∂

∂u3
,

L̃3 = x2
∂

∂x1
− x1

∂

∂x2
+ u2

∂

∂u1
− u1

∂

∂u2
,

P̃1 = x1
∂

∂x0
+ (x0 + x4)

∂

∂x1
− x1

∂

∂x4
− u1

∂

∂u0
− (u0 − u4)

∂

∂u1
− u1

∂

∂u4
,

P̃2 = x2
∂

∂x0
+ (x0 + x4)

∂

∂x2
− x2

∂

∂x4
− u2

∂

∂u0
− (u0 − u4)

∂

∂u2
− u2

∂

∂u4
,

P̃3 = x3
∂

∂x0
+ (x0 + x4)

∂

∂x3
− x3

∂

∂x4
− u3

∂

∂u0
− (u0 − u4)

∂

∂u3
− u3

∂

∂u4
,

C̃1 = − x1
∂

∂x0
− (x0 − x4)

∂

∂x1
− x1

∂

∂x4
+ u1

∂

∂u0
+ (u0 + u4)

∂

∂u1
− u1

∂

∂u4
,

C̃2 = − x2
∂

∂x0
− (x0 − x4)

∂

∂x2
− x2

∂

∂x4
+ u2

∂

∂u0
+ (u0 + u4)

∂

∂u2
− u2

∂

∂u4
,

C̃3 = − x3
∂

∂x0
− (x0 − x4)

∂

∂x3
− x3

∂

∂x4
+ u3

∂

∂u0
+ (u0 + u4)

∂

∂u3
− u3

∂

∂u4
,

X̃0 =
1

2

(
∂

∂x0
+

∂

∂x4

)
, X̃1 = −

∂

∂x1
, X̃2 = −

∂

∂x2
,

X̃3 = −
∂

∂x3
, X̃4 =

1

2

(
∂

∂x0
−

∂

∂x4

)
.

In the mentioned above denotations this basis can be written as {X̃1, X̃2, . . . ,

X̃15}.
Going through the list of all non-conjugate subalgebras of the Lie algebra

of the group P (1, 4) presented in [5] one derives that the set of functional bases
of the first-order differential invariants of the splitting subgroups of the group
P (1, 4) contains 99 ones which are invariant under the splitting subgroups of the

extended Galilei group G̃(1, 3) ⊂ P (1, 4). It is impossible to present all these
bases here. Therefore, below we give only a short review of the results obtained.
In each example we write the basis elements of the splitting subalgebras of the
Lie algebra of the group G̃(1, 3) and their functional basis.
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1. There is 1 three-dimensional functional basis

〈X1 ≡ P1 , X2 ≡ P2 , X3 ≡ P3 , X4 ≡ X0 , X5 ≡ X1 , X6 ≡ X2 ,

X7 ≡ X3 , X8 ≡ X4〉,

〈X1 ≡ L3 − P3 , X2 ≡ P1 , X3 ≡ P2 , X4 ≡ X0 , X5 ≡ X1 ,

X6 ≡ X2 , X7 ≡ X3 , X8 ≡ X4〉,

〈X1 ≡ L3 , X2 ≡ P1 , X3 ≡ P2 , X4 ≡ P3 , X5 ≡ X0 , X6 ≡ X1 ,

X7 ≡ X2 , X8 ≡ X3 , X9 ≡ X4〉,

〈X1 ≡ L1 , X2 ≡ L2 , X3 ≡ L3 , X4 ≡ P1 , X5 ≡ P2 , X6 ≡ P3 ,

X7 ≡ X0 , X8 ≡ X1 , X9 ≡ X2 , X10 ≡ X3 , X11 ≡ X4〉,

J1 = u, J2 = u2
0 − u2

1 − u2
2 − u2

3 − u2
4 , J3 = u0 − u4 ;

uµ ≡
∂u

∂xµ

, (µ = 0, 1, 2, 3, 4).

2. There are 4 four-dimensional functional bases. For example

〈X1 ≡ L3 , X2 ≡ P3 , X3 ≡ X0 , X4 ≡ X1 , X5 ≡ X2 , X6 ≡ X3 ,

X7 ≡ X4〉,

J1 = u, J2 = u2
0 − u2

1 − u2
2 − u2

3 − u2
4 ,

J3 = u0 − u4 , J4 = u2
1 + u2

2 .

3. There are 12 five-dimensional functional bases. For example

〈X1 ≡ P1 , X2 ≡ P2 , X3 ≡ X1 , X4 ≡ X2 , X5 ≡ X3 , X6 ≡ X4〉,

〈X1 ≡ L3 , X2 ≡ P1 , X3 ≡ P2 , X4 ≡ X1 , X5 ≡ X2 , X6 ≡ X3 ,

X7 ≡ X4〉,

J1 = u, J2 = u2
0 − u2

1 − u2
2 − u2

3 − u2
4 , J3 = x0 + x4 ,

J4 = u3 , J5 = u0 − u4 .

4. There are 19 six-dimensional functional bases. For example

〈X1 ≡ L1 , X2 ≡ L2 , X3 ≡ L3 , X4 ≡ X0 , X5 ≡ X4〉,

J1 = u, J2 = u2
0 − u2

1 − u2
2 − u2

3 − u2
4 ,

J3 = (x2
1 + x2

2 + x2
3)

1

2 , J4 = x1u1 + x2u2 + x3u3 ,

J5 = u0 , J6 = u4 .

5. There are 26 seven-dimensional functional bases. For example

〈X1 ≡ P3 , X2 ≡ X0 , X3 ≡ X3 , X4 ≡ X4〉,
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J1 = u, J2 = u2

0 − u2
1 − u2

2 − u2
3 − u2

4 , J3 = x1 ,

J4 = x2 , J5 = u1 , J6 = u2 ,

J7 = u0 − u4 .

6. There are 20 eight-dimensional functional bases. For example

〈X1 ≡ L3 , X2 ≡ X0 , X3 ≡ X4〉,

J1 = u, J2 = u2
0 − u2

1 − u2
2 − u2

3 − u2
4 , J3 = x3 ,

J4 = (x2
1 + x2

2)
1

2 , J5 = x1u2 − x2u1 , J6 = u0 ,

J7 = u3 , J8 = u4 .

7. There are 11 nine-dimensional functional bases. For example

〈X1 ≡ L3 − P3 , X2 ≡ X4〉,

J1 = u, J2 = u2
0 − u2

1 − u2
2 − u2

3 − u2
4 ,

J3 = x0 + x4 , J4 = (x2
1 + x2

2)
1

2 ,

J5 = arctan
x1

x2
+

x3

x0 + x4
, J6 = x1u2 − x2u1 ,

J7 =
x3

x0 + x4
+

u3

u0 − u4
, J8 = u0 − u4 ,

J9 = u2
1 + u2

2 .

8. There are 6 ten-dimensional functional bases. For example

〈X1 ≡ P3〉,

J1 = u, J2 = u2
0 − u2

1 − u2
2 − u2

3 − u2
4 ,

J3 = x1 , J4 = x2 ,

J5 = x0 + x4 , J6 = (x2
0 − x2

3 − x2
4)

1

2 ,

J7 = (x0 + x4)u3 + (u0 − u4)x3 , J8 = u0 − u4 ,

J9 = u1 , J10 = u2 .

¦"cf�"�0���\n i`�Xh\�\j0i`k0�0i�k0n � �\�0i`�0gXh\n �B�§n g;¡@�Bi`n �BgXh\�7jX�§h\�0�7g0j0g0�\�0�0� n h h\n g0�7�0l0�0�0i`j0l0�0�'jX�§h\�0�
�0i`j0l0�

P (1, 4)

As in the Section 3, it is established that the set of functional bases of the
first-order differential invariants of the non-splitting subgroups of the group
P (1, 4) contains 158 ones which are invariant under the non-splitting subgroups

of the extended Galilei group G̃(1, 3) ⊂ P (1, 4). It is impossible to present all
these bases here. Therefore, below we give only a short review of the results
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obtained. In each example we write the basis elements of the non-splitting
subalgebras of the Lie algebra of the group G̃(1, 3) and their functional basis.

1. There is 1 three-dimensional functional basis

〈X1 ≡ L3 − X0 , X2 ≡ P1 , X3 ≡ P2 , X4 ≡ P3 , X5 ≡ X1 ,

X6 ≡ X2 , X7 ≡ X3 , X8 ≡ X4〉,

〈X1 ≡ P1 , X2 ≡ P2 , X3 ≡ P3 + X0 , X4 ≡ L3 + βX0 ,

X5 ≡ X1 , X6 ≡ X2 , X7 ≡ X3 , X8 ≡ X4〉, β < 0,

J1 = u, J2 = u0 − u4 , J3 = u2
0 − u2

1 − u2
2 − u2

3 − u2
4 ;

uµ ≡
∂u

∂xµ

, (µ = 0, 1, 2, 3, 4).

2. There are 5 four-dimensional functional bases. For example

〈X1 ≡ L3 + d3X3 , X2 ≡ P1 , X3 ≡ P2 , X4 ≡ X0 , X5 ≡ X1 ,

X6 ≡ X2 , X7 ≡ X4〉, d3 < 0,

〈X1 ≡ L3 − X0 , X2 ≡ P1 , X3 ≡ P2 , X4 ≡ X1 , X5 ≡ X2 ,

X6 ≡ X3 , X7 ≡ X4〉,

J1 = u, J2 = u3 , J3 = u0 − u4 , J4 = u2
0 − u2

1 − u2
2 − u2

4 .

3. There are 12 five-dimensional functional bases. For example

〈X1 ≡ P1 + βX3 , X2 ≡ P2 , X3 ≡ P3 + X0 , X4 ≡ X1 ,

X5 ≡ X2 , X6 ≡ X4〉, β > 0,

J1 = u, J2 = (x0 + x4) +
u3

u0 − u4
,

J3 = (x0 + x4)
2 − 2x3 + 2β

u1

u0 − u4
, J4 = u0 − u4 ,

J5 = u2
0 − u2

1 − u2
2 − u2

3 − u2
4 .

4. There are 34 six-dimensional functional bases. For example

〈X1 ≡ L3 + dX3 , X2 ≡ P3 , X3 ≡ X1 , X4 ≡ X2 , X5 ≡ X4〉, d < 0,

J1 = x0 + x4 , J2 = u, J3 = x3 + d arctan
u1

u2
+ u3

x0 + x4

u0 − u4
,

J4 = u0 − u4 , J5 = u2
1 + u2

2 , J6 = u2
0 − u2

3 − u2
4 .

5. There are 49 seven-dimensional functional bases. For example

〈X1 ≡ P1 + δX3 , X2 ≡ P2 + X3 , X3 ≡ X1, X4 ≡ X4〉, δ > 0,
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J1 = x0 + x4 , J2 = u, J3 =
x2

x0 + x4
+

u2

u0 − u4
,

J4 =
δu1 + u2

u0 − u4
− x3 , J5 = u3 , J6 = u0 − u4 ,

J7 = u2
0 − u2

1 − u2
2 − u2

4 .

6. There are 32 eight-dimensional functional bases. For example

〈X1 ≡ P3 + X0 , X2 ≡ X1 , X3 ≡ X4〉,

J1 = x2 , J2 = (x0 + x4)
2 − 2x3 , J3 = u,

J4 = (x0 + x4) +
u3

u0 − u4
, J5 = u1 , J6 = u2 ,

J7 = u0 − u4 , J8 = u2
0 − u2

3 − u2
4 .

7. There are 19 nine-dimensional functional bases. For example

〈X1 ≡ L3 − X4 , X2 ≡ X3〉,

J1 = x0 + x4 , J2 = (x2
1 + x2

2)
1

2 , J3 = u,

J4 = x1u2 − x2u1 , J5 = arctan
u1

u2
+ x0 − x4 , J6 = u0 ,

J7 = u3 , J8 = u4 , J9 = u2
1 + u2

2 .

8. There are 6 ten-dimensional functional bases. For example

〈X1 ≡ L3 − P3 + α0X0〉, α0 < 0,

J1 = (x2
1 + x2

2)
1

2 , J2 = (x0 + x4)
2 + 2α0x3 ,

J3 = x1u2 − x2u1 , J4 = α0 arctan
x1

x2
− x0 − x4 ,

J5 = x0 + x4 − α0
u3

u0 − u4
, J6 = 2(x0 + x4)

3 + 6α0x3(x0 + x4)

+ 3α2
0(x0 − x4),

J7 = u, J8 = u0 − u4 ,

J9 = u2
1 + u2

2 , J10 = u2
0 − u2

3 − u2
4 .

As we see there are not the functional bases with dimensions less than 3
as well as ones with dimensions bigger than 10. It follows from using of the
theorem on invariants of Lie groups of the point transformations for all non-
conjugate subgroups of the extended Galilei group G̃(1, 3) ⊂ P (1, 4). More
details about this theorem can be found in [12, 13].

The results obtained can be used for the construction and investigation of
classes of first–order differential equations (defined in the space M(1, 4)×R(u))
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invariant under continuous subgroups of the group G̃(1, 3) ⊂ P (1, 4). R(u) is
the axis of the dependent variable u.
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The paper gives a general construction of all continuous solutions

of inequality (1) fulfilling one of conditions (5) or (26). This paper is a
continuation of [3].

\^]`_ aRbVcZd0e0f0gZbVh d0a

In the paper [3] we considered the problem of existence of the continuous
solutions of the functional inequality

ψ[f(x)] ≤ G(x, ψ(x)), (1)

where ψ is an unknown function, in the case where continuous solutions of the
corresponding functional equation

ϕ[f(x)] = G(x, ϕ(x)) (2)

depend on an arbitrary function. In particular we proved there Theorems 1
and 5 quoted below.

In the present paper we shall give other descriptions of the general contin-
uous solution of (1) which are more convenient to study, for example, solutions
of (1) which are Lipschitzian or possess some asymptotic property (see [2], [1]).
We shall also adapt some results from [3] to a more general class of continuous
solutions of inequality (1).

We start with reminding some notations and assumptions from [3]. Let
I = (ξ, a), where ξ < a ≤ ∞. We assume that

(i) the function f : I −→ R is continuous and strictly increasing in I . More-
over, ξ < f(x) < x for all x ∈ I .

Remark 1

Hypothesis (i) implies that limn→∞ fn(x) = ξ for every x ∈ I . Here fn denotes
the n-th iterate of f .

AMS (2000) Subject Classification: 39B62.
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As to the function G we assume:

(ii) G: Ω −→ R is continuous in an open set Ω ⊂ I × R;

(iii) for every x ∈ I the set

Ωx := {y : (x, y) ∈ Ω} (3)

is a non-empty open interval and

G(x,Ωx) ⊂ Ωf(x). (4)

Let J ⊂ I be an open subinterval such that ξ ∈ clJ . We shall consider
solutions ψ of inequality (1) and solutions ϕ of equation (2) such that their
graphs lie in Ω, i.e.,

ψ(x), ϕ(x) ∈ Ωx for x ∈ J ⊂ I. (5)

The class of these solutions will be denoted by Ψ(J) and Φ(J), respectively.
Moreover, we denote Ik := [fk+1(x0), f

k(x0)] for a fixed x0 ∈ I and k ∈ N∪{0}.
Finally, we consider the sequence {gk} defined by the recursive formula:

{

g0(x, y) = y,

gk+1(x, y) = G(fk(x), gk(x, y)), k ∈ N ∪ {0}.
(6)

x ]`y"d0z fRbVh d0a0{|dR}
(1)

h a�bV~0��h aRbV�0c^����z
(ξ, x0]

Let us assume (i)-(iii). It is known (see [4]) that then continuous solutions
of equation (2) depend on an arbitrary function. It means that for any x0 ∈ I

and an arbitrary continuous function ϕ0: I0 −→ R fulfilling the conditions

ϕ0(x) ∈ Ωx for x ∈ I0 , (7)

ϕ0[f(x0)] = G(x0, ϕ0(x0)) (8)

there exists exactly one continuous solution ϕ ∈ Φ((ξ, x0]) of equation (2) ex-
tending ϕ0, i.e.,

ϕ(x) = ϕ0(x) for x ∈ I0 .

A corresponding result for solutions of inequality (1) has been proved in [3]:

Theorem 1

Let assumptions (i)-(iii) be fulfilled. Then for any x0 ∈ I and for an arbitrary

continuous function ψ0: I0 −→ R fulfilling the conditions

ψ0[f(x0)] ≤ G(x0, ψ0(x0)), (9)

ψ0(x) ∈ Ωx , x ∈ I0 (10)
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there exists a continuous solution ψ ∈ Ψ((ξ, x0]) of inequality (1) such that

ψ(x) = ψ0(x) for x ∈ I0 . (11)

This solution is given by the formula

ψ[fk(x)] = λk [f
k(x)] + gk(x, ψ0(x)) for x ∈ I0 , k ∈ N ∪ {0}, (12)

where λk : Ik −→ R is an arbitrary sequence of continuous functions fulfilling

the conditions:

λ0(x) = 0, x ∈ I0 , (13)

λk[f
k(x)] + gk(x, ψ0(x)) ∈ Ωfk(x) , x ∈ I0 , k ∈ N ∪ {0}, (14)

λk[f
k(x)] + gk(x, ψ0(x)) ≤ G(f−k(x), λk−1[f

k−1(x)] + gk−1(x, ψ0(x))),

x ∈ I0 , k ∈ N,
(15)

λk[f
k(x0)] + gk(x0, ψ0(x0)) = λk−1[f

k(x0)] + gk−1(f(x0), ψ0[f(x0)]),

k ∈ N.
(16)

Moreover, all continuous solutions ψ ∈ Ψ((ξ, x0]) of inequality (1) may be

obtained in this manner.

Now, we shall prove the following corollary from Theorem 1.

Theorem 2

Let assumptions (i)-(iii) be fulfilled. Then for any x0 ∈ I and for an arbitrary

continuous function ψ0: I0 −→ R fulfilling (9) and (10) there exists a continuous

solution ψ ∈ Ψ((ξ, x0]) of inequality (1) such that (11) holds. This solution is

given by the formula

ψ(x) =

{

ψ0(x), x ∈ I0 ,

Mk(ψ0, λ)(x), x ∈ Ik , k ∈ N,
(17)

where the functional sequence of continuous functions Mk(ψ0, λ) is defined by

the recurrence
{

M1(ψ0, λ)(x) = λ(x) +G(f−1(x), ψ0[f
−1(x)]), x ∈ I1 ,

Mk+1(ψ0, λ)(x) = λ(x) +G(f−1(x),Mk(ψ0, λ)[f
−1(x)]), x ∈ Ik+1

(18)

and λ: (ξ, f(x0)] −→ (−∞, 0] is an arbitrary continuous function fulfilling the

conditions:

Mk(ψ0, λ)(x) ∈ Ωx , x ∈ Ik , k ∈ N, (19)

λ[f(x0)] +G(x0, ψ0(x0)) = ψ0[f(x0)]. (20)

Moreover, all continuous solutions ψ ∈ Ψ((ξ, x0]) of inequality (1) may be

obtained in this manner.



ik��l"m�nporqtsrurornpvrw

Proof. We fix an x0 ∈ I and an arbitrary continuous function ψ0: I0 −→ R

fulfilling (9) and (10). Moreover, we take a continuous function λ: (ξ, f(x0)] −→
(−∞, 0] fulfilling (19), (20) and define the function ψ: (ξ, x0] −→ R by formula
(17). Condition (19) implies that the sequence Mk(ψ0, λ) (and, consequently,
the function ψ) is well defined. Now, we define the sequence λk: Ik −→ R of
continuous functions by formula (13) and

λk(x) := λ(x) +G(f−1(x), ψ[f−1(x)]) − gk(f
−k(x), ψ[f−k(x)]),

x ∈ Ik , k ∈ N.
(21)

It is obvious that (21) implies that ψ may be represented also by formula (12).
Moreover, condition (19) implies (14). We have also the estimate

λk[f
k(x)] + gk(x, ψ0(x)) = λk[f

k(x)] +G(fk−1(x), ψ[fk−1(x)])

≤ G(fk−1(x), ψ[fk−1(x)])

= G(fk−1(x), λk−1 [f
k−1(x)] + gk−1(x, ψ0(x))),

x ∈ I0 , k ∈ N,

which implies (15). Finally from (20) we obtain (16) for k = 1 and, by virtue
of the equalities

λk[f
k(x0)] + gk(x0, ψ0(x0))

= λ[fk(x0)] +G(fk−1(x0), ψ[fk−1(x0)])

= λ[fk−1(f(x0))] +G(fk−2(f(x0)), ψ[fk−2(f(x0))])

= λk−1[f
k−1(f(x0))] + gk−1(f(x0), ψ0[f(x0)])

= λk−1[f
k(x0)] + gk−1(f(x0), ψ0[f(x0)]),

we have (16) for k ≥ 2. Thus, by virtue of Theorem 1, formula (12) (and,
consequently, formula (17)) defines a continuous solution ψ ∈ Ψ((ξ, x0]) of
inequality (1).

On the other hand, let us assume that ψ ∈ Ψ((ξ, x0]) is a continuous
solution of (1). It is sufficient to put

ψ0(x) := ψ(x) for x ∈ I0 , (22)

λ(x) := ψ(x) −G(f−1(x), ψ[f−1(x)]) for x ∈ (ξ, f(x0)]. (23)

Let us notice that (19) and (20) hold. Moreover, it follows from (1) that the
function λ takes nonpositive values only. It is obvious that the solution ψ may
be represented by formula (17). We may prove it by simple induction.

Indeed, formulas (22) and (23) imply that for x ∈ I1 :

ψ(x) = λ(x) +G(f−1(x), ψ[f−1(x)]) = λ(x) +G(f−1(x), ψ0[f
−1(x)])

= M1(ψ0, λ)(x).

Thus, if we assume that for an arbitrarily chosen integer k > 1 we have ψ(x) =
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Mk(ψ0, λ)(x) for x ∈ Ik , then from (23) we obtain for x ∈ Ik+1 :

ψ(x) = λ(x) +G(f−1(x), ψ[f−1(x)]) = λ(x) +G(f−1(x),Mk(ψ0, λ)[f
−1(x)])

= Mk+1(ψ0, λ)(x).

Consequently, ψ is of the form (17) and this ends the proof of the theorem.

�0]`y"d0z fRbVh d0a0{�dR}
(1)

h a�bV~0��h aRbV�0c^����z
I

We assume additionally that:

(iv) for every x ∈ I the function G(x, ·) is invertible,

(v) the function f fulfils the condition f(I) = I ,

(vi) for every x ∈ I , with Ωx defined by (3) we have

G(x,Ωx) = Ωf(x) . (24)

Thanks to these assumptions we may extend the definition (6) to negative
indices by putting

g−k−1(x, y) := G−1(f−k−1(x), g−k(x, y)), k ∈ N ∪ {0}, (25)

where G−1(x, ·) denotes the inverse of the function G(x, ·). It is obvious (by
virtue of (4) and (24)) that the sequences (6) and (25) are well defined. We
may also consider intervals Ik for k ∈ Z.

If we assume (i)-(vi), then for an arbitrary x0 ∈ I every continuous function
ϕ0: I0 −→ R fulfilling (7), (8) may be extended to a continuous solution ϕ ∈
Φ(I) of equation (2). For inequality (1) the following theorem has been also
formulated in [3].

Theorem 3

Let assumptions (i)-(vi) be fulfilled. Then, for any x0 ∈ I and for an arbitrary

continuous function ψ0: I0 −→ R fulfilling (9) and (10) there exists a continuous

solution ψ ∈ Ψ(I) of inequality (1) such that (11) holds. This solution is given

by formulas (12) and

ψ[f−k(x)] = lk[f
−k(x)] + g−k(x, ψ0(x)) for x ∈ I0 , k ∈ N,

where λk: Ik −→ R, lk: I−k −→ R are arbitrary sequences of continuous func-

tions fulfilling conditions (13)-(16) and, additionally, the following conditions

l0(x) = 0, x ∈ I0 ,

lk[f
−k(x)] + g−k(x, ψ0(x)) ∈ Ωf−k(x) , x ∈ I0 , k ∈ N,
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lk+1[f
−k+1(x)] + g−k+1(x, ψ0(x)) ≤ G(f−k(x), lk[f

−k(x)] + g−k(x, ψ0(x))),

x ∈ I0 , k ∈ N,

lk+1[f
−k+1(x0)] + g−k+1(x0, ψ0(x0)) = lk[f

−k+1(x0)] + g−k(f(x0), ψ0[f(x0)]),

k ∈ N.

Moreover, we may obtain in this way all continuous solutions ψ ∈ Ψ(I) of

inequality (1).

Theorems 2 and 3 also imply the following theorem.

Theorem 4

Under assumptions (i)-(vi) for any x0 ∈ I and for an arbitrary continuous

function ψ0: I0 −→ R fulfilling the conditions (9), (10), there exists a continuous

solution ψ ∈ Ψ(I) of inequality (1) such that (11) holds. This solution is given

by formulas (17) and

ψ(x) := Pk(ψ0, λ)(x), x ∈ I−k , k ∈ N,

where the functional sequences of continuous functions Mk(ψ0, λ), Pk(ψ0, λ),
are defined by formula (18) and by

{

P1(ψ0, λ)(x) = G−1(x, ψ0[f(x)] − λ[f(x)]), x ∈ I−1 ,

Pk+1(ψ0, λ)(x) = G−1(x, Pk(ψ0, λ)[f(x)]), x ∈ I−k−1 , k ∈ N

and λ: I −→ (−∞, 0] is an arbitrarily chosen continuous function fulfilling con-

ditions (19), (20) together with

ψ0(x) − λ(x) ∈ Ωx , x ∈ I0 ,

Pk(ψ0, λ)(x) ∈ Ωx , x ∈ I−k , k ∈ N.

Moreover, all continuous solutions ψ ∈ Ψ(I) of inequality (1) may be obtained

in this manner.

The proof of the above theorem runs analogously to that of Theorem 2 and
is therefore omitted.

�"]`�9��h a�cZ�0{0f0z b

Here we shall characterize continuous solutions ψ of inequality (1) which
fulfil, for arbitrarily chosen x0 ∈ I , the additional condition

ψ[f(x)] ∈ G(x,Ωx), x ∈ (ξ, x0]. (26)

We replace (iv) by a stronger assumption

(vii) For every x ∈ I the function G(x, ·) is strictly increasing.
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In the paper [3] we considered continuous solutions ψ of (1) which fulfil the
following condition:

L
ψ
k [f(x)] ∈ G(x,Ωx), x ∈ (ξ, x0], x0 ∈ I, k ∈ N ∪ {0}, (27)

where the sequence {Lψk } was defined by the recurrence

{

L
ψ
0 (x) = ψ(x),

L
ψ
k+1(x) = G−1(x, Lψk [f(x)]), k ∈ N ∪ {0}.

It is obvious, by virtue of (27), that the above sequence is well defined.
The following theorem has been proved in [3].

Theorem 5

Let assumptions (i)-(iii) and (vii) be fulfilled. Then for any x0 ∈ I and for an

arbitrary continuous function ψ0: I0 −→ R fulfilling (9), (10) and, moreover,

the condition

ψ0[f(x0)] ∈ G(x0,Ωx0
) (28)

there exists a continuous solution ψ ∈ Ψ((ξ, x0]) of inequality (1) fulfilling (11)
and (27). This solution is given by the formula

ψ[fk(x)] = gk(x, γk(x) + ψ0(x)) for x ∈ I0 , k ∈ N ∪ {0}, (29)

where {γk} is an arbitrary sequence of continuous functions defined in I0 and

fulfilling the conditions:

γ0(x) = 0, x ∈ I0 ,

{γk} is decreasing in I0 ,

γk(x) + ψ0(x) ∈ Ωx , for x ∈ (f(x0), x0], k ∈ N ∪ {0},

γk[f(x0)] + ψ0[f(x0)] ∈ G(x0,Ωx0
), k ∈ N,

gk(x0, γk(x0) + ψ0(x0)) = gk−1(f(x0), γk−1[f(x0)] + ψ0[f(x0)]), k ∈ N.

Moreover, all continuous solutions ψ ∈ Ψ((ξ, x0]) of inequality (1), fulfilling

(27) may be obtained in this manner.

If we replace in the above theorem condition (27) by (26) then we obtain:

Theorem 6

Let assumptions (i)-(iii) and (vii) be fulfilled. Then for any x0 ∈ I and for an

arbitrary continuous function ψ0: I0 −→ R fulfilling (9), (10), (28), there exists

a continuous solution ψ ∈ Ψ((ξ, x0]) of inequality (1) fulfilling (11) and (26).
This solution is given by the formula
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ψ(x) =

{

ψ0(x), x ∈ I0 ,

Rk(ψ0, γ)(x), x ∈ Ik , k ∈ N,
(30)

where the sequence {Rk(ψ0, γ)} of continuous functions is defined recursively

by



















R1(ψ0, γ)(x) = G(f−1(x), γ[f−1(x)] + ψ0[f
−1(x)]),

x ∈ I1 ,

Rk+1(ψ0, γ)(x) = G(f−1(x), γ[f−1(x)] +Rk(ψ0, γ)[f
−1(x)]),

x ∈ Ik+1 , k ∈ N,

(31)

and γ: (ξ, x0] −→ (−∞, 0] is an arbitrary continuous function fulfilling the con-

ditions:

γ(x) +Rk(ψ0, γ)(x) ∈ Ωx , x ∈ Ik , k ∈ N ∪ {0}, (32)

ψ0[f(x0)] = G(x0, γ(x0) + ψ0(x0)). (33)

Moreover, all continuous solutions ψ ∈ Ψ((ξ, x0]) of inequality (1) fulfilling (26)
may be obtained in this manner.

Proof. Similarly as in the proof of Theorem 2 we fix an x0 ∈ I and an
arbitrary continuous function ψ0: I0 −→ R fulfilling (9), (10) and (28). More-
over, let γ: (ξ, x0] −→ (−∞, 0] be a continuous function fulfilling (32), (33) and
define a function ψ: (ξ, x0] −→ R by formula (30). Condition (32) implies that
the sequence {Rk(ψ0, γ)} is well defined. It is also clear that the following
equalities

Rk+1(ψ0, γ)[f
k+1(x0)] = Rk(ψ0, γ)[f

k(x0)], k ∈ N, (34)

hold. Thus (34) together with (33) imply that the function ψ is well defined.
Since Rk(ψ0, γ) are continuous functions (by the continuity of the given func-
tions f , γ, ψ0, G), so is ψ.

It is obvious that ψ may be represented by the following form, equivalent
to (30),

ψ[f(x)] = G(x, γ(x) + ψ(x)), x ∈ (ξ, x0]. (35)

Equality (35) implies condition (26) and, moreover, we obtain that ψ fulfils
inequality (1) by virtue of (vii) and the fact that γ takes nonpositive values
only.

On the other hand let us assume that ψ ∈ Ψ((ξ, x0]) is a continuous solution
of (1) that fulfils (26). It is sufficient to define ψ0 by (22) and to put

γ(x) := G−1(x, ψ[f(x)]) − ψ(x), x ∈ (ξ, x0]. (36)

Let us notice that (9), (10), (28), (32) and (33) hold. It is obvious that the
solution ψ may be represented by (35) and, consequently, by (30). This ends
the proof of the theorem.
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Remark 2

If we are confined to solutions ψ of inequality (1) fulfilling (27), then formulas
(29) and (30) are equivalent. Indeed, if we define solution ψ fulfilling (27) by
formula (30) then we may define the sequence {γk} from Theorem 5 by the
formula

γk(x) = L
ψ
k (x) − ψ0(x), x ∈ I0 , k ∈ N.

Conversely, if we define a solution ψ by formula (29), then we may define
the function γ by (36) and the functional sequence {Rk(ψ0, γ)} of continuous
functions by the recurrent formula (31).

Remark 3

It is known (see [3]) that contrary to the situation with continuous solutions of
equation (2) in I , a continuous function ψ0 fulfilling (9), (10) and (28) cannot
be extended uniquely to a continuous solution ψ of inequality (1) fulfilling (26).
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The present article is a survey of our last results. We establish

best possible estimates of the weak solutions to the transmission problem
near conical boundary point. We study this problem for the Laplace
operator with N different media, for linear and quasi-linear (with semi-
linear principal part) elliptic second order equations in divergence form.
Boundary conditions in these problems are different: the Dirichlet, the
Neumann, the Robin, as well as mixed boundary conditions.

The transmission problems often appear in different fields of physics and
technics. For instance, one of the important problems of the electrodynam-
ics of solid media is the electromagnetic processes research in ferromagnetic
media with different dielectric constants. Such problems also appear in solid
mechanics if a body consists of composite materials. Let us quote also vi-
brating folded membranes, composite plates, folded plates, junctions in elastic
multi-structures etc.

The present article is a survey of our last results. We consider the best
possible estimates of the weak solutions to the transmission problem near co-
nical boundary point. Analogous results were established in [3] for the Dirichlet
and Robin problems in a conical domain without interfaces.

Let G ⊂ R
n, n ≥ 2 be a bounded domain with boundary ∂G that is a

smooth surface everywhere except at the origin O ∈ ∂G and near the point O
it is a conical surface with vertex at O and the opening ω0 . We assume that
G =

⋃N

i=1 Gi is divided into N ≥ 2 subdomains Gi , i = 1, . . . , N by (N − 1)
hyperplanes Σk , k = 1, . . . , N−1 (by hyperplane Σ0 in the case N = 2), where
O belongs to every Σk and Gi ∩ Gj = ∅, i 6= j. We shall study the following
elliptic transmission problems.

AMS (2000) Subject Classification: 35J25, 35J60, 35J85, 35B65.
This work was supported at the final stage by the Polish Ministry of Science and Higher

Education through the grant Nr N201 381834..



^0_�`"a bdcfe�a gThfiAjlkfmfb

Problem (LN). For the Laplace operator with N different media and
mixed boundary condition







































Li[u] ≡ ai4ui − piui(x) = fi(x), x ∈ Gi , i = 1, . . . , N ;

[u]Σk
= 0, k = 1, . . . , N − 1;

Sk[u] ≡

[

a
∂u

∂~nk

]

Σk

+
1

|x|
βk(ω)u(x) = hk(x), x ∈ Σk ,

k = 1, . . . , N − 1;

B[u] ≡ α(x)a
∂u

∂~n
+

1

|x|
γ(ω)u(x) = g(x), x ∈ ∂G \ O,

where ω = x
|x| , ai > 0, pi ≥ 0, (i = 1, . . . , N) are constants;

α(x) =

{

0, if x ∈ D;

1, if x /∈ D,

and D ⊆ ∂G is the part of the boundary ∂G where we consider the Dirichlet
boundary condition; here ~nk (~n ) denotes the unite outward with respect to Gk
(G) normal to Σk (∂G \ O).

Problem (L). For linear equations














































L[u] ≡
∂

∂xi
(aij(x)uxj

) + ai(x)uxi
+ a(x)u = f(x), x ∈ G \ Σ0;

[u]Σ0
= 0;

S[u] ≡

[

∂u

∂ν

]

Σ0

+
β(ω)

|x|
u(x) = h(x), x ∈ Σ0;

B[u] ≡
∂u

∂ν
+
γ(ω)

|x|
u = g(x), x ∈ ∂G \ O.

Problem (WL). For weak nonlinear equations















































−
d

dxi
(|u|qaij(x)uxj

) + b(x, u,∇u) = 0, q ≥ 0, x ∈ G \ Σ0;

[u]Σ0
= 0;

S[u] ≡

[

∂u

∂ν

]

Σ0

+
β(ω)

|x|
u|u|q = h(x, u), x ∈ Σ0;

B[u] ≡
∂u

∂ν
+
γ(ω)

|x|
u|u|q = g(x, u), x ∈ ∂G \ O

(the summation over repeated indices from 1 to n is understood; ∂u
∂ν

is the

co-normal derivative of u(x)), i.e., ∂u
∂ν

= |u|qaij(x)uxj
cos(~n, xi).
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The principal new feature of our work is the consideration of estimates of
weak solutions for linear elliptic second-order equations with minimal smooth

coefficients in n-dimensional conical domains. Our examples demonstrate this
fact.

�d��� �\�0�0� �0�
(LN)

Let φi be openings at the vertex O in domains Gi . Let us define the value
θk = φ1 + φ2 + . . .+ φk , thus ω0 = θN . We introduce the following notations:

— Ωi – a domain on the unit sphere Sn−1 with boundary ∂Ωi obtained by
the intersection of the domain Gi with the sphere Sn−1, (i = 1, . . . , N);

thus Ω =
⋃N

i=1 Ωi;

— Σ =
∑N−1

k=1 Σk , Σk = G ∩ {ω1 = ω0

2 − θk}, k = 1, . . . , N − 1;

σ =
∑N−1

k=1 σk , σk = Σk ∩ Ω;

— (Gi)
b
a = {(r, ω) | 0 ≤ a < r < b; ω ∈ Ω} ∩Gi i = 1, . . . , N ;

— (Σk)
b
a = Gba ∩ Σk , k = 1, . . . , N − 1;

— u(x) = ui(x), f(x) = fi(x), x ∈ Gi; a
∣

∣

Gi

= ai , etc.;

— [u]Σk
denotes the saltus of the function u(x) on crossing Σk , i.e.,

[u]Σk
= uk(x)

∣

∣

Σk

− uk+1(x)
∣

∣

Σk

,

uk(x)
∣

∣

Σk

= lim
Gk3x→x∈Σk

u(x), uk+1(x)
∣

∣

Σk

= lim
Gk+13x→x∈Σk

u(x);

—
[

a ∂u
∂~nk

]

Σk

denotes the saltus of the co-normal derivative of the function

u(x) on crossing Σk , i.e.,

[

a
∂u

∂~nk

]

Σk

= ak
∂uk

∂~nk

∣

∣

∣

∣

Σk

− ak+1
∂uk+1

∂~nk

∣

∣

∣

∣

Σk

.

Without loss of generality we assume that there exists d > 0 such that Gd0
is a convex rotational cone with the vertex at O and the aperture ω0 , thus

Γd0 =

{

(r, ω)
∣

∣

∣
x2

1 = cot2
ω0

2

n
∑

i=2

x2
i ; r ∈ (0, d), ω1 =

ω0

2
, ω0 ∈ (0, π)

}

;

Γba = {(r, w) | 0 ≤ a < r < b; w ∈ ∂Ω} ∩ ∂G – the lateral surface of layer Gba .
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Fig. 1

We use the standard function spaces:

— Ck(Gi) with the norm |ui|k,Gi
,

— the Lebesgue space Lp(Gi), p ≥ 1 with the norm ‖ui‖p,Gi
,

— the Sobolev space W k,p(Gi) with the norm ‖ui‖k,p;Gi
,

— direct sum Ck(G) = Ck(G1) u . . .u Ck(GN ) with the norm

|u|k,G =

N
∑

i=1

|ui|k,Gi
;

— Lp(G) = Lp(G1) u . . .u Lp(GN ) with the norm

‖u‖Lp(G) =

N
∑

i=1

(
∫

Gi

|ui|
pdx

)
1

p

;

— Wk,p(G) = W k,p(G1) u . . .uW k,p(GN ) with the norm

‖u‖k,p;G =
N

∑

i=1

(
∫

Gi

k
∑

|β|=0

|Dβui|
pdx

)
1

p

.

We define the weighted Sobolev spaces: Vk
p,α(G) = V kp,α(G1)u. . .uV

k
p,α(GN ) for

integer k ≥ 0 and real α, where V kp,α(Gi) denotes the space of all distributions
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u ∈ D′(Gi) satisfying r
α

p
+|β|−k|Dβui| ∈ Lp(Gi), i = 1, . . . , N . Vk

p,α(G) is a
Banach space with the norm

‖u‖Vk
p,α

(G) =

N
∑

i=1

(
∫

Gi

k
∑

|β|=0

rα+p(|β|−k)|Dβui|
p dx

)
1

p

.

V
k− 1

p

p,α (∂G) is the space of functions ϕ, given on ∂G, with the norm

‖ϕ‖
V

k− 1

p

p,α (∂G)
= inf ‖Φ‖Vk

p,α
(G) ,

where the infimum is taken over all functions Φ such that Φ
∣

∣

∂G
= ϕ in the sense

of traces. We denote Wk(G) ≡ Wk,2(G), W
◦
k
α(G) ≡ Vk

2,α(G).

Definition 1

The function u(x) is called a weak solution of the problem (LN) provided that

u(x) ∈ C0(G) ∩W
◦

1
0 and satisfies the integral identity

∫

G

auxj
ηxj

dx+

∫

Σ

1

r
β(ω)u(x)η(x) ds +

∫

∂G

α(x)
1

r
γ(ω)u(x)η(x) ds

=

∫

∂G

α(x)g(x)η(x) ds +

∫

Σ

h(x)η(x) ds −

∫

G

(pu(x) + f(x)) η(x) dx

for all functions η(x) ∈ C0(G) ∩ W
◦

1
0(G). The integrals above are sums:

∫

G

f(x) dx =
N

∑

i=1

∫

Gi

fi(x) dx,

∫

Σ

h(x) ds =
N−1
∑

k=1

∫

Σk

hk(x) ds, etc.

Remark 1

In the Dirichlet boundary condition case (α(x) ≡ 0) we assume, without loss
of generality, that

g
∣

∣

∂G∩D
= 0 =⇒ u

∣

∣

∂G∩D
= 0.

We assume that M0 = maxx∈G |u(x)| is known. Let us define numbers







































a∗ = min{a1, . . . , aN} > 0;

a∗ = max{a1, . . . , aN} > 0;

p∗ = max{p1, . . . , pN} ≥ 0;

[a]Σk
= ak − ak+1 , k = 1, . . . , N − 1;

a0 = max
1≤k≤N−1

∣

∣[a]Σk

∣

∣ ;

ã = max(a∗, a0).
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We assume that:

(a) f(x) ∈ L q

2

(G) ∩ L2(G); q > n;

(b) γ(φ) ≥ γ0 > ã tan ω0

2 on ∂G;

βk(φ) ≥ β0 > ã tan ω0

2 on Σk, k = 1, . . . , N − 1;

(c) there exist numbers f0 ≥ 0, g0 ≥ 0, h0 ≥ 0, s > 1, β ≥ s− 2 such that

|f(x)| ≤ f0|x|β , |g(x)| ≤ g0|x|s−1,

|hk(x)| ≤ h0|x|s−1, k = 1, . . . , N − 1.

We consider the following eigenvalue problem (EV P ).
Let Ω ⊂ Sn−1 with smooth boundary ∂Ω be the intersection of the cone

C with the unit sphere Sn−1. Let ~ν be the exterior normal to ∂C at points of
∂Ω and ~τk be the exterior with respect to Ωk normal to Σk (lying in the plane
tangent to Ωk), k = 1, . . . , N − 1. Let γ(φ), φ ∈ ∂Ω be a positive bounded
piecewise smooth function, βk(φ) be a positive continuous function on σk ,
k = 1, . . . , N−1. We consider the eigenvalue problem for the Laplace-Beltrami
operator 4φ on the unit sphere















































ai (4φψi + ϑψi) = 0, φ ∈ Ωi , ai are positive
constants; i = 1, . . . , N ;

[ψ]σk
= 0, k = 1, . . . , N − 1;

[

a
∂ψ

∂~τk

]

σk

+ βk(φ)ψ
∣

∣

σk

= 0, k = 1, . . . , N − 1;

α(φ)a
∂ψ

∂~ν
+ γ(φ)ψ

∣

∣

∂Ω
= 0,

(EV P )

which consists of the determination of all values ϑ (eigenvalues) for which
(EV P ) has a non-zero weak solutions (eigenfunctions).

Our main result is the following theorem. Let ϑ be the smallest positive
solution of (EV P ) and let

λ =
2 − n+

√

(n− 2)2 + 4ϑ

2
. (1.1)

Theorem 1

Let u be a weak solution of the problem (LN) and assumptions (a)-(c) be sati-

sfied. Assume that the domain G and parameters in (a)-(c) are such that λ

defined above satisfies λ > 1. Then there are d ∈ (0, 1) and constants C0 > 0,
c > 0 depending only on n, a∗ , a∗, p∗, λ, q, ω0 , f0 , h0 , g0 , β0 , γ0 , s, M0 ,

measG, diamG such that for all x ∈ Gd0
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|u(x)| ≤ C0



















|x|λ, if s > λ;

|x|λ lnc
(

1

|x|

)

, if s = λ;

|x|s, if s < λ.

Suppose, in addition, that

γ(ω) ∈ C1(∂G), f(x) ∈ V0
q,2q−n(G),

h(x) ∈ V
1− 1

q

q,2q−n(Σ), g(x) ∈ V
1− 1

q

q,2q−n(∂G);

q > n and there is a number

τs =: sup
%>0

%−s
(

‖h‖
V

1− 1

q

q,2q−n
(Σ%

%

2

)
+ ‖g‖

V
1− 1

q

q,2q−n
(Γ%

%

2

)

)

.

Then for all x ∈ Gd0

|∇u(x)| ≤ C1



















|x|λ−1, if s > λ;

|x|λ−1 lnc
(

1

|x|

)

, if s = λ;

|x|s−1, if s < λ.

Furthermore, the following is true

— u ∈ V2
q,2q−n(G), q > n and

‖u‖V2

q,2q−n
(G%

0
) ≤ C2



















%λ, if s > λ;

%λ lnc
(

1

%

)

, if s = λ;

%s, if s < λ;

— if f(x) ∈ W
◦

0
α(G),

∫

Σ
rα−1h2(x) ds+

∫

∂G
rα−1g2(x) ds <∞, where 4 −

n− 2λ < α ≤ 2, then u(x) ∈ W
◦

1
α−2(G) and

∫

G

a(rα−2|∇u|2 + rα−4u2) dx+

∫

Σ

rα−3β(φ)u2(x) ds

+

∫

∂G

α(x)rα−3γ(φ)u2(x) ds

≤ C

{
∫

G

(u2 + (1 + rα)f2(x)) dx +

∫

Σ

rα−1h2(x) ds

+

∫

∂G

α(x)rα−1g2(x) ds

}

,
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where the constant C > 0 depends only on q, n, a∗ , a∗, α, λ and the

domain G.
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Let G ⊂ R
2 be bounded domain with the boundary curve ∂G smooth

everywhere except at the origin O ∈ ∂G. Near the point O it is a fan that
consists of N corners with vertices at O. Thus G =

⋃N
i=1 Gi; ∂G =

⋃N+1
j=0 Γj ;

Σ =
⋃N−1
k=1 Σk . Here Σk , k = 1, . . . , N − 1 are rays that divide G into angular

domains Gi , i = 1, . . . , N . Let ωi be apertures at the vertex O in domains Gi ,
i = 1, . . . , N . We define the value θk = ω1 + ω2 + . . . + ωk . Let Γ =

⋃N
j=1 Γj

be the curvilinear portion of the boundary ∂G. In this case we have λ =
√
ϑ.

2
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Fig. 2

We also assume that

Γ0 = {(r, ω ) | r > 0, ω = 0}, ΓN+1 = {(r, ω) | r > 0, ω = θN},

βk
∣

∣

σk

= βk(θk) = βk = const, γ(0) = γ1 = const, γ(ω0) = γN = const.

The eigenvalue problem in this case has the form
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ψ′′
i + λ2ψi(ω) = 0, ω ∈ Ωi = {ωi−1 < ω < ωi},

i = 1, . . . , N ;

ψi(θi) = ψi+1(θi), i = 1, . . . , N − 1;

aiψ
′
i(θi) − ai+1ψ

′
i+1(θi) + βiψi(θi) = 0, i = 1, . . . , N − 1;

α1a1ψ
′
1(0) + γ1ψ1(0) = 0;

αNaNψ
′
N (ω0) + γNψN (ω0) = 0,

where a1, αN ∈ {0, 1}.
By direct calculation, we get

ψi(ω) = Ai cos(λω) +Bi sin(λω), i = 1, . . . , N

and constants A1, . . . , AN ; B1, . . . , BN are defined by the algebraic homoge-
neous system of equations:







































































































λα1a1B1 + γ1 = 0;

Ai+1 =

(

cos2(λθi) +
ai

ai+1
sin2(λθi) −

βi

λai+1
sin(λθi) cos(λθi)

)

· Ai

+

(

sin(λθi) cos(λθi)

(

1 −
ai

ai+1

)

−
βi

λai+1
sin2(λθi)

)

· Bi,

i = 1, . . . , N − 1;

Bi+1 =

(

sin(λθi) cos(λθi)

(

1 −
ai

ai+1

)

+
βi

λai+1
cos2(λθi)

)

·Ai

+

(

sin2(λθi) +
ai

ai+1
cos2(λθi) +

βi

λai+1
sin(λθi) cos(λθi)

)

· Bi,

i = 1, . . . , N − 1;

(γN cos(λω0) − λαNaN sin(λω0)) ·AN + (γN sin(λω0)

+λαNaN cos(λω0)) · BN = 0.

The least positive eigenvalue λ is determined by the vanishing of the determi-
nant of this system.
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Our goal is to derive the eigenvalues equation corresponding to our trans-
mission problem for N = 4. Let S1 be the unit circle in R

2. We denote:
Ωi = Gi ∩ S1 for i = 1, 2, 3, 4. The eigenvalue problem is the following:
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ψ′′
i + λ2ψi(ω) = 0, ω ∈ Ωi ; for i = 1, 2, 3, 4;

ψ2(ω1) = ψ1(ω1);

ψ3(θ2) = ψ2(θ2);

ψ4(θ3) = ψ3(θ3);

a1ψ
′
1(ω1) − a2ψ

′
2(ω1) + β1ψ1(ω1) = 0;

a2ψ
′
2(θ2) − a3ψ

′
3(θ2) + β2ψ2(θ2) = 0;

a3ψ
′
3(θ3) − a4ψ

′
4(θ3) + β3ψ3(θ3) = 0;

α1a1ψ
′
1(0) + γ1ψ1(0) = 0;

α4a4ψ
′
4(θ4) + γ4ψ4(θ4) = 0,

(1.2)

where α1 = α
∣

∣

Γ0

= α
∣

∣

ω=0
, α4 = α

∣

∣

Γ5

= α
∣

∣

ω=θ4
, γ1 = γ(0), γ4 = γ(θ4); α1,4 ∈

{0, 1}.
A general solution of (1.2) is

ψi(ω) = Ai cos(λω) +Bi sin(λω) for i = 1, 2, 3, 4,

with arbitrary constants Ai , Bi (i = 1, 2, 3, 4). Boundary condition of (1.2)
force Ai , Bi to satisfy the following system of linear equations:















































































A2 cosλω1 +B2 sinω1 −A1 cosλω1 −B1 sinλω1 = 0,

A3 cosλθ2 +B3 sin θ2 −A2 cosλθ2 −B2 sinλθ2 = 0,

A4 cosλθ3 +B4 sin θ3 −A3 cosλθ3 −B3 sinλθ3 = 0,

λa2A2 sinλω1 − λa2B2 cosλω1 − λa1A1 sinλω1 + λa1B1 cosλω1

+β1A1 cosλω1 + β1B1 sinλω1 = 0,

λa3A3 sinλθ2 − λa3B3 cosλθ2 − λa2A2 sinλθ2 + λa2B2 cosλθ2
+β2A2 cosλθ2 + β2B2 sinλθ2 = 0,

λa4A4 sinλθ3 − λa4B4 cosλθ3 − λa3A3 sinλθ3 + λa3B3 cosλθ3
+β3A3 cosλθ3 + β3B3 sinλθ3 = 0,

α1a1λB1 + γ1A1 = 0,

α4a4λA4 sinλθ4 − α4a4λB4 cosλθ4 − γ4A4 cosλθ4 − γ4B4 sinλθ4 = 0.

This system has a non-trivial solution if its determinant vanishes. This gives
the eigenvalues equation, which is too complex to state here in full generality.
We provide an explicite form only in special cases of boundary conditions.

1. Dirichlet problem: α1 = α4 = β1 = β2 = β3 = 0; γ1 = γ4 = 1.

λ3a2a
2
3 sinλω1 cosλω2 sinλω3 sinλω4

+ a2
2a3 sinλω1 sinλω2 cosλω3 sinλω4

+ a2
2a4 sinλω1 sinλω2 sinλω3 cosλω4

+ a1a
2
3 cosλω1 sinλω2 sinλω3 sinλω4
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− a2a3a4 sinλω1 cosλω2 cosλω3 cosλω4

− a1a3a4 cosλω1 sinλω2 cosλω3 cosλω4

− a1a2a4 cosλω1 cosλω2 sinλω3 cosλω4

− a1a2a3 cosλω1 cosλω2 cosλω3 sinλω4

= 0.

In the isotropic case (a1 = a2 = a3 = a4) we recover the well known
result:

sin(λθ4) = 0 =⇒ λn =
πn

θ4
, n = 1, 2 . . . .

Corollary: λ = π
ω0

> 1, if 0 < ω0 < π.

2. Neumann problem: α1 = α4 = 1; β1 = β2 = β3 = 0; γ1 = γ4 = 0.

−a2
1a2a

2
4 sinλω1 cosλω2 sinλω3 sinλω4

− a2
1a3a

2
4 sinλω1 sinλω2 cosλω3 sinλω4

− a2
1a

2
3a4 sinλω1 sinλω2 sinλω3 cosλω4

− a1a
2
2a

2
4 cosλω1 sinλω2 sinλω3 sinλω4

+ a2
1a2a3a4 sinλω1 cosλω2 cosλω3 cosλω4

+ a1a
2
2a3a4 cosλω1 sinλω2 cosλω3 cosλω4

+ a1a2a
2
3a4 cosλω1 cosλω2 sinλω3 cosλω4

+ a1a2a3a
2
4 cosλω1 cosλω2 cosλω3 sinλω4

= 0.

In the isotropic case (a1 = a2 = a3 = a4) we recover again:

sin(λθ4) = 0 =⇒ λn =
πn

θ4
, n = 0, 1, 2 . . . .

Corollary: λ = π
ω0

> 1, if 0 < ω0 < π.

3. Mixed problem: α1 = γ4 = 1, α4 = β1 = β2 = β3 = 0; γ1 = 0.

a2
1a

2
3 sinλω1 sinλω2 sinλω3 sinλω4

− a2
1a3a4 sinλω1 sinλω2 cosλω3 cosλω4

− a2
1a2a3 sinλω1 cosλω2 cosλω3 sinλω4

− a2
1a2a4 sinλω1 cosλω2 sinλω3 cosλω4

− a1a2a
2
3 cosλω1 cosλω2 sinλω3 sinλω4

− a1a
2
2a4 cosλω1 sinλω2 sinλω3 cosλω4

− a1a
2
2a4 cosλω1 sinλω2 cosλω3 sinλω4

+ a1a2a3a4 cosλω1 cosλω2 cosλω3 cosλω4

= 0.
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In the isotropic case (a1 = a2 = a3 = a4) we hence recover:

cos(λθ4) = 0 =⇒ λn =
π(2n− 1)

2θ4
, n = 1, 2 . . . .

Corollary: λ = π
2ω0

> 1, if 0 < ω0 <
π
2 .

4. Robin problem: α1 = α4 = 1.

In the isotropic case (a1 = a2 = a3 = a4 = 1; β1 = β2 = β3 = 0) we
obtain:

tan(λω0) =
λ(γ4 − γ1)

λ2 + γ1γ4
.
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Our goal is the derivation of the eigenvalues equation that corresponds to
our transmission problem for the case N = 3. Let S1 be the unit circle in R

2

centered at O. We denote: Ωi = Gi ∩ S1 ; i = 1, 2, 3. The eigenvalue problem
is the following one:







































ψ′′
i + λ2ψi(ω) = 0, ω ∈ Ωi ; (i = 1, 2, 3);

ψ1(ω1) = ψ2(ω1); ψ3(θ2) = ψ2(θ2);

a2ψ
′
2(ω1) − a1ψ

′
1(ω1) + β1ψ1(ω1) = 0;

a3ψ
′
3(θ2) − a2ψ

′
2(θ2) + β2ψ2(θ2) = 0;

α1a1ψ
′
1(0) + γ1ψ1(0) = 0;

α3a3ψ
′
3(θ3) + γ3ψ3(θ3) = 0.

(1.3)

We find a general solution of (1.3):

ψi(ω) = Ai cos(λω) +Bi sin(λω) for i = 1, 2, 3,

where Ai, Bi (i = 1, 2, 3) are arbitrary constants. From the boundary condition
of (1.3) we obtain the homogenous algebraic system of six linear equations
determining Ai , Bi (i = 1, 2, 3). The determinant of the system must be equal
to zero for a nontrivial solution of this system to exist. The latter gives the
required eigenvalues λ-equation:
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[λ2α3a
2
3(β1γ1 + λ2α1a

2
1) − γ3(β1β2γ1 + λ2α1β2a

2
1 − λ2γ1a

2
2)]

× sin(λω1) sin(λω2) sin(λω3)
+ λa1 · [λ2α3a

2
3(γ1 − β1α1) + γ3(β1β2α1 − γ1β2 − λ2α1a

2
2)]

× cos(λω1) sin(λω2) sin(λω3)
− λa3 · [γ3(β1γ1 + λ2α1a

2
1) + α3(β1β2γ1 + λ2α1β2a

2
1 − λ2γ1a

2
2)]

× sin(λω1) sin(λω2) cos(λω3)
+ λ2a1a3 · [γ3(β1α1 − γ1) + α3(β1β2α1 − γ1β2 − λ2α1a

2
2)]

× cos(λω1) sin(λω2) cos(λω3)
− λa2 · [γ3(β2γ1 + λ2α1a

2
1 + β1γ1) − λ2α3γ1a

2
3]

× sin(λω1) cos(λω2) sin(λω3)
+ λ2a1a2 · [γ3(β2α1 + α1β1 − γ1) − λ2α3α1a

2
3]

× cos(λω1) cos(λω2) sin(λω3)
− λ2a2a3 · [γ1γ3 + α3(β2γ1 + λ2α1a

2
1 + β1γ1)]

× sin(λω1) cos(λω2) cos(λω3)
+ λ3a1a2a3 · [α1γ3 + α3(β2α1 + α1β1 − γ1)]
× cos(λω1) cos(λω2) cos(λω3)

= 0.

(1.4)

We consider special cases of boundary conditions.

1. Dirichlet problem: α1 = α3 = β1 = β2 = 0; γ1 = γ3 = 1.

a1a3 · cos(λω1) sin(λω2) cos(λω3)

+ a1a2 · cos(λω1) cos(λω2) sin(λω3)

+ a2a3 · sin(λω1) cos(λω2) cos(λω3)

− a2
2 · sin(λω1) sin(λω2) sin(λω3)

= 0.

In the isotropic case (a1 = a2 = a3) we obtain the well known result:

sin(λθ3) = 0 =⇒ λn =
πn

θ3
, n = 1, 2, . . . .

Corollary: λ = π
θ3
> 1, if θ3 = ω1 + ω2 + ω3 < π.

2. Neumann problem: β1 = β2 = γ1 = γ3 = 0; α1 = α3 = 1.

a2
2 · cos(λω1) sin(λω2) cos(λω3)

+ a2a3 · cos(λω1) cos(λω2) sin(λω3)

+ a1a2 · sin(λω1) cos(λω2) cos(λω3)

− a1a3 · sin(λω1) sin(λω2) sin(λω3)

= 0.

In the isotropic case (a1 = a2 = a3) we hence obtain:
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sin(λθ3) = 0 =⇒ λn =
πn

θ3
, n = 0, 1, 2, . . . .

Corollary: λ = π
θ3
> 1, if θ3 = ω1 + ω2 + ω3 < π.

3. Mixed problem: α1 = γ3 = 1, α3 = β1 = β2 = γ1 = 0.

a2
2 · cos(λω1) sin(λω2) sin(λω3)

+ a1a3 · sin(λω1) sin(λω2) cos(λω3)

+ a1a2 · sin(λω1) cos(λω2) sin(λω3)

− a2a3 · cos(λω1) cos(λω2) cos(λω3)

= 0.

In the isotropic case (a1 = a2 = a3):

cos(λθ3) = 0 =⇒ λn =
π(2n− 1)

2θ3
, n = 1, 2, . . . .

Corollary: λ = π
2θ3

> 1, if θ3 = ω1 + ω2 + ω3 <
π
2 .

4. Robin problem: α1 = 1, α3 = 1; β1 = β2 = 0.

(λ2a2
1a

2
3 + γ1γ3a

2
2) · sin(λω1) sin(λω2) sin(λω3)

− λ · (γ3a1a
2
2 − γ1a1a

2
3) · cos(λω1) sin(λω2) sin(λω3)

− λa3 · (γ3a
2
1 − γ1a

2
2) · sin(λω1) sin(λω2) cos(λω3)

− a1a3(γ1γ3 + λ2a2
2) · cos(λω1) sin(λω2) cos(λω3)

− λa2 · (γ3a
2
1 − γ1a

2
3) · sin(λω1) cos(λω2) sin(λω3)

− a1a2 · (γ1γ3 + λ2a2
3) · cos(λω1) cos(λω2) sin(λω3)

− a2a3 · (γ1γ3 + λ2a2
1) · sin(λω1) cos(λω2) cos(λω3)

+ λa1a2a3 · (γ3 − γ1) · cos(λω1) cos(λω2) cos(λω3)

= 0.

In the isotropic case (a1 = a2 = a3 = 1) we recover (see [3], §10.1.7, Example 1):

tan(λθ3) =
λ(γ3 − γ1)

λ2 + γ1γ3
.
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Here we consider in detail 2-dimensional transmission problem with two
different media (ω1 = ω2 = ω0

2 ) for the Laplace operator in an angular sym-
metric domain and investigate the corresponding eigenvalue problem. Suppose
n = 2, the domain G lies inside the angle

G0 =
{

(r, ω)
∣

∣ r > 0; −
ω0

2
< ω <

ω0

2

}

, ω0 ∈ ]0, 2π[ ;
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O ∈ ∂G and in some neighborhood of O the boundary ∂G coincides with the
sides of the corner ω = −ω0

2 and ω = ω0

2 . We denote

Γ± =
{

(r, ω)
∣

∣ r > 0; ω = ±
ω0

2

}

, Σ0 = {(r, ω) | r > 0; ω = 0}

and we put

β(ω)
∣

∣

Σ0

= β(0) = β = const ≥ 0, γ(ω)
∣

∣

ω=±
ω0

2

= γ± = const > 0.

We consider the following problem:






































a±4u± = f±(x), x ∈ G±;

[u]Σ0
= 0;

[

a
∂u

∂~n

]

Σ0

+
1

|x|
βu(x) = h(x), x ∈ Σ0;

α±a±
∂u±

∂~n
+

1

r
γ±u±(x) = g±(x), x ∈ Γ± \ O.

(1.5)

It is well known that the homogeneous problem (f(x) = h(x) = g(x) = 0) has
solution of the form u(r, ω) = rλψ(ω), where λ is an eigenvalue and ψ(ω) is the
corresponding eigenfunction of the problem



































ψ
′′

+ + λ2ψ+(ω) = 0, for ω ∈ (0, ω0

2 );

ψ
′′

− + λ2ψ−(ω) = 0, for ω ∈ (−ω0

2 , 0);

ψ+(0) = ψ−(0);

a+ψ
′
+(0) − a−ψ

′
−(0) = βψ(0);

±α±a±ψ
′
(

±
ω0

2

)

+ γ±ψ
(

±
ω0

2

)

= 0.

(1.6)

¬"£0�x�T�y�0�
λ = 0

In this case the solution of our equations has the form

ψ±(ω) = A± · ω +B± .

From the boundary conditions we obtain B+ = B− = B and to find A+ , A− ,
B, we have the system



















a+A+ − a−A− − βB = 0,
(

α+a+ +
ω0

2
γ+

)

A+ + γ+B = 0,

−
(

α−a− +
ω0

2
γ−

)

A− + γ−B = 0.

Since A2
+ +A2

− +B2 6= 0, the determinant must be equal to zero; this means
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β
(

α+a+ +
ω0

2
γ+

)(

α−a− +
ω0

2
γ−

)

+ a+γ+

(

α−a− +
ω0

2
γ−

)

+ a−γ−

(

α+a+ +
ω0

2
γ+

)

= 0.

(1.7)

Thus if the equality (1.7) is satisfied, then λ = 0 and the corresponding eigen-
functions are

ψ(ω) =















a−γ−

{(

ω −
ω0

2

)

γ+ − α+a+

}

, ω ∈ (0, ω0

2 );

a+γ+

{(

ω +
ω0

2

)

γ− − α−a−

}

, ω ∈ (−ω0

2 , 0),
if β = 0;

ψ(ω) =



































−γ+

(

α−a− +
ω0γ−

2

)

(ω +
a+

β
) −

a−γ−

β

(

α+a+ +
ω0γ+

2

)

,

ω ∈ (0, ω0

2 );

γ−

(

α+a+ +
ω0γ+

2

)

(ω −
a−

β
) −

a+γ+

β

(

α−a− +
ω0γ−

2

)

,

ω ∈ (−ω0

2 , 0),

if β 6= 0.

¬"£0�x�T�y�0�
λ 6= 0

In this case the solution of our equations has the form

ψ±(ω) = A± cos(λω) +B± sin(λω).

From the boundary conditions we obtain A+ = A− = A and to find A, B+ ,
B− we have the system






















βA − λa+B+ + λa−B− = 0,
(

γ+ cos
λω0

2
− λα+a+ sin

λω0

2

)

A+
(

γ+ sin
λω0

2
+ λα+a+ cos

λω0

2

)

B+ = 0,

(

γ− cos
λω0

2
− λα−a− sin

λω0

2

)

A−
(

γ− sin
λω0

2
+ λα−a− cos

λω0

2

)

B− = 0.

Since A2 +B2
+ +B2

− 6= 0, the determinant must be zero; this means that λ is
defined by the transcendental equation

β(λ2α+α−a+a− + γ+γ−) + λ2(a+ − a−)(α−a−γ+ − α+a+γ−)

+ λ[β(α−a−γ+ + α+a+γ−)

+ (a+ + a−)(γ+γ− − λ2α+α−a+a−)] sin(λω0)

+ [β(λ2α+α−a+a− − γ+γ−)

+ λ2(a+ + a−)(α−a−γ+ + α+a+γ−)] cos(λω0)
= 0.

(1.8)

Now we investigate special cases of the boundary conditions.
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1. The Dirichlet problem: α± = 0. Equation (1.8) takes the form

β(1 − cos(λω0)) + λ(a+ + a−) sin(λω0) = 0.

Hence we get

λ =















π

ω0
, if β = 0;

the least positive root of tan
λω0

2
= −

a+ + a−

β
· λ, if β 6= 0

and the corresponding eigenfunction is

ψ(ω) =











sinλ
(ω0

2
− ω

)

, ω ∈ (0, ω0

2 );

sinλ
(ω0

2
+ ω

)

, ω ∈ (−ω0

2 , 0).

2. The Neumann problem: γ± = 0. Equation (1.8) takes the form

β(1 + cos(λω0)) − λ(a+ + a−) sin(λω0) = 0.

Hence we get λ = min{λ∗, π
ω0

}, where λ∗ is the least positive root of the
transcendental equation

tan
λω0

2
=

β

a+ + a−
·
1

λ
.

We find the corresponding eigenfunctions

ψ(ω) =











a− sin
πω

ω0
, ω ∈ (0, ω0

2 );

a+ sin
πω

ω0
, ω ∈ (−ω0

2 , 0),
λ =

π

ω0
;

ψ(ω) =











cosλ∗
(

ω −
ω0

2

)

, ω ∈ (0, ω0

2 );

cosλ∗
(

ω +
ω0

2

)

, ω ∈ (−ω0

2 , 0),
λ = λ∗.

3. Mixed problem: α+ = 1, α− = 0; γ+ = 0, γ− = 1. Equation (1.8) takes
the form

β sin(λω0) + λ(a+ + a−) cos(λω0) = λ(a+ − a−). (1.9)

In particular, if β = 0, then

λ =
2

ω0
arctan

√

a−

a+
> 1, if ω0 < 2 arctan

√

a−

a+

as a+a− > 0; and the corresponding eigenfunction is
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ψ(ω) =



















cos(λω) +

√

a−

a+
· sin(λω), ω ∈ (0, ω0

2 );

cos(λω) +

√

a+

a−
· sin(λω), ω ∈ (−ω0

2 , 0).

If λ is the least positive root of the transcendental equation (1.9), then
we find the corresponding eigenfunction

ψ(ω) =















sin
λω0

2
cosλ

(

ω −
ω0

2

)

, ω ∈ (0, ω0

2 );

cos
λω0

2
sinλ

(

ω +
ω0

2

)

, ω ∈ (−ω0

2 , 0).

4. The Robin problem: α± = 1; γ± 6= 0. Equation (1.8) takes the form

β(λ2a+a− + γ+γ−) + λ2(a+ − a−)(a−γ+ − a+γ−)

+ λ[β(a−γ+ + a+γ−) + (a+ + a−)(γ+γ− − λ2a+a−)] sin(λω0)

+ [β(λ2a+a− − γ+γ−) + λ2(a+ + a−)(a−γ+ + a+γ−)] cos(λω0)

= 0.

In particular, in the case of the problem without the interface (a+ =
a− = 1, β = 0) we obtain the least eigenvalue as the least positive root
of the transcendental equation

tan(λω0) =
λ(γ+ + γ−)

λ2 − γ+γ−
(1.10)

and the corresponding eigenfunction is

ψ(ω) = λ cos
[

λ
(

ω −
ω0

2

)]

− γ+ sin
[

λ
(

ω −
ω0

2

)]

(see [3], §10.1.7).

In order to have λ > 1 we show that the condition γ± ≥ γ0 > tan ω0

2 from
the assumption (b) of our Theorem is satisfied. In fact, we rewrite the
equation (1.10) in the equivalent form λ = 1

ω0

(

arctan γ+
λ

+ arctan γ−
λ

)

.
It follows that

1 < λ <
1

ω0
(arctan γ+ + arctanγ−) =⇒ ω0 < arctan

γ+ + γ−

1 − γ+γ−
,

provided that γ+γ− < 1
(1.11)

has to be fulfilled. But our condition from the assumption (b) means that
γ± ≥ γ0 > tan ω0

2 . Hence we obtain

γ+ + γ−

1 − γ+γ−
≥

2γ0

1 − γ2
0

>
2 tan ω0

2

1 − tan2 ω0

2

= tanω0, ω0 <
π

2
.
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Thus we established (1.11). In the case γ± ≥ γ0 > tan ω0

2 ≥ 1 for ω0 ∈
[π2 , π) the inequality λ > 1 is fulfilled a fortiori, because of the property
of the monotonic increase of the eigenvalues together with the increase of
γ(ω) (see for example [4], chapter VI, §2, Theorem 6). In fact, λ = 1 is
the solution of the equation (1.10) under assumption γ± = tan ω0

2 .

¥"��� �\�0�0� �0�
(L)

We assume that G = G+ ∪ G− ∪ Σ0 is divided into two subdomains G+

and G− by a hyperplane Σ0 = G ∩ {xn = 0}, where O ∈ Σ0 . We assume also
that M0 = maxx∈G |u(x)| is known and, without loss of generality, that there

exists d > 0 such that Gd0 is a rotational cone with the vertex at O and the
aperture ω0 ∈ (0, 2π), thus

0 0

O

1x

0

0

Fig. 3

Γd0 =

{

(r, ω)
∣

∣

∣
x2

1 = cot2
ω0

2

n
∑

i=2

x2
i ; r ∈ (0, d), ω1 =

ω0

2

}

.

Definition 2

A function u(x) is called a weak solution of the problem (L) provided that

u(x) ∈ C0(G) ∩W
◦

1
0(G) and satisfies the integral identity

∫

G

{

aij(x)uxj
ηxi

− ai(x)uxi
η(x) − a(x)uη(x)

}

dx



�0¨�`"a bdcfe�a gThfiAjlkfmfb

+

∫

Σ0

β(ω)

r
u(x)η(x) ds +

∫

∂G

γ(ω)

r
u(x)η(x) ds

=

∫

∂G

g(x)η(x) ds +

∫

Σ0

h(x)η(x) ds −

∫

G

f(x)η(x) dx

for all functions η(x) ∈ C0(G) ∩ W
◦

1
0 .

Regarding the equation we assume that the following conditions are satis-
fied:

(a) the condition of the uniform ellipticity:

ν±ξ
2 ≤ a

ij
±(x)ξiξj ≤ µ±ξ

2, ∀x ∈ G±, ∀ξ ∈ R
n;

ν±, µ± = const > 0, and a
ij
±(0) = aδ

j
i ,

where δ
j
i is the Kronecker symbol and

a =

{

a+ , x ∈ G+ ;

a− , x ∈ G− ,

with positive constants a±; we denote

a∗ = min{a+, a−} > 0, a∗ = max{a+, a−} > 0;

ν∗ = min{ν−, ν+}; µ∗ = max(µ−, µ+);

(b) aij(x) ∈ C0(G), ai(x) ∈ Lp(G), a(x), f(x) ∈ L p

2

(G)∩L2(G); p > n. The

inequalities

( n
∑

i,j=1

|aij±(x) − a
ij
±(y)|2

)
1

2

≤ a±A(|x− y|);

|x|

( n
∑

i=1

|ai±(x)|2
)

1

2

+ |x|2|a±(x)| ≤ a±A(|x|)

hold for x, y ∈ G, Here A(r) is a monotonically increasing, nonnegative

function, continuous at 0 with A(0) = 0;

(c) a(x) ≤ 0 in G; β(ω) ≥ ν0 > 0 on σ0; γ(ω) ≥ ν0 > 0 on ∂G;

(d) there exist numbers f1 ≥ 0, g1 ≥ 0, h1 ≥ 0, s > 1, β ≥ s− 2 such that

|f(x)| ≤ f1|x|
β , |g(x)| ≤ g1|x|

s−1, |h(x)| ≤ h1|x|
s−1,

γ(ω) is a positive bounded piecewise smooth function on ∂Ω, σ(ω) is a

positive continuous function on σ0;
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(aa)
∣

∣

∣

n
∑

i=1

∂aij(x)
∂xi

∣

∣

∣
≤ K for all j = 1, . . . , n.

Our main result is the following theorem.

Theorem 2

Let u be a weak solution of the problem (L), the assumptions (a)-(d), (aa) are

satisfied with A(r) Dini-continuous at zero. Let λ be as in (1.1); N = 2. Then

there are d ∈ (0, 1) and constants C > 0, c > 0 depending only on n, ν∗ , µ∗,

p, λ,
∥

∥

∑n

i=1 |a
i(x)|2

∥

∥

L p

2

(G)
, K, ω0 , f1 , h1 , g1 , ν0 , s, M0 , measG, diamG

and on the quantity
∫ 1

0
A(r)
r

dr such that for all x ∈ Gd0

|u(x)| ≤ C0

(

‖u‖2,G + f1 +
1

√
γ0
g1 +

1
√
σ0
h1

)

·



















|x|λ, if s > λ;

|x|λ lnc
(

1

|x|

)

, if s = λ;

|x|s, if s < λ.

Suppose, in addition, that

aij(x) ∈ C1(G), σ(ω) ∈ C1(σ0), γ(ω) ∈ C1(∂G),

f(x) ∈ V0
p,2p−n(G), h(x) ∈ V

1− 1

p

p,2p−n(σ0), g(x) ∈ V
1− 1

p

p,2p−n(∂G);

p > n and there is a number

τs =: sup
%>0

%−s
(

‖h‖
V

1− 1

p

p,2p−n
(Σ%

%/2
)
+ ‖g‖

V

1− 1

p

p,2p−n
(Γ%

%/2
)

)

.

Then for all x ∈ Gd0

|∇u(x)| ≤ C1

(

‖u‖2,G + f1 +
1

√
γ0
g1 +

1
√
σ0
h1 + τs

)

×



















|x|λ−1, if s > λ;

|x|λ−1 lnc
(

1

|x|

)

, if s = λ;

|x|s−1, if s < λ.

Furthermore, u ∈ V2
p,2p−n(G) and

‖u‖V2

p,2p−n
(G%

0
) ≤ C2

(

‖u‖2,G + f1 +
1

√
γ0
g1 +

1
√
σ0
h1 + τs

)

×



















%λ, if s > λ;

%λ lnc
(

1

%

)

, if s = λ;

%s, if s < λ.
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(WL)

We consider problem (WL) that is the transmission problem for a quasi-
linear equation with semi-linear principal part.

Definition 3

The function u(x) is called a weak solution of the problem (WL) provided that

u(x) ∈ C0(G) ∩W1(G) and satisfies the integral identity

∫

G

{

|u|qaij(x)uxj
ηxi

+ b(x, u, ux)η(x)
}

dx

+

∫

Σ0

β(ω)

r
u|u|qη(x) ds +

∫

∂G

γ(ω)

r
u|u|qη(x) ds

=

∫

∂G

g(x, u)η(x) ds +

∫

Σ0

h(x, u)η(x) ds

for all functions η(x) ∈ C0(G) ∩ W1(G).

Regarding the equation we assume that the following conditions are satis-
fied.

Let q ≥ 0, 0 ≤ µ < q+ 1, s > 1, f1 ≥ 0, g1 ≥ 0, h1 ≥ 0, β ≥ s− 2 be given

numbers.

(a) The condition of the uniform ellipticity:

a±ξ
2 ≤ a

ij
±(x)ξiξj ≤ A±ξ

2, ∀x ∈ G±, ∀ξ ∈ R
n;

a±, A± = const > 0, aij±(0) = aδ
j
i ,

where δ
j
i is the Kronecker symbol;

a =

{

a+ , x ∈ G+ ;

a− , x ∈ G− ;











a∗ = min{a+, a−} > 0;

a∗ = max{a+, a−} > 0;

A∗ = max(A−, A+).

(b) a
ij
±(x) ∈ C0(G) and the inequality

( n
∑

i,j=1

|aij±(x) − a
ij
±(y)|2

)
1

2

≤ A(|x− y|)
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holds for x, y ∈ G, where A(r) is a monotonically increasing, nonnegative

function, continuous at 0 with A(0) = 0.

(c) |b(x, u, ux)| ≤ aµ|u|q−1|∇u|2 + b0(x); 0 ≤ µ < 1 + q, b0(x) ∈ Lp/2(G),
n < p < 2n.

(d) β(ω) ≥ ν0 > 0 on σ0; γ(ω) ≥ ν0 > 0 on ∂G.

(e) ∂h(x,u)
∂u

≤ 0, ∂g(x,u)
∂u

≤ 0.

(f) |b0(x)| ≤ f1|x|β , |g(x, 0)| ≤ g1|x|s−1, |h(x, 0)| ≤ h1|x|s−1.

We assume without loss of generality that there exists d > 0 such that Gd0 is a

rotational cone with the vertex at O and the aperture ω0 ∈ (0, 2π).
Our main result is the following statement.

Theorem 3

Let u be a weak solution of the problem (WL), the assumptions (a)-(f) are satis-

fied with A(r) Dini-continuous at zero. Let us assume that M0 = maxx∈G |u(x)|
is known. Let λ be as in (1.1) for N = 2. Then there are d ∈ (0, 1) and con-

stants C0 > 0, c > 0 depending only on n, a∗ , A∗, p, q, λ, µ, f1 , h1 , g1 , ν0 ,

s, M0 , measG, diamG and on the quantity
∫ 1

0
A(r)
r

dr such that for all x ∈ Gd0

|u(x)| ≤ C0



































|x|
λ(1+q−µ)

(q+1)2 , if s > λ
1 + q − µ

1 + q
;

|x|
λ(1+q−µ)

(q+1)2 lnc
(

1

|x|

)

, if s = λ
1 + q − µ

1 + q
;

|x|
s

q+1 , if s < λ
1 + q − µ

1 + q
.

Suppose, in addition, that coefficients of the problem (WL) satisfy such con-

ditions, which guarantee the local estimate |∇u|0,G′ ≤ M1 for any smooth

G′ ⊂ G \ {O} (see for example [1], §4). Then for all x ∈ Gd0

|∇u(x)| ≤ C1



































|x|
λ(1+q−µ)

(q+1)2
−1
, if s > λ

1 + q − µ

1 + q
;

|x|
λ(1+q−µ)

(q+1)2
−1

lnc
(

1

|x|

)

, if s = λ
1 + q − µ

1 + q
;

|x|
s

q+1
−1, if s < λ

1 + q − µ

1 + q

with C1 = c1
(

‖u‖2(q+1),G + f1 + g1 + h1

)

, where c1 depends on M0 , M1 and

C0 from above.

The idea of the proofs of Theorems 1-3 is based on the deduction of a new
inequality of the Friedrichs–Wirtinger type with the exact constant as well
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as other integral-differential inequalities adapted to the transmission problem.
The precise exponent of the solution decrease rate depends on this exact con-
stant. We obtain the Friedrichs–Wirtinger type inequality by the variational
principle:

Lemma 1

Let ϑ be the smallest positive eigenvalue of the problem (EV P ). Let Ω ⊂ Sn−1

be a bounded domain. Let ψ ∈ W1(Ω) and satisfy the boundary and conjunction

conditions from (EV P ) in the weak sense. Let γ(ω) be a positive bounded

piecewise smooth function on ∂Ω, β(ω) be a positive continuous function on

σ0 . Then

ϑ

∫

Ω

aψ2(ω) dΩ ≤

∫

Ω

a|∇ωψ(ω)|2 dΩ +

∫

σ0

β(ω)ψ2(ω) dσ +

∫

∂Ω

α(x)γ(ω)ψ2(ω) dσ.

Lemma 2

Let Gd0 be the conical domain and ∇v(%, ·) ∈ L2(Ω) for almost all % ∈ (0, d).
Assume that for almost all % ∈ (0, d)

V (ρ) =

∫

G
%

0

ar2−n|∇v|2 dx+

∫

Σ%

0

r1−nβ(ω)v2(x) ds +

∫

Γ%

0

r1−nγ(ω)v2(x) ds <∞.

Then
∫

Ω

a

(

%v
∂v

∂r
+
n− 2

2
v2

)

∣

∣

∣

∣

∣

r=%

dΩ ≤
%

2λ
V ′(%).

At last we derive a result that asserts the local estimate at the boundary

(near the conical point) of the weak solution of problem (WL).

Theorem 4

Let u(x) be a weak solution of the problem (WL). Suppose that assumptions

(a), (c)-(e) are satisfied. Suppose, in addition, that h(x) ∈ L∞(Σ0), g(x) ∈
L∞(∂G). Then the inequality

sup
G

κ%

0

|u(x)| ≤
C

(1 − κ)
n

t
(q+1)

{

%−
n

t
(q+1)‖u‖t(q+1),G%

0
+ %

2

q+1
(1−n

p
)‖b0‖

1

q+1

p/2,G%

0

+ %
1

q+1

(

‖g(x, 0)‖
1

q+1

∞,Γ%

0

+ ‖h(x, 0)‖
1

q+1

∞,Σ%

0

)}

holds for any t > 0, κ ∈ (0, 1) and % ∈ (0, d), where C = const(n, a∗, A
∗, t, p,

µ,G) and d ∈ (0, 1).
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Here we consider two dimensional transmission problem for the Laplace
operator with absorbtion term in an angular domain and investigate the cor-
responding eigenvalue problem. Suppose n = 2, and the domain G lies inside
the angle

G0 =
{

(r, ω)
∣

∣ r > 0; −
ω0

2
< ω <

ω0

2

}

, ω0 ∈ ]0, 2π[ ;

O ∈ ∂G and in some neighborhood of O the boundary ∂G coincides with the
sides ω = −ω0

2 and ω = ω0

2 . We denote

Γ± =
{

(r, ω)
∣

∣ r > 0; ω = ±
ω0

2

}

, Σ0 = {(r, ω) | r > 0; ω = 0}

and we put

β(ω)
∣

∣

Σ0

= β = const ≥ 0, γ(ω)
∣

∣

ω=±
ω0

2

= γ± = const > 0.

We consider the following problem:














































d

dxi
(|u|quxi

) = a0r
−2u|u|q − µu|u|q−2|∇u|2, x ∈ G0 \ Σ0;

[u]Σ0
= 0;

[

a|u|q
∂u

∂n

]

Σ0

+
β

|x|
u|u|q = 0, x ∈ Σ0;

α±a±|u±|
q ∂u±

∂n
+
γ±

|x|
u±|u±|

q = 0, x ∈ Γ± \ O,

where

a =

{

a+ , x ∈ G+ ;

a− , x ∈ G− ,

a± are positive constants; a0 ≥ 0, 0 ≤ µ < 1 + q, q ≥ 0; α± ∈ {0; 1}. We make
the function change u = v|v|ς−1 with ς = 1

q+1 and consider our problem for the

function v(x):











































4v + µςv−1|∇v|2 = a0(1 + q)r−2v, ς =
1

1 + q
, x ∈ G0 \ Σ0;

[v]Σ0
= 0;

[

a
∂v

∂n

]

Σ0

+ (1 + q)β
v(x)

|x|
= 0, x ∈ Σ0;

α±a±
∂v±

∂n
+ (1 + q)γ±

v±(x)

|x|
= 0, x ∈ Γ± \ O.
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We want to find the exact solution of this problem in the form v(r, ω) = rκψ(ω).
For ψ(ω) we obtain the problem







































ψ′′(ω) +
µς

ψ(ω)
ψ′2(ω) +

{

(1 + µς)κ2 − a0(1 + q)
}

· ψ(ω) = 0,

ω ∈ (−ω0

2 , 0) ∪ (0, ω0

2 );

[ψ]ω=0 = 0;

[aψ′(0)] = (1 + q)βψ(0);

±α±a±ψ
′
±

(

±
ω0

2

)

+ (1 + q)γ±ψ±

(

±
ω0

2

)

= 0.

We assume that κ
2 > a0

(1+q)2

1+q+µ and define the value Υ =
√

κ2 − a0
(1+q)2

1+q+µ . We

consider separately two cases: µ = 0 and µ 6= 0.

¬"£0�x�T�y�0�
µ = 0

In this case we get

ψ±(ω) = A cos(Υω) +B± sin(Υω),

where constants A, B± should be determined from the conjunction and bound-
ary conditions.

1. The Dirichlet problem: α± = 0, γ± 6= 0. Direct calculations will
give

ψ±(ω) = cos(Υω) ∓ cot
(

Υ
ω0

2

)

· sin(Υω), Υ =







π

ω0
, if β = 0;

Υ
∗, if β 6= 0,

where Υ
∗ is the least positive root of the transcendental equation

Υ · cot
(

Υ
ω0

2

)

= −
1 + q

a+ + a−
β

and from the graphic solution we obtain π
ω0

< Υ
∗ < 2π

ω0

. The correspond-
ing eigenfunctions are

ψ±(ω) =











cos

(

πω

ω0

)

, if β = 0;

cos(Υ ∗ω) ∓ cot
(

Υ
∗ ω0

2

)

· sin(Υ ∗ω), if β 6= 0.

2. The Neumann problem: α± = 1, γ± = 0. Direct calculations give

Υ =







π

ω0
, if β = 0;

Υ
∗, if β 6= 0,
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where Υ
∗ is the least positive root of the transcendental equation

Υ · tan
(

Υ
ω0

2

)

=
1 + q

a+ + a−
β

and from the graphic solution we obtain 0 < Υ
∗ < π

ω0

. The corresponding
eigenfunctions are

ψ±(ω) =











a∓ sin

(

πω

ω0

)

, if β = 0;

cos(Υ ∗ω) ± tan
(

Υ
∗ ω0

2

)

· sin(Υ ∗ω), if β 6= 0.

3. Mixed problem: α+ = 1, α− = 0; γ+ = 0, γ− = 1. Direct calculations
give: Υ = Υ

∗, where Υ
∗ is the least positive root of the transcendental

equation

a+ tan
(

Υ
ω0

2

)

− a− cot
(

Υ
ω0

2

)

=
1 + q

Υ
β.

The corresponding eigenfunctions are

ψ+(ω) = cos(Υ ∗ω) + tan
(

Υ
∗ω0

2

)

· sin(Υ ∗ω), ω ∈
[

0, ω0

2

]

;

ψ−(ω) = cos(Υ ∗ω) + cot
(

Υ
∗ω0

2

)

· sin(Υ ∗ω), ω ∈
[

−ω0

2 , 0
]

.

4. The Robin problem: α± = 1, γ± 6= 0. Direct calculations give:

1) γ+
γ−

= a+

a−
=⇒ ψ±(ω) = a∓ sin(Υ ∗ω), where Υ

∗ is the least positive

root of the transcendental equation

Υ · cot
(

Υ
ω0

2

)

= −(1 + q)
γ+

a+

and from the graphic solution we obtain π
ω0

< Υ
∗ < 2π

ω0

.

2) γ+
γ−

6= a+

a−
=⇒ A 6= 0 and ψ±(0) 6= 0;

further see below the general case µ 6= 0.

¬"£0�x�T�y�0�
µ 6= 0

It is obvious that in this case ψ(0) 6= 0. By setting y(ω) = ψ ′(ω)
ψ(ω) , we arrive

at the problem for y(ω)










y′ + (1 + µς)y2(ω) + (1 + µς)κ2 − a0(1 + q) = 0, ω ∈
(

−ω0

2 , 0
)

∪
(

0, ω0

2

)

;

a+y+(0) − a−y−(0) = (1 + q)β;

±α±a±y±
(

±ω0

2

)

+ (1 + q)γ± = 0.
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Integrating the equation of our problem we find

y±(ω) = Υ tan {Υ (C± − (1 + µς)ω)} , ∀C±.

From the boundary conditions we have

C± = ±(1 + µς)
ω0

2
∓

1

Υ
arctan

(1 + q)γ±
α±a±Υ

.

Finally, in virtue of the conjunction condition, we get the equation for κ:

a+ ·
α+a+Υ tan

{

(1 + µς)Υ ω0

2

}

− (1 + q)γ+

α+a+Υ + (1 + q)γ+ tan
{

(1 + µς)Υ ω0

2

}

+ a− ·
α−a−Υ tan

{

(1 + µς)Υ ω0

2

}

− (1 + q)γ−

α−a−Υ + (1 + q)γ− tan
{

(1 + µς)Υ ω0

2

}

=
1 + q

Υ
β, where 1 + µς =

1 + q + µ

1 + q
.

Thus we obtain

y±(ω) = Υ tan

{

Υ
1 + q + µ

1 + q

(

±
ω0

2
− ω

)

∓ arctan
(1 + q)γ±
α±a±Υ

}

and, because of (lnψ(ω))
′
= y(ω), it follows that

ψ±(ω) = cos
1+q

1+q+µ

{

Υ
1 + q + µ

1 + q

(

±
ω0

2
− ω

)

∓ arctan
(1 + q)γ±
α±a±Υ

}

.

At last, returning to the function u we establish a solution of our problem

u±(r, ω) = r
κ

1+q cos
1

1+q+µ

{

Υ
1 + q + µ

1 + q

(

±
ω0

2
− ω

)

∓ arctan
(1 + q)γ±
α±a±Υ

}

.

If we consider the Dirichlet problem without the interface: α± = 0,
a± = 1, β = 0, then we can calculate

u(r, ω) = rλ̃ cos
1

1+q+µ

(

πω

ω0

)

; ˜λ =

√

(π/ω0)2 + a0(1 + q + µ)

1 + q + µ
.

It recovers a well known result (see [2], p. 374, Example 4.6). Now we can
verify that the derived exact solution satisfies the estimate of Theorem 3. In
fact, in our case we have: the value λ is equal ϑ = π

ω0

and therefore

|u(r, ω)| ≤ rλ̃ ≤ r
π

ω0
· 1

1+q+µ ≤ r
π

ω0
· 1+q−µ

(1+q)2 ,

since a0 ≥ 0 and 1
1+q+µ ≥ 1+q−µ

(1+q)2 .
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Optimal design problem for 2D composite materials with dif-

ferent circular inclusions is studied on the base of the potential method
combined with functional equation method. Exact geometric description
of the optimal distribution of the inclusions is determined.

fhgji k\l`mdn0o0p0qdl`r n0k

The article is devoted to the constructive analysis of mathematical models
arising at the study of optimal design of 2D composite materials (see e.g. [5]).

The optimal design problem in the considered case is the problem of the
determination of a distribution of circular inclusions in a matrix of homogeneous
material in such a way that the obtained inhomogeneous material possesses an
extremal (minimal or maximal) effective conductivity in a given direction.

Potential analysis is used in combination with the method of functional
equations (for wider description of the approach see [6] and [7]). Such approach
makes possible to discover general properties of composite materials on the base
of an explicit representation of the effective conductivity functional. Besides,
in certain special cases we have found an exact geometric description of an
optimal (in the above sense) distribution of inclusions.

The paper continues the authors’ study of behind optimal design problems
which were previously devoted to the case of 2D composite materials with
equal circular inclusions (see [5]). In particular, in [5] we studied the problem
of optimal design of 2D unbounded composite materials in the case of small
Bergmann parameter. The corresponding boundary conditions are simplified,
namely only their main parts are considered. Such model situation allows us
to give a complete geometric description of the optimal distribution of circular
inclusions of equal radius. It was shown that the solution of the simplified
boundary value problems gives the minimal or maximal value to the functional
of the effective conductivity if each inclusion touches at least one of others. For
small number of inclusions an exact description of the optimal distribution of

AMS (2000) Subject Classification: 30E25, 74E30, 74Q15, 80A20.
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inclusions is given and exact optimal value of the changing part of the functional
of the effective conductivity is calculated. Such model problem can be used
for an approximation of the optimal design problem with sufficiently small
concentration of inclusions ν.

Here we concern with the case of non-equal circular inclusions. We use
the same argument. It should be noted that the constructive approach applied
here differs from the recently studied models of optimal design based mainly
on the homogenization technique (see e.g. [2], [1]).

� gj���Mn0o0�0�

Let us consider 2D unbounded composite materials with circular inclusions
of different radii. Let the matrix of a composite be geometrically modelled by
an unbounded multiply connected circular domain, namely, an exterior of fi-
nite number of discs of different radii. These discs correspond to inclusions for
which the radii are given but the position on the complex plane are subject of
further determination. We suppose that the matrix is filled in by the homoge-
neous material of a constant (thermal) conductivity λm = 1, and the inclusions
are filled in by another material of a constant conductivity λi = λ. We sup-
pose additionally that the Bergmann parameter ρ = λ−1

λ+1 is sufficiently small
(|ρ| � 1). The composite material is placed into the steady (thermal) field. In
order to avoid indeterminancies, we consider only the case of positive Bergmann
parameter, i.e., the conductivity of inclusions is greater than the conductivity
of matrix.

The question is to determine the distribution of the inclusions for which the
considered inhomogeneous composite material possesses an extremal (minimal
or maximal) effective conductivity in a given direction (say in the direction
of the positive real line). In the case of a small Bergmann parameter we use
the same approach as in [5], namely, we simplify the boundary conditions by
considering only the main part of them (with respect to the power of ρ) and
then minimize or maximize the only changing part of the functional of the
effective conductivity. Such simplification gives us possibility to obtain an
analytic solution to the model problem. The later can be considered as an
approximation to the starting optimal design problem. The model problem is
studied by the reduction to a finite-dimensional extremal problem with centers
of inclusions as unknown variables.

We have to note that our approach does not depend on the type of the
considered physical field neither on the direction in which we determine the
effective conductivity.
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Let Dk := {z ∈ C : |z − ak| < rk}, k = 1, . . . , n, |aj − ak| ≥ rj + rk

and aj 6= ak, for k 6= j, be a finite number of disjoint discs and Lk := {z ∈
C : |z − ak| = rk} be their boundary circles. We consider an optimal design
problem in the potential case, i.e., there are thermal potentials uk in each disc
Dk , k = 1, . . . , n, as well as a potential u in the domain D = C \

⋃n

k=1 Dk .
We suppose that these potentials satisfy the ideal contact conditions on the
boundary of inclusions L =

⋃n
k=1 Lk . By introducing the complex potentials

ϕ(z) = u(z) + iv(z), z ∈ D,

ϕk(z) = uk(z) + ivk(z), z ∈ Dk, k = 1, . . . , n,
(1)

we arrive at the R-linear boundary value conditions on each circle Lk

ϕ(t) = ϕk(t) − ρϕk(t) + g(t), (2)

where g(z) is a given function representing an external thermal field. It is
well-known (see e.g. [6], [7]) that for a general domain problem, (2) does not
admit an analytic solution. In the case of a multiply connected circular domain
an analytic solution to the R-linear boundary value problem with constant
coefficients is obtained (see e.g. [7]) in the form of series with summations
depending on behind certain group of symmetries. Anyway, even in this case
we cannot use such representation in order to get an exact description of the
optimal distribution of (circular) inclusions. That is why certain simplification
of the problem is made.

Here we consider the case of unbounded composite materials with finite
number of circular inclusions and with conductivities of matrix and inclusions
close to each other (i.e., with small Bergmann parameter). Thus the concen-
tration ν is equal to 0 and the second term in the right hand-side of (2) is
sufficiently small. Thus we replace the starting optimal design problem by
model one. The later consists in optimization of the changing part of the
standard functional of the effective conductivity

λe

λm

= 1 +
2νρ

n

n
∑

k=1

∫

Lk

Re ϕ−
k (t) dy, t = x + iy, (3)

on the set of solutions to a simplified boundary value problem (which depend
on position of the inclusions in the composite).

Therefore, our model optimal design problem is considered in the form: to
find positions of the discs Dk , k = 1, . . . , n, such that the following functional
σ possesses an optimal value, namely
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σ :=

n
∑

k=1

∫

Lk

Re ϕ−
k (t) dy −→ min(max), (4)

under constrains (boundary conditions)

ϕ+(t) − ϕ−
k (t) = g(t), t ∈ L =

n
⋃

k=1

Lk , (5)

where t = x + iy.
It is known (see [3]) that the solution of the problem (5) can be represented

in the following form

ϕ±(z) =
1

2πi

∫

L

g(t) dt

t − z
, z ∈ D±, (6)

where each of the circles Lk is clock-wise oriented. Thus the extremal distri-
bution of domains Dk is determined by their centers and also by the values of
a given function g. The determination of the extremal value of the functional
(4) is in general rather complicated problem. The complete (and exact) solu-
tion is possible only in the case when the function g is explicitly given. Here
we confine ourself to the important for mechanics of composite materials case
g(z) = z. In this case, the integrals (6) are calculated explicitly and the general
solution to the problem (5) has the following form

ϕ(z) =



























−
n

∑

m=1

r2
m

z − am

, z ∈ D−,

ak −
n

∑

m6=k

r2
m

z − am

, z ∈ Dk .

(7)

We calculate the value of the functional (4) by using the mean value theo-
rem for harmonic functions (see [4])

σ =

∫

L

Re ϕ−(t) dy =
n

∑

k=1

∫

Lk

Re ϕ−(t) dy = π

n
∑

k=1

r2
kRe

(

ϕ−
)′

(ak). (8)

Let us find the values
(

ϕ−
k

)′
(ak):

(

ϕ−
k

)′
(ak) =

∑

m6=k

r2
m

(z − am)
2

∣

∣

∣

∣

∣

z=ak

=
∑

m6=k

r2
m

(ak − am)
2 .

Substituting these values into (8), we get σ = Re µ, where
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µ = π

n
∑

k=1

∑

m6=k

r2
mr2

k

(ak − am)2
. (9)

Therefore, the analysis of the initial extremal problem is reduced now to the
study of the complex valued function µ of n complex variables a1, a2, . . . , an .
Since the value of the function µ is independent on the translation, we can fix
one of the points ak .

Lemma

Assume that the function σ = Re µ attains its maximum on the set of points

A := {a1, a2, . . . , an}. Then

1) µ(A) ∈ R;

2) each disc Dk is touched by at least one of other discs Dm , so that the

closure of the domain D+ is a connected set on the complex plane C.

Proof. 1) Let us represent the functional µ given by (9) in the form µ =
µ1 + iµ2. Denote by µ(A) the value of the functional µ corresponding to the
set of points A.

Consider the value of the function µ after rotation of the plane by a certain
angle θ, i.e., corresponding to the set of points A′ = {eiθa1, e

iθa2, . . . , e
iθan}:

µ(A′) = π

n
∑

k=1

∑

m6=k

r2
mr2

k

e2iθ (ak − am)2
= e−2iθ(µ1(A) + iµ2(A))

= µ1(A) cos 2θ + µ2(A) sin 2θ + i(µ2(A) cos 2θ − µ1(A) sin 2θ).

Therefore, σ = Re µ = µ1 cos 2θ + µ2 sin 2θ. One can choose the value of θ in
such a way that

µ(A′) = |µ(A)| = σ(A′) ≤ σ(A) = Re µ(A).

Hence Im µ(A) = 0 1.
It follows that on the extremal set of points A the function

µ(A) = µ1(A) = π

n
∑

k=1

∑

m6=k

r2
mr2

k

(ak − am)
2

has a real value.

2) Let A := {a1, a2, . . . , an} be an optimal set of centers, i.e., the functional
σ attains its maximal value on A. Consider the corresponding optimal set of

1The authors are thankful to the referee who shows a shorter proof of the first assertion
to Lemma.
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discs with the centers a1, a2, . . . , an (for simplicity we can denote this set by A

too). Introduce the following function

u(z) := Re

n
∑

m=2

r2
mr2

1

(z − ak)2
.

The sum u(a1) is the part of the sum σ, which is changing when the disc D1

is moving. Under assumption, the function u(z) attains its maximal value for
z = a1 . Moreover, |a1 − ak| > r1 + rk , k = 2, 3, . . . , n. But the function u(z) is
harmonic in the (in general, multiply connected) domain

{z : |z − ak| > r1 + rk, k = 2, 3, . . . , n}

and continuous in

{z : |z − ak| ≥ r1 + rk , k = 2, 3, . . . , n},

vanishing at infinity. Therefore, the maximal value of the function u(z) is
attained at a boundary point of the above domain, i.e., when |a1 − ak| = r1+rk

for certain k. Hence the optimal discs are touching each other.
Let us show now that the closure of the discs corresponding to the set A

is a connected set. If not, then A = A1 ∪A2, with none disc from A1 touching
any disc from A2 . Let us fix one of the centers ap ∈ A1 , and one of the centers
aq ∈ A2 . Represent another centers ak ∈ A1 in the form ak = ap + bkp , and
the centers am ∈ A2 in the form am = aq + bqm , respectively. We consider the
following function

u(z) := Re
∑

k,m

r2
mr2

k

(ap − z + bkp − bmq)2
,

where k, m are those values of indices for which ak ∈ A1 , am ∈ A2 . The sum
u(aq) is a part of the sum σ, which is changing when the mutual position of
the sets A1 , A2 is changing for fixed elements inside these sets. The variable
z is modelling such changing. This variable is running along a compact set
K in Ĉ, which described all possible changing of the mutual position of discs
corresponding to A1 , A2 , up to the touching of these sets. The function u(z)
is harmonic in int K and continuous in K. By the Maximum Principle for
harmonic functions this function has to attain its maximum on the boundary
of K. The latter corresponds to the touching of certain discs from A1 with
certain discs from A2 . It contradicts our assumption and the Lemma is proved.

It follows from the Lemma that the optimal distribution of the discs always
corresponds to the percolation situation, i.e., to the case when the discs are
touching and constitute a connected set.
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Let n = 2, D1 = {z ∈ C : |z − a1| < r}, D2 = {z ∈ C : |z − a2| < R},

r < R. Then µ1 = 2πr2R2

(a1−a2)
2 . Hence, Im 1

(a1−a2)2
= 0. It is possible in the

following two cases:

a) a1 −a2 = −(r +R)i (see Fig. 1.1), or a1 −a2 = (r +R)i (see Fig. 1.2). In

this case µ1 = − 2πr2R2

(R+r)2 . Therefore, the minimal value of the functional

σ (which is the changing part of the effective conductivity functional) for
composites with two circular inclusions is attained when the centers of
these inclusions lay on the straight line parallel to imaginary axes, and
these discs are touching each other, of course.

6

-
0 x

y

·

·��
��&%

'$
a2

a1

Fig. 1.1. Position of two inclusions corresponding

to the minimal value of the functional (4)

6

-
0 x

y

&%
'$

·

��
��

·a1

a2

Fig. 1.2. Position of two inclusions corresponding

to the minimal value of the functional (4)

b) a1 − a2 = −(R + r) (see Fig. 1.3), or a1 − a2 = R + r (see Fig. 1.4), and

thus µ1 = 2πr2R2

(R+r)2 . Maximal value of the effective conductivity functional

corresponds to the horizontal position of inclusions.
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6

-
0 x

y

&%
'$

·��
��

· a2a1

Fig. 1.3. Position of two inclusions corresponding

to the maximal value of the functional (4)

6

-
0 x

y

��
��

·&%
'$

· a1a2

Fig. 1.4. Position of two inclusions corresponding

to the maximal value of the functional (4)

Example

In the case of three inclusions an optimal configuration is of the cluster type,
i.e., three inclusions are touching each other.

For instance, let us consider three discs of radii r = 1, 2, 4, respectively.
Put an origin of the coordinate system at the focal point of the triangle with
edges at the centers of the touching discs. Then the value of the functional µ

is equal to

µ = −
28π

r2
ei( π

3
−2α),

where r = 45
4
√

14
is the circumradius of the triangle, and α is a rotation angle.

The minimal (maximal) value of this functional is achieved at α = π
3 (α = 4

3π),
and is equal to µ = − 6272

2025π (µ = + 6272
2025π, respectively).

For comparison, if we consider the chain of inclusions of the same radii, then
minimal (maximal) value of µ is equal to µ = − 80

81π (µ = + 80
81π, respectively).
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The Bergman kernels of multiply connected domains are related

with proper holomorphic maps onto the unit disc. We study multiply
connected planar domains and represent conformal equivalence of the Bell
representative domains with annuli or any doubly connected domains by
explicit formulae. We study the expression for the Bergman kernels of
circular multiply connected planar domains.

[]\_^ `RaVbMc0d0e0fMaVg c0`

In this paper, we study the Bergman kernels of multiply connected domains
and their Bell representations and circular multiply connected domains.

Let Ω be a bounded domain in C. The Bergman projection P is the or-
thogonal projection of L2(Ω) onto its subspace H2(Ω) of holomorphic functions.
The Bergman kernel KΩ(·, ·) is the kernel for P in the sense that for f ∈ L2(Ω)

Pf(z) =

∫

Ω

KΩ(z, ζ)f(ζ) dA, z ∈ Ω.

Let U be the unit disc in C with the area measure dA = dx∧dy = i
2dz∧dz.

Then the Bergman kernel for U is given by

KU (z, ζ) =
1

π

1
(

1 − zζ
)2 , z, ζ ∈ U. (1.1)

Let Ω 6= C be a simply connected planar domain and f : Ω −→ U be the
Riemann map with f(a) = 0 and f ′(a) > 0. The transformation formula for
the Bergman kernel is

KΩ(z, ζ) = f ′(z)KU (f(z), f(ζ))f ′(ζ). (1.2)

AMS (2000) Subject Classification: Primary 30C20, 30C40, Secondary 30C35, 30E25.
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It implies that

KΩ(z, ζ) =
1

π

f ′(z)f ′(ζ)
(

1 − f(z)f(ζ)
)2 z, ζ ∈ Ω. (1.3)

Hence, KΩ(a, a) = 1
π
f ′(a)2. Therefore, the derivative of f(z) is determined

through the Bergman kernel by the formula

f ′(z) = KΩ(z, a)

√

π

KΩ(a, a)
. (1.4)

The transformation formula (1.2) for the Bergman kernel holds under any
biholomorphic map between two domains. Let us determine the Bergman ker-
nel for {z ∈ C : |z| < 2}.

Example 1.1

Let U ′ = {z ∈ C : |z| < 2}. Let f(z) = i
2z be a biholomorphic map from U ′

to the unit disc. Then the transformation formula for the Bergman kernels
implies that

KU ′(z, ζ) =
1

π

f ′(z)f ′(ζ)
(

1 − f(z)f(ζ)
)2

=
1

π

i
2
−i
2

(

1 − iz
2

−i ζ
2

)2

=
1

π

4

(4 − zζ )2
.

(1.5)

Let Ωρ = {z ∈ C : ρ < |z| < 1} be a circular annulus. The orthonormal
complete set for H2(Ω) is given by

ϕ2n−1(z) = zn−1

(

n

π(1 − ρ2n)

)
1

2

, n = 1, 2, . . . ,

ϕ2(z) =
1

z

(

1

−2π ln ρ

)
1

2

,

ϕ2n(z) =
1

zn

(

1 − n

π(1 − r2(n−1))

)
1

2

, n = 2, . . . .

Hence, we have

KΩρ
(z, ζ) =

∞
∑

n=1

ϕn(z)ϕn(ζ )

=
1

πzζ

(

P(ln zζ) +
η1

πi
−

1

2 ln ρ

)

,

(1.6)
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where P is the Weierstrass function with the periods ω1 = πi, ω2 = ln ρ, and
2η1 is the increment of the Weierstrass ζ-function related to the period ω1

(see [5]).
On the other hand, the Bergman kernels for domains in C

n are known in
special cases such as the unit ball, the polydisc, the Thullen domain [8], convex
domains [6], the Lie ball [10], the minimal ball [17] and so on. For example,
the Bergman kernel for the unit ball B in C

n is

KB(z, ζ) =
n!

πn

1

(1 − zζ)n+1
.

Suppose that Ω is a bounded domain with C∞ smooth boundary. The
Green function GΩ(z, w) and the Bergman kernel KΩ(z, w) associated to Ω are
related via the following formula, see [1]:

KΩ(z, ζ) = −
2

π

∂2GΩ(z, ζ)

∂z∂ζ
. (1.7)

� \_�0�0� � bM�0�0bM�0�0�0`RaV��aVg c0`0�

A holomorphic function A(z, w) on an open set in C×C is called algebraic
if there exists a polynomial P (A(z, w), z, w) = 0.

The kernel KΩ(z, w) is algebraic if and only if KΩ(z, w) = R(z, w̄) where
R is a holomorphic algebraic function of {(z, w̄) : (z, w) ∈ Ω × Ω}. It is the
same as for fixed b ∈ Ω, KΩ(z, b) is an algebraic function of z.

In this section we study the Bell representative domains where the Bergman
kernels are algebraic. One can see from (1.3) that it is possible to represent
the Bergman kernel for simply connected planar domains via the Riemann
map. It is rational if and only if the corresponding Riemann map is rational.
For a bounded n-connected domain, the Bergman kernel cannot be rational
if n > 1 (see [2]). Hence, for n-connected domains, it is interesting to study
the question, when the Bergman kernel is algebraic even though we cannnot
express it explicitly.

Let Ω be an n-connected planar domain and let fa: Ω −→ U be the Ahlfors
map with fa(a) = 0, f ′

a(a) > 0. Then

n
∑

k=1

KΩ(z, Fk(ζ))F ′
k(ζ) = f ′

a(z)KU (fa(z), ζ)

for z ∈ Ω, ζ ∈ U − fa(V ) where V = {z ∈ Ω : f ′
a(z) = 0} (see [1]).

The following theorem in [3] tells us when the Bergman kernel is algebraic.

Theorem 2.1

Let Ω be an n-connected non-degenerate planar domain. The following state-

ments are equivalent:
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1) The Bergman kernel KΩ(·, ·) is algebraic.

2) The Szegő kernel SΩ(·, ·) is algebraic.

3) There exists a proper holomorphic map f : Ω −→ U which is algebraic.

4) Every proper holomorphic map from Ω onto U is algebraic.

Let us consider an example. Let

Ar =
{

z ∈ C : |z + 1
z
| < r

}

for r > 2. Then Ar is a 2-connected domain with real analytic boundary if
r > 2. The algebraic function

fr(z) =
1

r

(

z +
1

z

)

defines a proper holomorphic map from Ar to U which is a 2-sheeted branched
covering map and it is algebraic. By the above theorem, the Bergman kernel
for Ar is algebraic.

Additionally, the mapping fr which is a 2-to-1 map from Ar to U extends
to a 1-to-1 biholomorphic from every connected component of Ac

r in C onto
U c in C. The modulus of Ar is a continuous increasing function of r that
approaches to 0 as r → 2+ and to ∞ as r → ∞. Hence, every 2-connected
domain is biholomorphic to one of Ar (see [3]).

This result leads to the conjecture (see [3]) that any n-connected non-
degenerate planar domain Ω is biholomorphic to a domain

{

z ∈ C :

∣

∣

∣

∣

z +

n−1
∑

k=1

ak

z − bk

∣

∣

∣

∣

< r

}

with ak, bk ∈ C, r > 0. Such a domain is called Bell representation and this
conjecture is solved in [13]. Let

(a, b) = (a1, a2, . . . , an−1, b1, b2, . . . , bn−1) ∈ C
2n−2

and the corresponding domain

Wa,b =

{

z ∈ C :

∣

∣

∣

∣

z +

n−1
∑

k=1

ak

z − bk

∣

∣

∣

∣

< 1

}

, ak, bk ∈ C.

Theorem 2.2 ([13])
Let Ω be a non-degenerate n-connected planar domain with n > 1. Then Ω is

biholomorphic to a domain Wa,b .

The Bergman kernel associated with Wa,b is algebraic since f : Wa,b −→ U

defined by
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fa,b(z) = z +

n−1
∑

k=1

ak

z − bk

is an algebraic proper holomorphic map. To describe domains which possess
algebraic proper holomorphic maps onto the unit disc is an important task in
the problem of the equivalence between domains. Let

Bn = {(a, b) ∈ C
2n−2 : Wa,b is an n-connected planar domain}.

Bn is called the coefficient body for n-connected canonical domains. In [14],
Bn is explicitly figured out.

Theorem 2.3 ([14])
For a ∈ C, let a′ ∈ C be such that (a′)2 = a. Then,

B2 = {(a, b) ∈ C
2 : a 6= 0, |b + 2a′| < 1, |b − 2a′| < 1}.

Fix (a, b) ∈ Bn and let Wa,b be the corresponding n-connected canonical
domain. Let E(Wa,b) be the leaf in Bn for Wa,b consisting of all the points
which correspond to n-connected canonical domains biholomorphically equiv-
alent to Wa,b.

Theorem 2.4 ([14])
For r > 2,

E(Ar) =

{

(a, b) ∈ B2 :

∣

∣

∣

∣

4a′

1 − (b + 2a′)(b − 2a′)

∣

∣

∣

∣

=
4r

4 + r2

}

.

In particular, E(Ar) ∩ {(a, 0) ∈ C
2} = {(a, 0) ∈ C

2 : |a| = r−2}.

Now, we give two examples of points in E(Ar) explaining the above theo-
rems.

Example 2.5

For any real θ, let a = r−2eiθ and a′ = r−1ei θ

2 be so that (a′)2 = a and

(a, 0) ∈ E(Ar). Let f be defined by f(z) = a′z. Take z ∈ Ar so that
∣

∣z+ 1
z

∣

∣ < r.
Then f(z) = w satisfies

∣

∣

∣
w +

a

w

∣

∣

∣
=

∣

∣

∣
a′z +

a

a′z

∣

∣

∣
= |a′|

∣

∣

∣
z +

1

z

∣

∣

∣

< |a′|r = 1.

So, f is a biholomorphic map from Ar onto Wa,0 .

Example 2.6

Let r = 3, a = 9
169 , and a′ = 3

13 so that (a′)2 = a. Then (a, 2a′) ∈ B2 by

Theorem 2.3. Also, since 4a′ = 12
13 , it belongs to E(A3) by Theorem 2.4.
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For n > 2 we have the following theorem suggesting the basic idea for
describing Bn .

Theorem 2.7 ([15])
Bn is the set of (a, b) such that equation f ′

a,b(z) = 0 has 2n − 2 solutions

c1, c2, . . . , c2n−2 counted with multiplicities such that |fa,b(cj)| < 1 for every j.

In particular, Bn is an open subset of C
2n−2.

Now, we give an example for a point in B3 .

Example 2.8

Let a1 = a2 = −2+
√

20
162 and b1 = −b2 = 1

16 . Then (a1, a2, b1, b2) ∈ B3 . In fact
{

±
√

3+
√

20
16 ,±

√
5−

√
20

16 i
}

is the set of critical points of fa,b and |fa,b| < 1 at

each critical point.

�0\_�0c0`R�Vc0bM�N��� �0�0e0g ����� �0`0fR���0�Rax�C�0�0`�d0c0�N��g `0�

In the previous section, we get the biholomorphic equivalence of any n-
connected domain and a Bell representation while we studied the algebraicity
property of the Bergman kernel. For 2-connected domains, annuli Ωρ and
Bell representations Ar are two canonical domains. So, it is interesting to
demonstrate the equivalence of these domains. In order to check the conformal
equivalence of them, we project them onto the unit disc.

Note that Ωρ is biholomorphic to Ar for some r > 2 if and only if there is
a biholomorphic map T : U −→ U with T ({±icρ}) = {± 2

r
}. The Ahlfors map

fρ: Ωρ −→ U with fρ(
√

ρ) = 0 and f ′
ρ(
√

ρ) > 0 maps {|z| =
√

ρ} onto a line
segment with endpoints ±icρ . Hence we get the following theorem.

Theorem 3.1 ([12])
Let Ωρ = {z ∈ C : ρ < |z| < 1} with 0 < ρ < 1. Ωρ is conformally equivalent

to Ar , (r > 2) if and only if r = 2
cρ

, where

cρ =

2
√

ρ

∞
∑

k=0

(−1)
(k+1)

2

ρk

1 + ρ2k+1

1 + 2

∞
∑

k=0

(−1)
k+2

2

ρ2k+1

1 + ρ2k+1

.

Also, Crowdy [7] got the relation between r and ρ and constructed a confor-
mal mapping from Ωρ onto Ar using Schottky–Klein prime functions associated
with Ωρ .
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Deger [9] showed that when J(z) = 1
2 (z + 1

z
), 2

r
J(z) is in fact the Ahlfors

map for Ar with 2
r
J(i) = 0 and expressed the Bergman kernel for Ar as

KAr
(z, w) = C1

2k2S(z, w̄) + kC(z, w̄)D(z, w̄) + C2

zw̄
√

1 − k2J(z)2
√

1 − k2J(w̄)2

where k = ( 2
r
)2 and C1, C2 are constants that depend only on r and S(z, w),

C(z, w), D(z, w) are given.

In fact, 2
r
J(z) = fr(z) and so fr is the Ahlfors map for Ar with fr(i) = 0,

f ′
r(i) > 0. The following expression of the Bergman kernel for any 2-connected

domain is given in [4].

Theorem 3.2

The Bergman kernel KΩ(z, w) for any 2-connected planar domain Ω is given

by

Φ′(z)KAr
(Φ(z), Φ(w))Φ′(w)

where the biholomorphic map Φ from Ω onto its representative domain Ar

satisfies that 2
r
J(Φ(z)) = λfa(z) where fa: Ω −→ U is an Ahlfors map for a

point a on the median of Ω, |λ| = 1.

 "\_�0g bMfRe0� ��b¡�Ne0� aVg �0� ¢CfRc0`0`0�0fMaV�0dC�0� ��`0��b�d0c0�N��g `

Let the discs

Dk = {z ∈ C : |z − ak| < rk}, k = 1, 2, . . . , n

be mutually disjoint and let

D = C −
n
⋃

k=1

(Dk ∪ ∂Dk)

be the complement of these discs to the extended complex plane. The domain
D is called a circular multiply connected domain. Let f : D −→ Ω be a biholo-
morphic mapping of D onto a bounded domain Ω with C∞ smooth boundary.
Then

KD(z, ζ) = f ′(z)KΩ(f(z), f(ζ))f ′(ζ) z, ζ ∈ D.

In addition, the Green functions GD and GΩ associated with D and Ω respec-
tively, satisfy the identity

GD(z, ζ) = GΩ(f(z), f(ζ)), z, ζ ∈ D. (4.1)
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Hence, the Bergman kernel KD and the Green function GD(z, ζ) associated to
D are related via

KD(z, ζ) = −
2

π

∂2GD(z, ζ)

∂z∂ζ
. (4.2)

Let z∗(k) denote the inversions with respect to the circles

∂Dk = {z : |z − ak| = rk}, k = 1, 2, . . . , n,

given by

z∗(k) :=
r2
k

z − ak

+ ak . (4.3)

We denote their compositions by:

z∗(ksks−1···k1)
:=

(

z∗(ks−1···k1)

)∗

(ks)
(4.4)

where two adjacent numbers kj , kj+1 (j = 1, 2, . . . , s − 1) are not equal. Here
s represents the number of inversions and is called the level of the mapping.

These are Möbius transformations γj , (j = 0, 1, . . .) in z or z if s is even or
odd, respectively. To be precise, they are defined by

γ0(z) := z,

γ1(z) := z∗(1), γ2(z) := z∗(2), . . . , γn(z) := z∗(n),

γn+1(z) := z∗(12), γn+2(z) := z∗(13), . . . , γn2(z) := z∗(n,n−1),

γn2+1(z) := z∗(121), and so on.

The level s of γj is not decreasing. The above functions generate a Schottky
group S (see [16]). Let Sm = {z∗(ksks−1...k1)

: ks 6= m} ⊂ S − {γ0}.

Mityushev and Rogosin [16] constructed the explicit expression for the com-
plex Green function MD(z, ζ) associated to D using the above γj . The expres-

sion for the real Green function GD(z, ζ) and the calculation of ∂2GD

∂z∂ζ
leads to

the following expression for the Bergman kernel KD(z, ζ).

Theorem 4.1 ([11])
Let

Ψ(j)
m (z) :=



















γ′
j(z)

γj(z) − am

if level of γj is even,

−
γj

′(z)

γj(z) − am

if level of γj is odd.

(4.5)
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The Bergman kernel KD(·, ·) associated to a circular multiply connected planar

domain D is given by

KD(z, ζ) = −
1

π

n
∑

k=1

n
∑

m=1

Am

∞
∑

γj∈Sm

Ψ
(j)
m (ζ)

∑

γj∈Sk

Ψ
(j)
k (z)

−
1

π

∑

γj∈F

γ ′
j(z)

( ζ − γj(z))2
.

(4.6)

where Am are some real constants and F is the set of γj ’s of the odd level.

Example 4.2

We consider the simply connected domain

D = {z ∈ C : |z| > 2}.

Then we have two-element group of inversions

γ0(z) = z, γ1(z) =
22

z
.

The constant A1 is equal to zero and

KD(z, ζ) = −
1

π

γ ′
1(z)

( ζ − γ1(z))2
=

1

π

22

(22 − zζ )2
. (4.7)

Similarly, for a general circular simply connected domain

D = {z ∈ C : |z − a1| > r1},

the Bergman kernel is given by

KD(z, ζ) =
1

π

r2
1

(r2
1 − (z − a1)ζ )2

and hence it is rational.

We find that the Bergman kernel in (4.6) for D matches with the result in
(1.5). Therefore, we conclude that for n = 1, D is biholomorphic to U with
rational biholomorphic map f(z) = r1

z−a1

and hence KD(z, ζ) is rational.

Remarks

If n > 1, KD(z, ζ) is not rational. But, KD(z, ζ) is algebraic if there is an
algebraic proper holomorphic map from D onto U .



h$h�i�k"l<l<mon prqTstl<mtu
¥ �0�0`��0e0�0�RaVg c0`0�

1. Find a precise description of B3 in order to make corresponding Bell
representations which are canonical 3-connected domains.

2. Find a relation between the expression (1.6) of the Bergman kernel as-
sociated with an annulus and the expression (4.6) of the Bergman kernel
associated with a circular doubly connected planar domain.

3. Find relations between circular multiply connected planar domains and
Bell representations.

¦�fR§5`0c��C� �0d0¨0�N�0`RaV�
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The harmonic Dirichlet problem in a planar domain with smooth

cracks of an arbitrary shape is considered in case, when the solution is
not continuous at the ends of the cracks. The well-posed formulation of
the problem is given, theorems on existence and uniqueness of a classical
solution are proved, the integral representation for a solution is obtained.
With the help of the integral representation, the properties of the solution
are studied. It is proved that a weak solution of the Dirichlet problem in
question does not typically exist, though the classical solution exists.

bdcfe gXh\i`j0k0l0m`h\n j0g

Boundary value problems in planar domains with cracks are widely used
in physics and in mechanics, and not only in mechanics of solids, but in fluid
mechanics as well, where cracks (or cuts) model wings or screens in fluids.
Integral representation of a classical solution to the harmonic Dirichlet prob-
lem in a planar domain with cracks of an arbitrary shape has been obtained
by the method of integral equations in [5, 4, 3, 2, 6] in case when the solu-
tion is assumed to be continuous at the ends of the cracks. In the present
paper this problem is considered in case when the solution is not continuous
at the ends of the cracks. The well-posed formulation of the boundary value
problem is given, theorems on existence and uniqueness of a classical solu-
tion are proved, the integral representation for a classical solution is obtained.
Moreover, properties of the solution are studied with the help of this integral
representation. It appears that the classical solution to the Dirichlet problem
considered in the present paper exists, while the weak solution typically does
not exist, though both the cracks and the functions specified in the boundary
conditions are smooth enough. This result follows from the fact that the square
of the gradient of a classical solution basically is not itegrable near the ends
of the cracks, since singularities of the gradient are rather strong there. This
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The research has been partly supported by the RFBR grants 08-01-00082, 09-01-00025.



o$o�p�qXr s0rutwvyx,z { z |u}d{ { ~��wr �u�urutwvyx,z { z |u}d���u�

result is very important for numerical analysis, when finite element and finite
difference methods are used to obtain numerical solution. To use difference
methods for numerical analysis one has to localize all strong singularities first
and next to use difference method in a domain excluding the neighbourhoods
of the singularities.

� cf�0j0i`��l0� ��h\n j0g�jX� h\�0���0i`j0�0� �0�

By an open curve we mean a simple smooth non-closed arc of finite length
without self-intersections [8].

In a plane with Cartesian coordinates x = (x1, x2) ∈ R
2 we consider a

connected domain D bounded by simple closed curves Γ2
1, . . . ,Γ

2
N2

of class C2,λ,
λ ∈ (0, 1]. It is assumed that the curves Γ2

1, . . . ,Γ
2
N2

do not have common

points. We set Γ2 =
⋃N2

n=1 Γ2
n , therefore ∂D = Γ2. We will consider both the

case of an exterior domain D and the case of an interior domain D, when the
curve Γ2

1 encloses all others. In the domain D we consider disjoint open curves

Γ1
1, . . . ,Γ

1
N1

of class C2,λ. We set Γ1 =
⋃N1

n=1 Γ1
n , so Γ1 ⊂ D. We assume that

points of the curves Γ1, including endpoints, are interior points of the domain
D. In other words, it is assumed that the closed curves Γ2 and the open curves
Γ1 do not have any common points, moreover, endpoints of Γ1 do not belong
to Γ2. We set Γ = Γ1 ∪ Γ2.

We assume that each curve Γj
n is parametrized by the arc length s:

Γj
n = {x : x = x(s) = (x1(s), x2(s)), s ∈ [aj

n, b
j
n]}, n = 1, . . . , Nj , j = 1, 2,

so that a1
1 < b11 < . . . < a1

N1
< b1N1

< a2
1 < b21 < . . . < a2

N2
< b2N2

and the domain
D is placed to the right when the parameter s increases on Γ2

n . The points
x ∈ Γ and values of the parameter s are in one-to-one correspondence except
the points a2

n , b2n , which correspond to the same point x for n = 1, . . . , N2 .
Further on, the sets of the intervals

N1
⋃

n=1

[a1
n, b

1
n],

N2
⋃

n=1

[a2
n, b

2
n],

2
⋃

j=1

Nj
⋃

n=1

[aj
n, b

j
n]

on the Os-axis will be denoted by Γ1, Γ2 and Γ too.
For j = 0, 1 and r ∈ [0, 1] set

Cj,r(Γ2
n) = {F(s) : F(s) ∈ Cj,r[a2

n, b
2
n], F (m)(a2

n) = F (m)(b2n), m = 0, . . . , j}

and

Cj,r(Γ2) =

N2
⋂

n=1

Cj,r(Γ2
n).
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The tangent vector to Γ at the point x(s), in the direction of growth of the pa-
rameter of s, will be denoted by τx = (cosα(s), sinα(s)), while the normal vec-
tor coinciding with τx after counterclockwise rotation by the angle of π

2 , will be
denoted by nx = (sinα(s),− cosα(s)). According to the chosen parametriza-
tion cosα(s) = x′1(s), sinα(s) = x′2(s). Thus, nx is the interior normal to D
on Γ2. By X we denote the point set consisting of the endpoints of Γ1:

X =

N1
⋃

n=1

(x(a1
n) ∪ x(b1n)).

Let the plane be cut along Γ1. We consider Γ1 as a set of cracks (or cuts).
The side of the crack Γ1, which is situated on the left when the parameter s
increases, will be denoted by (Γ1)+, while the opposite side will be denoted by
(Γ1)−.

We say that the function u(x) belongs to the smoothness class K1, if

1. u ∈ C0(D \ Γ1 \X) ∩ C2(D \ Γ1), ∇u ∈ C0(D \ Γ1 \ Γ2 \X);

2. in the neighbourhood of any point x(d) ∈ X the equality

lim
r→+0

∫

∂S(d,r)

u(x)
∂u(x)

∂nx

dl = 0 (1)

holds, where the curvilinear integral of the first kind is taken over a circle
∂S(d, r) of radius r with the center in the point x(d), nx is a normal in
the point x ∈ ∂S(d, r), and d = a1

n or d = b1n , n = 1, . . . , N1 .

Remark 1

By C0(D \ Γ1 \X) we denote the class of functions continuous in D\Γ1, which
are continuously extendable to the sides of the cracks Γ1 \X from the left and
from the right, but their limit values on Γ1\X can be different from the left and
from the right, so that these functions may have a jump on Γ1 \X . To obtain
the definition of the class C0(D \ Γ1 \Γ2\X) we have to replace C0(D \ Γ1\X)
by C0(D \ Γ1 \ Γ2 \X) and D \ Γ1 by D \ Γ1 in the previous sentence.

Problem D1

Find a function u(x) from K1 , so that u(x) satisfies Laplace equation

ux1x1
(x) + ux2x2

(x) = 0, (2a)

in D \ Γ1 and satisfies the boundary conditions

u(x)
∣

∣

x(s)∈(Γ1)+
= F+(s), u(x)

∣

∣

x(s)∈(Γ1)−
= F−(s), u(x)

∣

∣

x(s)∈Γ2
= F (s). (2b)

If D is an exterior domain, then we add the following condition at infinity:

|u(x)| ≤ const, |x| =
√

x2
1 + x2

2 → ∞. (2c)
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All conditions of the Problem D1 must be satisfied in a classical sense. The
boundary conditions (2b) on Γ1 must be satisfied in the interior points of Γ1,
their validity at the ends of Γ1 is not required.

Theorem 1

If Γ ∈ C2,λ, λ ∈ (0, 1], then there is no more than one solution to the pro-

blem D1 .

It is enough to prove that the homogeneous Problem D1 admits the trivial
solution only. The proof will be given for an interior domain D. Let u0(x) be a
solution to the homogeneous Problem D1 with F+(s) ≡ F−(s) ≡ 0, F (s) ≡ 0.
Let S(d, ε) be a disc of small enough radius ε, with the center in the point x(d)
(d = a1

n or d = b1n , n = 1, ..., N1). Let Γ1
n,ε be a set consisting of such points

of the curve Γ1
n which do not belong to discs S(a1

n, ε) and S(b1n, ε). We choose
a number ε0 so small that the following conditions are satisfied:

1) for any 0 < ε ≤ ε0 the set of points Γ1
n,ε is a unique non-closed arc for

each n = 1, ..., N1;

2) the points belonging to Γ \ Γ1
n are placed outside the discs S(a1

n, ε0),
S(b1n, ε0) for any n = 1, ..., N1;

3) discs of radius ε0 with centers in different ends of Γ1 do not intersect.

Set

Γ1,ε =

N1
⋃

n=1

Γ1
n,ε, Sε =

N1
⋃

n=1

[S(a1
n, ε) ∪ S(b1n, ε)], Dε = D \ Γ1,ε \ Sε .

Since Γ2 ∈ C2,λ, u0(x) ∈ C0(D \ Γ1) (remind that u0(x) ∈ K1), and since
u0|Γ2 = 0 ∈ C2,λ(Γ2), and due to the theorem on regularity of solutions of
elliptic equations near the boundary [1], we obtain: u0(x) ∈ C1(D \ Γ1). Since
u0(x) ∈ K1 , we observe that u0(x) ∈ C1(Dε) for any ε ∈ (0, ε0]. By C1(Dε)
we mean C1(Dε ∪ Γ2 ∪ (Γ1,ε)+ ∪ (Γ1,ε)− ∪ ∂Sε). Since the boundary of the
domain Dε is piecewise smooth, we write down Green’s formula [10, p. 328] for
the function u0(x):

‖∇u0‖2
L2(Dε) =

∫

Γ1,ε

(u0)+
(

∂u0

∂nx

)+

ds−

∫

Γ1,ε

(u0)−
(

∂u0

∂nx

)−

ds

−

∫

Γ2

u0 ∂u
0

∂nx

ds+

∫

∂Sε

u0 ∂u
0

∂nx

dl.

The exterior (with respect to Dε) normal on ∂Sε at the point x ∈ ∂Sε is denoted
by nx . By the superscripts + and − we denote the limit values of functions
on (Γ1)+ and on (Γ1)−, respectively. Since u0(x) satisfies the homogeneous
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boundary condition (2b) on Γ, we observe that u0|Γ2 = 0 and (u0)±|Γ1,ε = 0
for any ε ∈ (0, ε0]. Therefore

‖∇u0‖2
L2(Dε) =

∫

∂Sε

u0 ∂u
0

∂nx

dl, ε ∈ (0, ε0].

Setting ε → +0, taking into account that u0(x) ∈ K1 and using the rela-
tionship (1), we obtain:

‖∇u0‖2
L2(D\Γ1) = lim

ε→+0
‖∇u0‖2

L2(Dε) = 0.

From the homogeneous boundary conditions (2b) we conclude that u0(x) ≡ 0
in D \ Γ1, where D is an interior domain. If D is an exterior domain, then
the proof is analogous, but we have to use the condition (2c) and the theorem
on behaviour of the gradient of a harmonic function at infinity [10, p. 373].
The maximum principle cannot be used for the proof of the theorem even in
the case of the interior domain D, since the solution to the problem may not
satisfy the boundary condition (2b) at the ends of the cracks, and it may not
be continuous at the ends of the cracks.

¨0cf©0ª0n «Xh\�0g0mX��jX����mX� �¬«0«0n mX�¬�¬«0j0� lXh\n j0g

Let us turn to solving the Problem D1 . Consider the double layer harmonic
potential with the density µ(s) specified at the open arcs Γ1:

w[µ](x) = −
1

2π

∫

Γ1

µ(σ)
∂

∂ny

ln |x− y(σ)| dσ. (3)

Theorem 2

Let Γ1 ∈ C1,λ, λ ∈ (0, 1]. Let S(d, ε) be a disc of a small enough radius ε with

the center in the point x(d) (d = a1
n or d = b1n, n = 1, ..., N1).

I. If µ(s) ∈ C0,λ(Γ1), then w[µ](x) ∈ C0(R2 \Γ1 \X) and for any x ∈S(d, ε),
such that x /∈ Γ1, the inequality holds: |w[µ](x)| ≤ const.

II. If µ(s) ∈ C1,λ(Γ1), then

1) ∇w[µ](x) ∈ C0(R2 \ Γ1 \X);

2) for any x ∈ S(d, ε), such that x /∈ Γ1, the formulae hold

∂w[µ](x)

∂x1
=

1

2π

∓µ(d)

|x− x(d)|
sinψ(x, x(d)) + Ω1(x),

sinψ(x, x(d)) =
x2 − x2(d)

|x− x(d)|
,
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∂w[µ](x)

∂x2
=

1

2π

±µ(d)

|x− x(d)|
cosψ(x, x(d)) + Ω2(x),

cosψ(x, x(d)) =
x1 − x1(d)

|x− x(d)|
,

|Ωj(x)| ≤ const · ln
1

|x− x(d)|
, j = 1, 2,

the upper sign in the formulae is taken if d = a1
n , while the lower

sign is taken if d = b1n;

3) for w[µ](x) the relationship holds

lim
ε→+0

∫

∂S(d,ε)

w[µ](x)
∂w[µ](x)

∂nx

dl = 0,

where the curvilinear integral of the first kind is taken over the circle

∂S(d, ε); in addition, nx = (− cosψ(x, x(d)),− sinψ(x, x(d))) is the

normal at x ∈ ∂S(d, ε), directed to the center of the circle;

4) |∇w[µ](x)| belongs to L2(S(d, ε)) for any small ε > 0 if and only if

µ(d) = 0.

Class C0(R2 \ Γ1 \X) is defined in the remark to the definition of the class
K1 (Remark 1), if we set D = R

2. The proof of the theorem is based on the
representation of a double layer potential in the form of the real part of the
Cauchy integral with the real density µ(σ):

w[µ](x) = −ReΦ(z), Φ(z) =
1

2πi

∫

Γ1

µ(σ)
dt

t − z
, z = x1 + ix2 ,

where t = t(σ) = (y1(σ) + iy2(σ)) ∈ Γ1. If µ(σ) ∈ C1,λ(Γ1), then for z /∈ Γ1:

dΦ(z)

dz
= −w′

x1
+ iw′

x2

= −
1

2πi

( N1
∑

n=1

{

µ(b1n)

t(b1n) − z
−

µ(a1
n)

t(a1
n) − z

}

−

∫

Γ1

e−iα(σ)µ′(σ)

t− z
dt

)

.

Points I, II.1) and II.2) of Theorem 2 follow from these formulae and from the
properties of Cauchy integrals, presented in [8]. Points II.3) and II.4) can be
proved by direct verification using points I, II.1) and II.2).

We will construct a solution to the Problem D1 in assumption that
F+(s), F−(s) ∈ C1,λ(Γ1), λ ∈ (0, 1], F (s) ∈ C0(Γ2). We will look for a so-
lution to the Problem D1 of the form

u(x) = −w[F+ − F−](x) + v(x), (4)
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where w[F+ − F−](x) is the double layer potential (3), in which

µ(σ) = F+(σ) − F−(σ).

The potential w[F+ −F−](x) satisfies the Laplace equation (2a) in D \Γ1 and
belongs to the class K1 according to Theorem 2. Limit values of the potential
w[F+ − F−](x) on (Γ1)± are given by the formula

w[F+ − F−](x)
∣

∣

x(s)∈(Γ1)±
= ∓

F+(s) − F−(s)

2
+ w[F+ − F−](x(s)),

where w[F+ − F−](x(s)) is the direct value of the potential on Γ1.

The function v(x) in (4) must be a solution to the following problem.

Problem D
Find a function v(x) ∈ C0(D)∩C2(D\Γ1), which satisfies the Laplace equation
(2a) in the domain D \ Γ1 and satisfies the boundary conditions

v(x)
∣

∣

x(s)∈Γ1
=
F+(s) + F−(s)

2
+ w[F+ − F−](x(s)) = f(s),

v(x)
∣

∣

x(s)∈Γ2
= F (s) + w[F+ − F−](x(s)) = f(s).

If x(s) ∈ Γ1, then w[F+ − F−](x(s)) is the direct value of the potential on Γ1.

If D is an exterior domain, then we add the following condition at infinity:

|v(x)| ≤ const, |x| =
√

x2
1 + x2

2 → ∞.

All conditions of the Problem D have to be satisfied in the classical sense.
Obviously, w[F+ − F−](x(s)) ∈ C0(Γ2). It follows from [7, Lemma 4(1)] that

w[F+ −F−](x(s)) ∈ C1, λ
4 (Γ1) (here by w[F+ −F−](x(s)) we mean the direct

value of the potential on Γ1). So, f(s) ∈ C1, λ
4 (Γ1) and f(s) ∈ C0(Γ2).

We will look for the function v(x) in the smoothness class K. We say that
the function v(x) belongs to the smoothness class K if

1. v(x) ∈ C0(D) ∩ C2(D \ Γ1), ∇v ∈ C0(D \ Γ1 \ Γ2 \X), where X is the
set consisting of the endpoints of Γ1;

2. in a neghbourhood of any point x(d) ∈ X the inequality

|∇v| ≤ C|x− x(d)|δ

holds for some constants C > 0, δ > −1, where x → x(d) and d = a1
n or

d = b1n , n = 1, . . . , N1 .
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The definition of the functional class C0(D \ Γ1 \ Γ2 \ X) is given in the
remark to the definition of the smoothness class K1 (Remark 1). Clearly,
K ⊂ K1.

It can be verified directly that if v(x) is a solution to the Problem D in the
class K, then the function (4) is a solution to the Problem D1 .

Theorem 3

Let Γ ∈ C2, λ
4 , f(s) ∈ C1, λ

4 (Γ1), λ ∈ (0, 1], f(s) ∈ C0(Γ2). Then the solution

to the Problem D in the smoothness class K exists and is unique.

Theorem 3 has been proved in the following papers: 1) in [5, 4], if D is
an interior domain; 2) in [3], if D is an exterior domain and Γ2 6= ∅; 3) in
[2, 6], if Γ2 = ∅ and so D = R

2 is an exterior domain. In all these papers,
the integral representations for the solution to the Problem D in the class K
are obtained in the form of potentials, densities of which are defined by the
uniquely solvable Fredholm integro-algebraic equations of the second kind and
index zero. Uniqueness of a solution to the Problem D is proved either by
the maximum principle or by the method of energy (integral) identities. In
the latter case we take into account that a solution to the problem belongs to
the class K. Note that the Problem D is a particular case of more general
boundary value problems studied in [4, 3, 2, 6].

Note that Theorem 3 holds if Γ ∈ C2,λ, F+(s), F−(s) ∈ C1,λ(Γ1), λ ∈ (0, 1],
F (s) ∈ C0(Γ2). From Theorems 2, 3 we obtain the solvability of the pro-
blem D1.

Theorem 4

Let Γ ∈ C2,λ, F+(s), F−(s) ∈ C1,λ(Γ1), λ ∈ (0, 1], F (s) ∈ C0(Γ2). Then a

solution to the Problem D1 exists and is given by the formula (4), where v(x)
is a unique solution to the Problem D in the class K, ensured by Theorem 3.

Remark 2

Let us check that the solution to the Problem D1 given by formula (4) satisfies
condition (1). Let d = a1

n or d = b1n (n = 1, ..., N1) and r be small enough.
Then substituting (4) in the integral in (1) we obtain

∫

∂S(d,r)

u(x)
∂u(x)

∂nx

dl =

∫

∂S(d,r)

w(x)
∂w(x)

∂nx

dl −

∫

∂S(d,r)

w(x)
∂v(x)

∂nx

dl

−

∫

∂S(d,r)

v(x)
∂w(x)

∂nx

dl +

∫

∂S(d,r)

v(x)
∂v(x)

∂nx

dl.

If r → 0, then the first term tends to zero by Theorem 2(II.3). As mentioned
above, v(x) ∈ K ⊂ K1 , therefore the condition (1) holds for the function v(x),
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so the fourth term tends to zero as r → 0. The second term tends to zero as
r → 0, since w(x) is bounded at the ends of Γ1 according to Theorem 2(I), and
since v(x) satisfies condition 2) in the definition of the class K. Noting that
v(x) is continuous at the ends of Γ1 due to the definition of the class K, and

using Theorem 2(II.2) for calculation of ∂w(x)
∂nx

in the third term, we deduce that
the third term tends to zero when r → 0 as well. Consequently, the equality
(1) holds for the solution to the Problem D1 constructed in Theorem 4.

Uniqueness of a solution to the Problem D1 follows from Theorem 1. The
solution to the Problem D1 found in Theorem 4 is, in fact, a classical solution.
Let us discuss, under which conditions this solution to the Problem D1 is not
a weak solution.

±"cf²"j0g0³\�0ª0n «Xh\�0g0mX��jX����´��0�¬µ/«0j0� lXh\n j0g

Let u(x) be a solution to the Problem D1 defined in Theorem 4 by the
formula (4). Consider the disc S(d, ε) with the center in the point x(d) ∈ X

and of radius ε > 0 (d = a1
n or d = b1n , n = 1, ..., N1). In doing so, ε is a fixed

positive number, which can be taken small enough. Since v(x) ∈ K, we have
v(x) ∈ L2(S(d, ε)) and |∇v(x)| ∈ L2(S(d, ε)) (this follows from the definition
of the smoothness class K). Let x ∈ S(d, ε) and x /∈ Γ1. It follows from (4)
that |∇w[µ](x)| ≤ |∇u(x)| + |∇v(x)|, whence

|∇w[µ](x)|2 ≤ |∇u(x)|2 + |∇v(x)|2 + 2|∇u(x)| · |∇v(x)|

≤ 2(|∇u(x)|2 + |∇v(x)|2).

Assume that |∇u(x)| belongs to L2(S(d, ε)); then, integrating this inequality
over S(d, ε), we obtain

‖∇w‖2
∣

∣

L2(S(d,ε))
≤ 2

(

‖∇u‖2
∣

∣

L2(S(d,ε))
+ ‖∇v‖2

∣

∣

L2(S(d,ε))

)

.

Consequently, if |∇u(x)| ∈ L2(S(d, ε)), then |∇w| ∈ L2(S(d, ε)). However, ac-
cording to Theorem 2, if F+(d) − F−(d) 6= 0, then |∇w| does not belong to
L2(S(d, ε)). Therefore, if F+(d) 6= F−(d), then our assumption that |∇u| ∈
L2(S(d, ε)) does not hold, i.e., |∇u| /∈ L2(S(d, ε)). Thus, if among num-
bers a1

1, ..., a
1
N1

, b11, ..., b
1
N1

there exists such a number d that F+(d) 6= F−(d),
then for some ε > 0 we have |∇u| /∈ L2(S(d, ε)) = L2(S(d, ε) \ Γ1), so
u /∈ W 1

2 (S(d, ε) \ Γ1), where W 1
2 is a Sobolev space of functions from L2 ,

which have generalized derivatives from L2 . We have proved the following
result.

Theorem 5

Let conditions of Theorem 4 be satisfied and assume that there exists a number

d ∈ {a1
1, .., a

1
N1
, b11, ..., b

1
N1

} such that F+(d) 6= F−(d). Then the solution to the
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Problem D1 , ensured by Theorem 4, does not belong to W 1
2 (S(d, ε) \ Γ1) for

some ε > 0, whence it follows that it does not belong to W 1
2,loc(D \ Γ1). Here

S(d, ε) is a disc of a radius ε with the center in the point x(d) ∈ X.

By W 1
2,loc(D \ Γ1) we denote the class of functions which belong to W 1

2 on

any bounded subdomain of D \ Γ1. If conditions of Theorem 5 hold, then the
unique solution to the Problem D1 , constructed in Theorem 4, does not belong
to W 1

2,loc(D \ Γ1), and so it is not a weak solution. We arrive to

Corollary

Let conditions of Theorem 5 be satisfied; then a weak solution to the Problem D1

in the class of functions W 1
2,loc(D \ Γ1) does not exist.

Remark 3

Even if the number d, mentioned in Theorem 5, does not exist, then the solution
u(x) to the Problem D1, ensured by Theorem 4, may not be a weak solution to
the Problem D1 . The Hadamard example of a non-existence of a weak solution
to the harmonic Dirichlet problem in a disc with continuous boundary data is
given in [9, § 12.5] (the classical solution exists in this example).

Clearly, L2(D \ Γ1) = L2(D), since Γ1 is a set of zero measure.

¶¸·u¹$·wº,·w»w¼u·w½
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The Twelfth International Conference on Functional Equations and Inequal-

ities was held from September 7 to 14, 2008 in Będlewo, Poland. The series
of ICFEI meetings has been organized by the Institute of Mathematics of the

Pedagogical University of Cracow since 1984. For the third time, the confer-
ence was organized jointly with the Stefan Banach International Mathematical

Center and hosted by the Mathematical Research and Conference Center in
Będlewo. As usual, the conference was devoted mainly to various aspects of
functional equations and inequalities. A special emphasis was given to appli-
cations of functional equations. A Workshop on the latter theme, chaired by
Prof. Vladimir Mityushev, followed the regular ICFEI meeting.

The Scientific Committee consisted of Professors Nicole Brillouët-Belluot,
Dobiesław Brydak (Honorary Chairman), Janusz Brzdęk (Chairman), Bog-
dan Choczewski, Roman Ger, Hans-Heinrich Kairies, László Losonczi, Marek
Cezary Zdun and Jacek Chmieliński (Secretary). The Organizing Committee
consisted of Janusz Brzdęk (Chairman), Vladimir Mityushev, Paweł Solarz,
Janina Wiercioch and Władysław Wilk.

The 57 participants came from 11 countries: China, Germany, Greece, Hun-
gary, Israel, Japan, Romania, Slovenia, USA, Russia and from Poland.

The Conference was opened on Monday morning, September 8 by Professor
Janusz Brzdęk – Chairman of the Scientific and Organizing Committees. This
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ceremony was followed by the first scientific session chaired by Professor Bog-
dan Choczewski and the first lecture was given by Professor Roman Ger. Alto-
gether, during 20 scientific sessions 4 lectures and 47 short talks were delivered.
They focused on functional equations in a single variable and in several vari-
ables, functional inequalities, stability theory, convexity, multifunctions, theory
of iteration, means, differential and difference equations, functional equations
in functional analysis, functional equations in physics and other topics. Several
contributions have been made during special Problems and Remarks sessions.

On Tuesday, September 9, a picnic was organized in the park surrounding
the Center. On the next day afternoon participants visited Poznań with its
old city, baroque parish church and National Museum. In the evening the
piano recital was performed by Marek Czerni and Hans-Heinrich Kairies. On
Thursday, September 21, a banquet was held in the Palace in Będlewo. It
was an occasion to honour Prof. Zoltán Daróczy on the occasion of his 70th
birthday, celebrated this year. On the following day a Flamenco evening was
hosted by Małgorzata Drzał (dance & vocal) and Grzegorz Guzik (guitar).

The ICFEI conference was closed on Saturday, September 13 by Professor
Bogdan Choczewski. In the closing address, he gave some concluding infor-
mation about the meeting and conveyed best regards for the participants from
the Honorary Chairman of the ICFEI, Professor Dobiesław Brydak. It was
announced that Professor Zsolt Páles joined the ICFEI Scientific Committee
and that the 13th ICFEI will be organized in 2009.

On Saturday afternoon, September 13 and Sunday morning, September
14 the Workshop devoted to applications of functional equations was held. 4
sessions were organized with 3 lectures, 2 talks and discussion.

The following part of the report contains abstracts of talks (in alphabetical
order of the authors’ names), problems and remarks (in chronological order of
presentation) and the list of participants (with addresses). It has been compiled
by Jacek Chmieliński.

|�}0~p����������~��p���"��� �5~
Marcin Adam On the double quadratic difference property

Let X be a real normed space and Y a real Banach space. Denote by
Cn(X,Y ) the class of n-times continuously differentiable functions f :X → Y .
We prove that the class Cn has the double quadratic difference property, that
is if

Qf(x, y) := f(x+ y) + f(x− y) − 2f(x) − 2f(y) ∈ Cn(X ×X,Y ),

then there exists exactly one quadratic function K:X → Y such that f −K ∈
Cn(X,Y ).
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Mirosław Adamek On two variable functional inequality and related func-

tional equation

We present the result stating that the lower semicontinuous solutions of a
large class of functional inequalities can be obtained from particular solutions
of the related functional equations. Our main theorem reads as follows.

Theorem

Let λ: I2 −→ (0, 1) be a function and n,m: I2 −→ I be continuous strict means.

If there exists a non-constant and continuous solution φ: I −→ R of the equation

T λ
(n(x,y),m(x,y))φ = T λ

(x,y)φ, x, y ∈ I,

then φ is one-to-one, and a lower semicontinuous function f : I −→ R satisfies

the inequality

T λ
(n(x,y),m(x,y))f ≤ T λ

(x,y)f, x, y ∈ I,

if and only if f ◦ φ−1 is convex on φ(I).

This result improves results presented in [1] and [2].

[1] J. Matkowski, M. Wróbel, A generalized a-Wright convexity and related function

equation, Ann. Math. Silesianae 10 (1996), 7-12.

[2] Zs. Páles, On two variable functional inequality, C. R. Math. Rep. Acad. Sci.
Canada, 10 (1988), 25-28.

Anna Bahyrycz A system of functional equations related to plurality functions

We consider the system of functional equations related to plurality func-
tions:

f(x) · f(y) 6= 0m =⇒ f(x+ y) = f(x) · f(y),

f(rx) = f(x),

where f : R(n) := [0,+∞)n \ {0n} −→ R(m), n,m ∈ N, r ∈ R(1) and

x+y := (x1 +y1, ..., xk +yk), x ·y := (x1 ·y1, ..., xk ·yk), rx := (rx1, ..., rxk)

for x = (x1, ..., xk) ∈ R(k), y = (y1, ..., yk) ∈ R(k).
We investigate systems of cones over R, which are the parameter determin-

ing the solutions of this system.

Karol Baron Random-valued functions and iterative equations

As emphasized in [1; 0.3], iteration is the fundamental technique for solving
functional equations of the form

F (x, ϕ(x), ϕ ◦ f(x, ·)) = 0,
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and iterates usually appear in the formulae for solutions. Moreover, many re-
sults may be interpreted in both ways: either as theorems about the behaviour
of iterates, or as theorems about solutions of functional equations. In this
survey we are interested in formulae of the form

ϕ(x) = probability that the sequence (fn(x, ·))n∈N converges

and its limit belongs to B,

where the iterates fn, n ∈ N, are defined as in [1; 1.4] and B is a Borel set.
Such formulae defining solutions of

ϕ(x) =

∫

Ω

ϕ(f(x, ω))Prob(dω)

are rather new in the theory of iterative functional equations, but as in more
classical cases also results involving them may be read in two ways above de-
scribed.

[1] Marek Kuczma, Bogdan Choczewski, Roman Ger, Iterative Functional Equations,
Encyclopedia of Mathematics and its Applications, Vol. 32, Cambridge University
Press, Cambridge, 1990.

Nicole Brillouët-Belluot Some aspects of functional equations in physics

(presented by Joachim Domsta)

Functional equations represent a way of modelling problems in physics. The
physical problem is often directly stated in terms of one or several functional
equations. However, a problem in physics may also be firstly described by a
partial differential equation from which we derive a functional equation whose
solutions solve the problem.

In this talk, I will present several examples of functional equations modelling
physical problems in various fields of physics. In each example, I will mainly
explain how the functional equation appears in the physical problem.

Janusz Brzdęk Fixed point results and stability of functional equations in

single variable

Joint work with Roman Badora.
We show that stability of numerous functional equations in single variable

is an immediate consequence of very simple fixed point results. We consider a
generalization of the classical Hyers–Ulam stability (as suggested by T. Aoki,
D.G. Bourgin and Th.M. Rassias), a modification of it, quotient stability (in
the sense of R. Ger), and iterative stability.

Liviu Cădariu Fixed points method for the generalized stability of monomial

functional equations

Joint work with Viorel Radu.
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D.H. Hyers in 1941 gave an affirmative answer to a question of S.M. Ulam,

concerning the stability of group homomorphisms in Banach spaces: Let E1

and E2 be Banach spaces and f :E1 −→ E2 be such a mapping that

‖f(x+ y) − f(x) − f(y)‖ ≤ δ (1)

for all x, y ∈ E1 and a δ > 0, that is f is δ−additive. Then there exists a

unique additive T :E1 −→ E2 , given by

T (x) = lim
n→∞

f(2nx)

2n
, x ∈ E1 , (2)

which satisfies ‖f(x) − T (x)‖ ≤ δ, x ∈ E1 .
T. Aoki, D. Bourgin and Th.M. Rassias studied the stability problem with

unbounded Cauchy differences. Generally, the constant δ in (1) is replaced
by a control function, ||Df (x, y)|| ≤ δ(x, y), where, for example, Df (x, y) =
f(x + y) − f(x) − f(y) for Cauchy equation. The stability estimations are
of the form ||f(x) − S(x)|| ≤ ε(x), where S verifies the functional equation

DS(x, y) = 0, and for ε(x) explicit formulae are given, which depend on the
control δ as well as on the equation.

We use a fixed point method, initiated in [3] and developed, e.g., in [1], to
give a generalized Ulam–Hyers stability result for functional equations in single
variable and functions defined on groups, with values in sequentially complete
locally convex spaces. This result is then used to obtain the generalized stability
for some abstract monomial functional equations.

[1] L. Cădariu, V. Radu, Fixed points and the stability of Jensen’s functional equation,
J. Inequal. Pure and Appl. Math. 4(1) (2003), Art. 4 (http://jipam.vu.edu.au).

[2] D.H. Hyers, G. Isac, Th.M. Rassias, Stability of Functional Equations in Several

Variables, Progress in Nonlinear Differential Equations and Their Applications
vol. 34, Birkhäuser, Boston – Basel – Berlin, 1998.

[3] V. Radu, The fixed point alternative and the stability of functional equations,
Fixed Point Theory, Cluj-Napoca IV(1) (2003), 91-96.

Bogdan Choczewski Special solutions of an iterative functional inequality of

second order

This a report on a joint work by Dobiesław Brydak, Marek Czerni and the
speaker [1].

The inequality reads:

ψ[f2(x)] ≤ (p(x) + q(f(x))ψ[f(x)] − p(x)q(x)ψ(x), (1)

where ψ is the unknown function. We aim at investigating these continuous
solutions of (1) that behave at the fixed point of f like a prescribed “test”
function T , in particular, like one from among the functions p, q or f .
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Inequality (1) has been first studied by Maria Stopa [2].

[1] D. Brydak, B. Choczewski, M. Czerni, Asymptotic properties of solutions of some

iterative functional inequalities, Opuscula Math., Volume dedicated to the mem-
ory of Professor Andrzej Lasota, in print.

[2] M. Stopa, On the form of solutions of some iterative functional inequality, Publ.
Math. Debrecen 45 (1994), 371-377.

Jacek Chudziak On some property of the Gołąb–Schinzel equation

Let X be a linear space over a field K of real or complex numbers. Given
nonempty subset A of X , we say that a ∈ A is an algebraically interior point
to A provided, for every x ∈ X \ {0}, there is an rx > 0 such that

{a+ bx : |b| < rx} ⊂ A.

By intaA we denote the set of all algebraically interior points to A.
We show that, rather surprisingly, in a class of functions f :X −→ K such

that Ff := {x ∈ X : f(x) = 0} 6= ∅ and inta(X \ Ff ) 6= ∅, the following two
conditions are equivalent:

(i) f(x+ f(x)y) = 0 if and only if f(x)f(y) = 0 for x, y ∈ X ;

(ii) f(x+ f(x)y) = f(x)f(y) for x, y ∈ X .

Some consequences of this fact are also presented.

Marek Czerni Representation theorems for solutions of a system of linear

inequalities

In the talk we present representation theorems for continuous solutions of
a system of functional inequalities

{

ψ[f(x)] ≤ g(x)ψ(x),

(−1)pψ[f2(x)] ≤ (−1)pg[f(x)]g(x)ψ(x)
(1)

where ψ is an unknown function, f , g are given functions, f 2 denotes the second
iterate of f and p ∈ {0, 1}.

We assume the following hypotheses about the given functions f and g:

(H1) The function f : I −→ I is continuous and strictly increasing in an interval
I = [0, a| (a > 0 may belong to I or not). Moreover 0 < f(x) < x for
x ∈ I? = I \ {0}, f(I) = I .

(H2) The function g: I −→ R is continuous in I and g(x) < 0 for x ∈ I .

We shall be concerned with such solutions of (1) that for some fixed solution
ϕ of a linear homogeneous functional equation
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ϕ[f(x)] = g(x)ϕ(x)

or

ϕ[f(x)] = −g(x)ϕ(x)

the finite limit

lim
x→0+

ψ(x)

ϕ(x)
exists.

Stefan Czerwik Effective formulas for the Stirling numbers

It is known that Stirling numbers play important role in many areas of
mathematics and applications. We shall present some results about the Stirling
numbers. We introduce new definition of the Stirling numbers of second kind.
Moreover, we shall present some effective formulas for the Stirling numbers of
the first kind.

Zoltán Daróczy Nonconvexity and its application

Joint work with Zsolt Páles.
Let I ⊂ R be a nonempty open interval. The following characterization

of a continuous nonconvex function f : I −→ R is applicable for a number of
questions in the theory of mean values.

Theorem

Let f : I −→ R be a nonconvex continuous function on I. Then there exist a 6= b

in I such that

f(ta+ (1 − t)b) > tf(a) + (1 − t)f(b)

holds for all 0 < t < 1.

Judita Dascăl On a functional equation with a symmetric component

Let I ⊂ R be a nonvoid open interval and r 6= 0, 1, q ∈ (0, 1), such that
r 6= q, r 6= 1

2 and q 6= 1
2 . In this presentation we give all the functions f, g: I −→

R+ such that

f
(x+ y

2

)

[r(1 − q)g(y) − (1 − r)qg(x)] =
r − q

1 − 2q
[(1 − q)f(x)g(y) − qf(y)g(x)]

for all x, y ∈ I . Our main result is the following.
If the functions f, g: I −→ R+ are solutions of the above functional equation,

then the following cases are possible:

(1) If r 6= q2

q2+(1−q)2 and r 6= q
2q−1 then there exist constants a, b ∈ R+ such

that

f(x) = a and g(x) = b for all x ∈ I ;
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(2) If r = q2

q2+(1−q)2 then there exists an additive function A: R −→ R and

real numbers c1, c2 > 0 such that

g(x) = c1e
A(x) and f(x) = c2e

2A(x) for all x ∈ I ;

(3) If r = q
2q−1 then there exist real numbers d1, d2, d3 such that

g(x) =
1

d1x+ d2
> 0 and f(x) = d3

1

d1x+ d2
> 0 for all x, y ∈ I.

Conversely, the functions given in the above cases are solutions of the previous
equation.

Joachim Domsta An example of a group of commuting boosts

In this talk a construction of a particular group of invariant linear maps
for R

1+3 is given. The set of mappings is the same as the one of the Lorentz
group, but the group action is not simply the composition of maps. It is
chosen in such a way, that the group of rotations is the same, as in the Lorentz
group. But all boosts form a subgroup, which does not hold in the Lorentz
group. Additionally, this subgroup is abelian. An interesting fact is, that the
one dimensional subgroups of the boosts are simultaneously (one dimensional)
subgroups of the Lorentz group.

Piotr Drygaś Functional equations and effective conductivity in composite

material with non perfect contact.

We consider a conjugation problem for harmonic functions in multiply con-
nected circular domains. This problem is rewritten in the form of the R-linear
boundary value problem by using equivalent functional-differential equations
in a class of analytic functions. It is proven that the operator corresponding to
the functional-differential equations is compact in the Hardy-type space. More-
over, these equations can be solved by the method of successive approximations
under some natural conditions. This problem has applications in mechanics of
composites when the contact between different materials is imperfect. It is
given information about effective conductivity tensor with fixed accuracy for
macroscopic isotropy composite material.

Włodzimierz Fechner On some functional-differential inequalities related to

the exponential mapping

We examine some functional-differential inequalities which are related to the
exponential function. In particular, we show that its solutions can be written
as a product of the exponential function and a convex mapping. Our results
are closely connected with the Hyers–Ulam stability of functional-differential
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equations and, in particular, with some of the results obtained in 1998 by
Claudi Alsina and Roman Ger in [1].

[1] C. Alsina, R. Ger, On some inequalities and stability results related to the expo-

nential function, J. Inequal. Appl. 2 (1998), 373-380.

Roman Ger On functional equations related to functional analysis – selected

topics

The talk focuses on the occurrence of various functional analysis aspects in
the theory of functional equations and vice versa. Among others, the topics dis-
cussed concern representation theorems, generalizations of the Hahn–Banach
type theorems and their geometric counterparts (separation results), charac-
terizations of various kinds of Banach spaces, functional equations in Banach
algebras, convex analysis, algebraic analysis, generalized polynomials, abstract
orthogonalities and related equations, global isometries and their perturbations,
stability and approximation theory and geometry of Banach spaces.

Dorota Głazowska An invariance of the geometric mean in the class of

Cauchy means

We determine all the Cauchy conditionally homogeneous mean-type map-
pings for which the geometric mean is invariant, assuming that one of the
generators of Cauchy mean is a power function.

Grzegorz Guzik Derivations in some model of quantum gravity

A sketch of a role of derivations, i.e., linear operators satisfying a Leibniz’s
rule in a new model of quantum gravity proposed by polish astrophysicist M.
Heller and co-workers is presented. This promising model is an alternative
to popular modern superstrings theories and it gives a hope to unification of
relativity and quanta.

Konrad J. Heuvers Some partial Cauchy difference equations for dimension

two

Let G be an abelian group and X a vector space over the rationals. For
Φ:G −→ X its 1-st Cauchy difference is the function K2Φ:G2 −→ X defi-
ned by

K2Φ(x1, x2) := Φ(x1 + x2) − Φ(x1) − Φ(x2)

and in general, for n = 2, 3, . . ., the (n − 1)-th Cauchy difference of Φ is the
function KnΦ:Gn −→ X defined by

KnΦ(x1, . . . , xn) :=

n
∑

r=1

(−1)n−r
∑

|J|=r

Φ(xJ )
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where ∅ 6= J ⊂ In = {1, . . . , n} and xJ =

∑

j∈J xj . If Ψ:Gn −→ X , then its

i-th partial difference of order r (r = 2, 3, . . .), K
(i)
r Ψ:Gn+r−1 −→ X , is its

Cauchy difference of order r with respect to its i-th variable with all the others
held fixed. For n = 2 and i = 1, 2 we have

K
(1)
2 Ψ(x1, x2;x3) = Ψ(x1 + x2, x3) − Ψ(x1, x3) − Ψ(x2, x3)

and

K
(2)
2 Ψ(x1;x2, x3) = Ψ(x1, x2 + x3) − Ψ(x1, x2) − Ψ(x1, x3).

In this talk the solutions of the following equations are given.

1. K
(1)
2 f2 = K

(2)
2 f1, where f = 〈f1, f2〉:G2 −→ X2 (a 2-dim “curl”= 0).

2. K
(1)
2 f1 +K

(2)
2 f2 = 0, where f = 〈f1, f2〉:G2 −→ X2 (a 2-dim “div”= 0).

3. K
(1)
2 f = K

(2)
2 f , where f :G2 −→ X .

4. K
(1)
2 f = λK

(2)
2 f , where λ 6= 0, 1 and f :G2 −→ X . (Here the special case

λ = −i corresponds to a “Cauchy–Riemann equation”.)

Eliza Jabłońska On Christensen measurability and a generalized Gołąb–Schin-

zel equation

Let X be a real linear space. We consider solutions f :X −→ R and
M : R −→ R of the functional equation

f(x+M(f(x))y) = f(x)f(y) for x, y ∈ X, (1)

where f is bounded on a Christensen measurable nonzero set as well as f is
Christensen measurable. Our results refer to some results of C.G. Popa and
J. Brzdęk.

Justyna Jarczyk On an equation involving weighted quasi-arithmetic means

We report on a progress made recently in studying solutions (ϕ, ψ) of the
equation

κx+ (1 − κ)y = λϕ−1 (µϕ(x) + (1 − µ)ϕ(y))

+ (1 − λ)ψ−1 (νψ(x) + (1 − ν)ψ(y)) ,
(1)

where κ, λ ∈ R \ {0, 1} and µ, ν ∈ (0, 1). When κ = µ = ν = 1
2 all twice contin-

uously differentiable solutions of (1) were found by D. Głazowska, W. Jarczyk,
and J. Matkowski. Later Z. Daróczy and Zs. Páles determined all continuously
differentiable solutions of (1) in the case κ = µ = ν.

Witold Jarczyk Iterability in a class of mean-type mappings

Joint work with Janusz Matkowski.
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Embeddability of a given pair of means in a continuous iteration semigroup

of pairs of homogeneous symmetric strict means is considered.

Hans-Heinrich Kairies On Artin type characterizations of the Gamma func-

tion

E. Artin’s monograph on the Gamma function contains two characteriza-
tions using the functional equation

f(x+ 1) = xf(x), x ∈ R+ (F)

and the multiplication formula

f
(x

p

)

f
(x+ 1

p

)

. . . f
(x+ p− 1

p

)

= (2π)
1

2
(p−1)p

1

2
−xf(x), x ∈ R+ . (Mp)

They read as follows.

Theorem A

Assume that f : R+ −→ R+ is continuously differentiable and satisfies (F) and

(Mp) for some p ∈ {2, 3, 4, . . .}. Then f = Γ.

Theorem B

Assume that f : R+ −→ R+ is continuous and satisfies (F) and (Mp) for every

p ∈ {2, 3, 4, . . .}. Then f = Γ.

We discuss both theorems with respect to their optimality.

Zygfryd Kominek Stability of a quadratic functional equation on semigroups

The stability problem of the functional equation of the form

f(x+ 2y) + f(x) = 2f(x+ y) + 2f(y),

is investigated. We prove that if the norm of the difference between the left-
hand side and the right-hand side of the equation is majorized by a function
ω of two variables having some standard properties, then there exists a unique
solution F of our equation and the norm of the difference between F and the
given function f is controlled by a function depending on ω.

Krzysztof Król Application of the least squares method and the decomposition

method to solving functional equations

In the talk we consider the approximate solution of the linear functional
equation

y[f(x)] = g(x)y(x) + F (x), (1)

in the class of continuous functions.
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We use the least squares method for finding the approximate solution of the

equation (1). In this method the accurate solution of the equation (1) may be
approximated by the function

yn(x) =
n

∑

j=1

pjΦj(x),

where Φj , j = 1, . . . , n, are given, continuous, linear independent functions,
and coefficients pj , j = 1, . . . , n, are solutions of the system of equations

n
∑

j=1

pj

b
∫

a

Ψi(x)Ψj(x) dx =

b
∫

a

Ψi(x)F (x) dx,

where Ψi(x) = Φi[f(x)] − g(x)Φi(x) and i = 1, . . . , n. We apply the least
squares method to solving the exemplary equation.

Next we use the decomposition method for finding the approximate solution
of the equation (1). At certain assumptions we show that the accurate solution
of the equation (1) may be uniformly approximated by the function

y(x) =

∞
∑

n=0

ϕn(x),

where

ϕ0(x) = −
F (x)

g(x)
, ϕn(x) =

ϕn−1(x)

g(x)
, n = 1, 2, . . . .

We prove that if there exists 0 ≤ α < 1 such that

‖ϕn+1‖ ≤ α‖ϕn‖, n = 0, 1, . . .

then the series
∑∞

n=0 ϕn(x) is uniformly convergent to the accurate solution of
the equation (1). Finally, we apply the decomposition method to solving the
exemplary equation.

Arkadiusz Lisak Some remarks on solutions of functional equations stemming

from trapezoidal rule

Joint work with Maciej Sablik.
The following functional equation (stemming from trapezoidal rule)

f1(y) − g1(x) = (y − x)[f2(x) + f3(sx+ ty) + f4(tx+ sy) + f5(y)]

with six unknown functions g1, fi : R −→ R for i = 1, . . . , 5, where s and t are
two fixed real parameters, has been solved by Prasanna K. Sahoo (University
of Louisville, Louisville, USA). However, the solutions have been determined in
particular for s2 6= t2 (with st 6= 0) under high regularity assumptions on un-
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known functions (twice and four times differentiability). We solve this equation
without any regularity assumptions on unknown functions for rational param-
eters s and t and with lesser regularity assumptions on unknown functions for
real parameters s and t.

Fruzsina Mészáros Functional equations stemming from probability theory

Joint work with Károly Lajkó.
Special cases of the almost everywhere satisfied functional equation

g1

(

x

c(y)

)

1

c(y)
fY (y) = g2

(

y

d(x)

)

1

d(x)
fX(x)

are investigated for the given positive functions c, d and unknown functions g1,
g2, fX and fY . This functional equation has important role in the character-
ization of distributions, whose conditionals belong to given scale families and
have specified regressions.

Vladimir Mityushev Application of functional equations to composites and

to porous media

Boundary value problems for multiply connected domains describe various
physical phenomena in composites and porous media. One of the important
constant of such problems constructed as a functional is the effective conduc-
tivity. Estimation of the effective conductivity can help to predict and to opti-
mize properties of new created materials. It is shown that discussed boundary
value problems can be effectively solved by reduction to iterative functional
equations. New exact and approximate analytical formulae for the effective
conductivity have been deduced. Further possible applications are discussed.

Takeshi Miura A note on stability of Volterra type integral equation

Let R be the real number field and let X be a complex Banach space.
Suppose that p is a continuous function from R to the complex number field.
The purpose of this talk is to give a sufficient condition in order that the
equation

f(t) − f(0) =

t
∫

0

p(s)f(s) ds (∀ t ∈ R) (∗)

has the stability in the sense of Hyers–Ulam: for every ε ≥ 0 and continuous
map f : R −→ X satisfying

∥

∥

∥

∥

∥

f(t) − f(0) −

t
∫

0

p(s)f(s) ds

∥

∥

∥

∥

∥

≤ ε (∀ t ∈ R),

there exists a solution g: R −→ X of the equation (∗) such that
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‖f(t) − g(t)‖ ≤ Kε (∀ t ∈ R),

where K is a non-negative constant, depending only on the function p.

Janusz Morawiec On the set of probability distribution solutions of a linear

equation of infinite order

Let (Ω,A, P ) be a probability space and let τ : R × Ω −→ R be a func-
tion which is strictly increasing and continuous with respect to the first vari-
able, measurable with respect to the second variable. We are interested in the
following problem: How much can we say about the class of all probability
distribution solutions of the equation

F (x) =

∫

Ω

F (τ(x, ω)) dP (ω) ?

Jacek Mrowiec On nonsymmetric t-convex functions

Let t ∈ (0, 1) be a fixed number. It is known that if a function f defined on
a convex domain D is t-convex, i.e., satisfies the condition

f(tx+ (1 − t)y) ≤ tf(x) + (1 − t)f(y), x, y ∈ D, (∗)

then it is a midconvex (Jensen-convex) function, i.e., it satisfies the inequality

f
(x+ y

2

)

≤
f(x) + f(y)

2

for all x, y ∈ D (see [1] or [2], Lemma 1). Some years ago Zs. Páles has posed
the following problem: Suppose that a function f satisfies the condition (∗)
but only for x < y. Does this imply midconvexity of f? The partial answer to
this question is given.

[1] N. Kuhn, A note on t-convex functions, General Inequalities 4, Birkhäuser Verlag,
1984, 269-276.

[2] Z. Daróczy, Zs. Páles, Convexity with given infinite weight sequences, Stochastica
XI-1 (1987), 5-12.

Anna Mureńko A generalization of the Goła̧b-Schinzel functional equation

We consider solutions M, f : R −→ R and ◦ : R
2 −→ R of the functional

equation

f(x+M(f(x))y) = f(x) ◦ f(y),

under the following additional assumptions:

(a) f is continuous at a point;



��� u �P� z,u ohs�zh��u y rtzh���e�hrtz,v ohs�ohzh�wo�rtzP�h�hzh��u y rtzh���e�h�h�h��u y rtzh�A��zh�P� zhoh�h�h��� y u y oh�¡k��e�
(b) M−1({0}) = {0};

(c) ◦ is commutative and associative.

Adam Najdecki On stability of some functional equation

Let A be a complex Banach algebra, S and T nonempty sets, and h:T −→
A. Moreover, let aj ∈ C and gj :S×T −→ S for j ∈ N. We are going to discuss
the stability of the functional equation

∞
∑

j=1

ajf(gj(s, t)) = h(t)f(s), s ∈ S, t ∈ T,

in the class of functions f : S −→ A.

Andrzej Olbryś On some functional inequality connected with t-Wright con-

vexity and Jensen-convexity

Let t ∈ (0, 1) be a fixed number, L(t) – the smallest field containing the set
{t}, and let X be a linear space over the field K, where L(t) ⊂ K ⊂ R. Let,
moreover, D ⊂ X be a L(t)-convex set, i.e., such set that αD + (1− α)D ⊂ D

for all α ∈ L(t) ∩ (0, 1).
In the talk we study connections between functions f :D −→ R satisfying

the inequality

f(tx+ (1 − t)y) + f((1 − t)x+ ty)

2
+ f

(x+ y

2

)

≤ f(x) + f(y), x, y ∈ D

and Jensen convex functions.

Boris Paneah On the solvability of the identifying problem for general func-

tional operators with linear arguments

We start with a new problem for a general linear functional operator

(PF )(x) =
N

∑

j=1

cj(x)F
(

aj(x)
)

, x ∈ D ⊂ R
n,

where F ∈ C(I, B), I = [−1, 1], B a Banach space, aj and cj given functions.
This problem is intimately connected in some sense with approximation theory
and can be described shortly as follows: find a finite-dimensional subspace
K ⊂ C(I, B), a one-dimensional manifold Γ ⊂ D and a subspace C〈τ〉 =
C〈τ〉(I, B) ⊂ C(I, B) such that for an arbitrary ε > 0 the relation |PF |〈τ〉 < ε

implies the inequality

inf
ϕ∈K

|F − ϕ|〈τ〉 < cε
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with c a positive constant not depending on ε nor on F . If such a triple
(K, Γ, C〈τ〉) is found, we say that the identifying problem for the operator P
is (Γ, K) - solvable in the space C〈τ〉. In particular, the well-known Hyers–Ulam
result related to the functional Cauchy operator CF = F (x, y) − F (x) − F (y)
with (x, y) ∈ R

2 can be reformulated as follows: the identifying problem for
the operator C is (R2, ker C) – solvable in the space C〈τ〉.

In the second part of the talk we give a solution of the identifying problem
for a wide class of operators P with real cj and linear functions aj .

Boris Paneah On the theory of the general linear functional operators with

applications in analysis

In the talk we discuss the recent results related to the solvability and qual-
itative properties of solutions of the general linear functional equations

N
∑

j=1

cj(x)F
(

aj(x)
)

= H(x),

where F are compact supported Banach-valued functions of a single variable
and x are the points in a bounded domain D ⊂ R

n, n ≥ 2. When obtain-
ing these results the new approach has been used. This is, first of all, the
functional-analytic point of view which makes it possible to use the results
and the methods of the classical functional analysis. Another novelty consists
in systematical applying dynamical methods, based on the theory of the new
dynamical systems introduced by the speaker (especially in connection with
the problems in question). These results and methods will be considered at
the first part of the talk. The second one is devoted to the (completely unex-
pected) connection of the above results with such divers fields of analysis as
integral geometry, partial differential equations, and approximate solvability of
the linear functional equations. The corresponding problems from these fields
will be formulated (only some basic analysis is required for understanding) and
their solutions will be given together with a list of unsolved problems (both in
the theory of functional operators and in the applications).

Zsolt Páles Comparison theorems in various classes of generalized quasi-

arithmetic means

Given a strictly increasing continuous function f : I −→ R, the Af quasi-
arithmetic mean of the numbers x1, . . . , xn ∈ I is defined by

Af (x1, . . . , xn) = f−1

(

f(x1) + · · · + f(xn)

n

)

.

The following classical result has attracted the attention of many researchers
during the last decades.
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Theorem

Let f, g: I −→ R be continuous strictly increasing functions. Then the following

conditions are equivalent:

— For all n ∈ N, x1, . . . , xn ∈ I,

Af (x1, . . . , xn) ≤ Ag(x1, . . . , xn);

— for all p ∈ I there exists δ > 0 such that, for all x, y ∈]p− δ, p+ δ[,

Af (x, y) ≤ Ag(x, y);

— g ◦ f−1 is convex;

— there exists a function h : I −→ R such that, for all x, y ∈ I,

f(x) − f(y) ≤ h(y)
(

g(x) − g(y)
)

;

— if f , g are twice differentiable with f ′g′ 6= 0 then, for all x ∈ I,

f ′′(x)

f ′(x)
≤
g′′(x)

g′(x)
.

Our aim is to survey several extensions and of the above theorem related
to various generalizations of quasi-arithmetic means.

Magdalena Piszczek On a multivalued second order differential problem with

Jensen multifunctions

Let K be a closed convex cone with a nonempty interior in a real Banach
space and let cc(K) denote the family of all nonempty convex compact subsets
of K. If {Ft : t ≥ 0} is a regular cosine family of continuous Jensen set-valued
functions Ft:K −→ cc(K), x ∈ Ft(x) for t ≥ 0, x ∈ K and Ft ◦ Fs = Fs ◦ Ft

for s, t ≥ 0, then such family is twice differentiable and

DFt(x)|t=0 = {0}, D2Ft(x) = At(A(x) +D)

for x ∈ K and t ≥ 0, where DFt(x) denotes the Hukuhara derivative of Ft(x)
with respect to t, {At : t ≥ 0} is a regular cosine family of continuous additive
multifunctions, D ∈ cc(K) and A(x) = D2At(x)|t=0.

This result is a motivation for studying the existence and uniqueness of a
solution

Φ: [0,+∞) ×K −→ cc(K),

which is Jensen with respect to the second variable, of the following differen-
tiable problem
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Φ(0, x) = Ψ(x),

DΦ(t, x)|t=0 = {0},

D2Φ(t, x) = AΦ(t,H(x)),

where H,Ψ:K −→ cc(K) are given continuous Jensen multifunctions, DΦ(t, x)
denotes the Hukuhara derivative of Φ(t, x) with respect to t and AΦ is the
additive, with respect to the second variable, part of Φ.

Vladimir Protasov Self-similarity equations in Lp spaces

We consider functional difference equations with linear contractions of the
argument (self-similarity equations). Let Lp[0, 1] be the space of vector-func-

tions from the segment [0, 1] to R
d with the norm ‖v‖p =

(∫ 1

0 |v(t)|p dt
)

1

p .

Suppose we have an arbitrary family of affine operators {Ã1, . . . , Ãm} in R
d.

We always assume this family to be irreducible (there is no common invariant
affine subspace, different from the whole R

d). Let us also have a partition of the
segment [0, 1] with nodes 0 = b0 < . . . < bm = 1. We denote ∆k = [bk−1, bk],
rk = bk − bk−1. The affine function gk(t) = tbk + (1− t)bk−1 maps [0, 1] to the
segment ∆k. The self-similarity operator Ã:

[

Ã v
]

(t) = Ãk v
(

g−1
k (t)

)

, t ∈ ∆k, k = 1, . . . ,m,

is defined on L1[0, 1]. The equation Ãv = v is called self-similarity equation.

Special cases of such equations are applied in the ergodic theory, wavelets the-
ory, approximation theory, probability, etc. Most of the classical fractal curves
(such as Cantor singular function, Koch and de Rham curve, etc.) are solution
of suitable self-similarity equations. Refinement equations from wavelets the-
ory and approximation subdivision algorithms are also actually self-similarity
equations.

We consider the following problem: what are the conditions on the operators
{Ãk} and on the partition of the segment [0, 1] necessary and sufficient for the
self-similarity equation to possess an Lp-solution? What can be said about the
uniqueness and regularity of the solutions?

We derive a sharp criterion of solvability for these equations in the spaces
Lp and C, compute the exponents of regularity and estimate the moduli of
continuity. We show that the solution is always unique, whenever exists. The
answers are given in terms of the so-called p-radius of the family of opera-
tors {Ãk}. This, in particular, gives a geometric interpretation of the p-radius
in terms of spectral radii of certain operators in the space Lp[0, 1].

Viorel Radu The fixed point method to generalized stability of functional equa-

tions in normed and random normed spaces

D.H. Hyers in 1941 gave an affirmative answer to a question of S.M. Ulam,
concerning the stability of group homomorphisms, for Banach spaces: Let E1
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and E2 be Banach spaces and f :E1 −→ E2 be such a mapping that

‖f(x+ y) − f(x) − f(y)‖ ≤ δ, (1)

for all x, y ∈ E1 and a δ > 0, that is f is δ−additive. Then there exists a

unique additive T :E1 −→ E2, which satisfies ‖f(x) − T (x)‖ ≤ δ, x ∈ E1 . In

fact,

T (x) = lim
n→∞

f(2nx)

2n
, x ∈ E1, (Hyers)

T. Aoki, D. Bourgin and Th.M. Rassias studied the stability problem with
unbounded Cauchy differences: it is supposed that ||Df(x, y)|| ≤ δ(x, y) and
the stability estimations are of the form ||f(x) − S(x)|| ≤ ε(x), where S is a
solution, that is, it verifies the functional equation DS(x, y) = 0, and for ε(x)
explicit formulae are given, which depend on the control δ as well as on the
equation.

We discuss the generalized Ulam–Hyers stability for functional equations in
abstract spaces and show how the stability results can be obtained by a fixed
point method, initiated in (Radu [4], 2003) and developed in (Cădariu & Radu
[2], 2004) as well as in subsequent papers.

[1] L. Cădariu, V. Radu, Fixed points and the stability of Jensen’s functional equation,
J. Inequal. Pure and Appl. Math. 4(1) (2003), Art.4 (http://jipam.vu.edu.au).

[2] L. Cădariu, V. Radu, On the stability of the Cauchy functional equation: a fixed

points approach, Grazer Math. Ber. 346 (2004), 323-350.

[3] L. Cădariu, V. Radu, Fixed points method for the stability of some functional

equations, Carpathian J. Math. 23, No. 1-2, (2007), 63-72.

[4] V. Radu, The fixed point alternative and the stability of functional equations,
Fixed Point Theory, Cluj-Napoca IV(1) (2003), 91-96.

Ewa Rak Distributivity between uninorms and nullnorms

The problem of distributivity has been posed many years ago (cf. Aczel [1],
pp. 318-319). A new direction of investigations is mainly concerned of distribu-
tivity between triangular norms and triangular conorms ([5] p. 17). Recently,
many authors have dealt with solution of distributivity equation for aggrega-
tion functions ([3]), fuzzy implications ([2], [10]), uninorms and nullnorms ([6],
[7], [8], [9]), which are generalization of triangular norms and conorms.

Our consideration was motivated by intention of determining algebraic
structures which have weaker assumptions than uninorms and nullnorms. In
particular, the assumption of associativity is not necessary in consideration
of distributivity equation. Moreover, if we omit commutativity assumption,
consideration of the left and right distributivity conditions is reasonable. A
characterization of such binary operations is interesting not only from a the-
oretical point of view, but also for their applications, since they have proved
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to be useful in several fields like fuzzy logic framework, expert system, neural
networks or fuzzy quantifiers (cf. [4]).

Previous results about distributivity between uninorms and nullnorms can
be obtained as simple corollaries.

[1] J. Aczél, Lectures on Functional Equations and their Applications, Acad. Press,
New York, 1966.

[2] M. Baczyński, On a class of distributive fuzzy implications, Internat. J. Uncer-
tainty, Fuzzines Knowledge-Based Syst. 9 (2001), 229-238.

[3] T. Calvo, On some solutions of the distributivity equation, Fuzzy Sets and Systems
104 (1999), 85-96.

[4] J. Drewniak, P. Drygaś, E. Rak, Distributivity equations for uninorms and null-

norms, Fuzzy Sets and Systems 159 (2008), 1646-1657.

[5] J. Fodor, M. Roubens, Fuzzy Preference Modeling and Multicriteria Decision Sup-

port, Kluwer Acad. Publ., New York, 1994.

[6] M. Mas, G. Mayor, J. Torrens, The distributivity condition for uninorms and

t-operators, Fuzzy Sets and Systems 128 (2002), 209-225.

[7] E. Rak, Distributivity equation for nullnorms, J. Electrical Engin. 56, 12/s (2005),
53-55.

[8] E. Rak, P. Drygaś, Distributivity between uninorms, J. Electrical Engin. 57, 7/s
(2006), 35-38.

[9] D. Ruiz, J. Torrens, Distributive idempotent uninorms, Internat. J. Uncertainty,
Fuzzines Knowledge-Based Syst. 11 (2003), 413-428.

[10] D. Ruiz, J. Torrens, Distributivity of residual implications over conjunctive and

disjunctive uninorms, Fuzzy Sets and Systems 158 (2007), 23-37.

Themistocles M. Rassias On some major trends in mathematics

In this talk I shall attempt to present some ideas regarding the present state
and the near future of mathematics. Since assessments and any predictions in
this field of science are necessarily subjective, I shall communicate to you the
opinions of renowned contemporary mathematicians with some of whom I have
recently come into contact. I will include of course the significant contribution
of Polish mathematicians.

Themistocles M. Rassias New and old problems in mathematical analysis

We present some new and old problems that are inspired by D. Hilbert prob-
lems [Göttinger Nachrichten (1900), 253-297, and the Bull. Amer. Math. Soc.
8 (1902), 437-479] and S. Smale problems [Mathematics: Frontiers and Per-
spectives, Mathematical Problems for the Next Century, International Mathe-
matical Union, Amer. Math. Soc., 2000].

In particular emphasis is given to problems related to the representation of
functions in several variables by means of functions of a smaller number of vari-
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ables (J. d’Alembert, V. Arnold, N. Kolmogorov), A.D. Aleksandrov problem
for isometric mappings and S.M. Ulam problem for approximate homomor-
phisms.

The interaction between analysis and geometry is discussed through old and
new results, examples and further questions for future work.

[1] D.H. Hyers, G. Isac, Th.M. Rassias, Stability of Functional Equations in Several

Variables, Progress in Nonlinear Differential Equations and Their Applications
vol. 34, Birkhäuser, Boston – Basel – Berlin, 1998.

[2] Th.M. Rassias, J. Šimša, Finite Sums Decompositions in Mathematical Analysis,
John Wiley & Sons, Wiley-Interscience Series in Pure and Applied Mathematics,
Chichester, 1995.

[3] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc.
Amer. Math. Soc. 72 (1978), 297-300.

[4] G. Isac, Th.M. Rassias, Stability of ψ-additive mappings: Applications to nonlin-

ear analysis, Internat. J. Math. & Math. Sci. 19(2) (1996), 219-228.

[5] Th.M. Rassias, On the stability of functional equations and a problem of Ulam,
Acta Applicandae Mathematicae 62(1) (2000), 23-130.

Maciej Sablik Generalized homogeneity of some means

We deal with means M : I×I −→ I which are ◦-homogenous, i.e., satisfying
the equation

M(s ◦ x, s ◦ y) = s ◦M(x, y)

for all s, x, y ∈ I , where ◦ is a binary operation defined on I × I . In particular,
given a quasiarithmetic mean, we determine all continuous, associative and
commutative operations ◦ with respect to which the mean is homogeneous.
Also, we characterize given quasiarithmetic means as homogeneous with respect
to a couple of suitable operations. This is a generalization of the well known
result on characterization of the arithemtic mean as the only one which is
homogeneous both with respect to ordinary multiplication and addition (see eg.
J. Aczél, J. Dhombres, Functional Equations in Several Variables, Cambridge
University Press, Cambridge, 1989).

The results have been partially obtained in collaboration with Małgorzata
Pałys.

Ekaterina Shulman Some extensions of the Levi–Civita equation

Let T be a representation of a topological group G on a Banach space X .
A vector x is called finite if there is a finite dimensional subspace M ⊂ X such
that Tgx ∈ M for each g ∈ G. A finite dimensional subspace L ⊂ X is called
special if there is a finite dimensional subspaceM ⊂ X such that TgL

⋂

M 6= 0,
for each g ∈ G. We prove that a subspace is special if and only if it contains
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a finite vector. Using this result we describe continuous solutions fj(x) of the
functional equation

m
∑

j=1

aj(x)fj(x+ y) =
n

∑

i=1

ui(x)vi(y)

which extends the well known Levi–Civita equation

f(x+ y) =
n

∑

i=1

ui(x)vi(y).

Justyna Sikorska On a conditional exponential functional equation and its

stability

Joint work with Janusz Brzdęk.
We study a conditional functional equation of the form

γ(x+ y) = γ(x− y) =⇒ f(x+ y) = f(x)f(y) (∗)

for a given function γ. Condition (∗) with γ = ‖ · ‖ is the so called isosceles or-
thogonally exponential functional equation. We show the form of the solutions
and investigate the stability of the presented equation. Moreover, we study the
pexiderized version of (∗).

Barbara Sobek Pexider equation on a restricted domain

Let (X,+) be a uniquely 2-divisible Abelian topological group which has a
base B of open neighbourhoods of 0 satisfying the following conditions:

(a) if B ∈ B and x ∈ B, then x
2 ∈ B,

(b) if B ∈ B and x ∈ X , then there exists n ∈ N ∪ {0} such that x
2n ∈ B.

Assume that U is a nonempty, open and connected subset of X ×X . Let

U1 := {x : (x, y) ∈ U for some y ∈ X},

U2 := {y : (x, y) ∈ U for some x ∈ X}

and

U+ := {x+ y : (x, y) ∈ U}.

We consider the Pexider functional equation

f(x+ y) = g(x) + h(y) for (x, y) ∈ U,

where f :U+ −→ K, g:U1 −→ K and h:U2 −→ K are unknown functions and
(K,+) is an Abelian group. In particular, we improve Theorem 1 in [F. Radó,
J.A. Baker, Pexider’s equation and aggregation of allocations, Aequationes
Math. 32 (1987), 227-239].
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Paweł Solarz Some iterative roots for homeomorphisms with periodic points

Let F :S1 −→ S1 be an orientation-preserving homeomorphism such that
PerF , the set of all periodic points of F , is nonempty. It is known that there
is an integer n > 1 such that

PerF = {z ∈ S1 : Fn(z) = z and ∀0<k<n F k(z) 6= z}.

If PerF 6= S1, the equation

Gm(z) = F (z), z ∈ S1,

where m ≥ 2, may not have continuous and orientation-preserving solutions.
However, if gcd(m,n) = 1, then there are infinitely many such solutions having
periodic points of period n. These solutions depend on an arbitrary function.
We give the general construction of these solutions.

Tomasz Szostok On an equation connected to Lobatto quadrature rule

Joint work with Barbara Koclęga-Kulpa.
Quadrature rules are used in numerical analysis for estimating integrals by

the following formula

y
∫

x

f(t) dt ≈ (y − x)
n

∑

i=1

αif(aix+ (1 − ai)y)

where the error term depends on the derivative of f . Further for the polyno-
mials of certain degree (depending on the length and form of the quadrature
considered) the above formula is exact. This means that polynomials satisfy
equations of the type

F (y) − F (x) = (y − x)
n

∑

i=1

αif(aix+ (1 − ai)y)

where F is the primitive function of f . In the current talk we solve an equation
of this type with the right-hand side containing two endpoints and two other
points from the interval [x, y] which are symmetric with respect to the midpoint
of this interval. Thus we deal with the equation

F (y)−F (x) = (y− x)[αf(x) +βf(ax+ (1− a)y) +βf((1− a)x+ ay) +αf(y)]

where functions f, F : R −→ R and constants α, β, a ∈ R are unknown.

Jacek Tabor Extensions of conditionally convex functions

Joint work with Józef Tabor.
Let V ⊂ R

N be a closed bounded convex set and let f : ∂V −→ R be a
continuous conditionally convex function, that is
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f(αx+ (1 − α)y) ≤ αf(x) + (1 − α)f(y) for α ∈ [0, 1], x, y ∈ V : [x, y] ⊂ V,

where [x, y] = {αx + (1 − α)y : α ∈ [0, 1]}. Then there exists a continuous
convex function F :V −→ R such that F |∂V = f .

We also show that the assumption that V is bounded is essential.

Józef Tabor Generalized approximate midconvexity

Joint work with Jacek Tabor.
Let X be a normed space and let V ⊂ X be an open convex set. Let

α: [0,∞) −→ R be a given nondecreasing function. A function f :V −→ R is
α(·)-midconvex if

f
(x+ y

2

)

≤
f(x) + f(y)

2
+ α(‖x− y‖) for all x, y ∈ V.

We prove that if f is α(·)-midconvex and locally bounded at a point then

f(rx+ (1 − r)y) ≤ rf(x) + (1 − r)f(y) + Pα(r, ‖x− y‖)

for x, y ∈ V , r ∈ [0, 1], where Pα: [0, 1]× [0,∞) −→ [0,∞) is a function depend-
ing on α. Three different estimations of Pα are considered.

Aleksej Turnšek Mappings approximately preserving orthogonality

We present some results on orthogonality preserving and approximately
orthogonality preserving mappings in the setting of inner product C∗-modules
(Hilbert spaces). Some open questions are also considered.

Jian Wang The relation between isometric and affine operators on F ∗-spaces

In this talk, we study the relation between isometries and affine operators
on F ∗-spaces, showing that for ALβ-spaces (0 < β ≤ 1) E and F if E pos-
sesses a normalized complete disjoint atoms system {eγ}γ∈Γ, then an isometric
embedding T :E −→ F with T∅ = ∅ is linear if and only if, for any γ ∈ Γ,

(i) Pγ(TE) ⊆ span (Teγ) when 0 < β < 1, and

(ii) Pγ(TE) ⊆ span (Teγ) and T (−eγ) ∈ span (Teγ) when β = 1,

where Pγ is a principal band projection from F onto BTeγ
. At the same time,

we prove also that every onto isometry T : (s)p → (s)p (resp., l(pn) −→ l(pn),
in particular, lβ(Γ) −→ lβ(Γ)) is affine. For a number of results for isometric
mappings one may see works of M. Day, Ding and Huang, and Th.M. Rassias.

Szymon Wąsowicz On some inequalities between quadrature operators

In the class of 3-convex functions we establish the order structure of the
set of six well known operators connected with an approximate integration:
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two-point and three-point Gauss–Legendre quadratures, Chebyshev quadra-
ture, four-point and five-point Lobatto quadratures and the Simpson’s Rule.
We show that 12 (of 15 possible) inequalities are true while only 3 fail. For 5-
convex functions the situation diametrally differs: only 3 inequalities hold and
12 fail. Among the considered inequalities at least one seems to be not trivial.
To prove it we use some method connected with the spline approximation of
convex functions of higher order.

Wirginia Wyrobek Measurable orthogonally additive functions modulo a dis-

crete subgroup

Joint work with Tomasz Kochanek.
Under appropriate conditions on Abelian topological groups G and H , an

orthogonality ⊥ ⊂ G2 and a σ-algebra M of subsets of G we decompose an
M-measurable function f :G −→ H which is orthogonally additive modulo a
discrete subgroupK of H into its continuous additive and continuous quadratic
part (modulo K).

¥ ���0}0� ¦0§¨~X��©0ª�« ¦0§¨�����5~
1. Remark. On application of the multiplication formula to 1

n
-stable probability

distributions

From the multiplication formula for the gamma function we obtain for n ∈
N, x > 0, that

nΓ(nx)

Γ(x)
= (nn)x ·

Γ(x+ 1
n
)

Γ( 1
n
)

·
Γ(x + 2

n
)

Γ( 2
n
)

· . . . ·
Γ(x+ n−1

n
)

Γ(n−1
n

)
. (1)

If ξ 1

n
, ξ 2

n
, . . . , ξn−1

n
, are independent random variables with Γ( 1

n
, 1), . . . ,Γ(n−1

n
, 1)

probability distributions, respectively, then for the right hand side we can write

RHS(1)(n, x) = E(nn · ξ 1

n
· ξ 2

n
· . . . · ξn−1

n
)x, (2)

where E stands for the expectation.
On the other hand we can write

LHS(1)(n, x) = E(σ1/n)−x, (3)

if σ1/n has the strictly stable probability distribution defined by its Laplace
transform

E
(

e−sσ1/n
)

= e(−s
1

n ), Re s ≥ 0.

Indeed, by Fubini’s theorem we obtain

E(σ1/n)−x =

∞
∫

0

v−x dPσ 1

n

(v)
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=

∞
∫

0

(

∞
∫

0

yx−1e−vydy

)

1

Γ(x)
dPσ 1

n

(v)

=
1

Γ(x)

∞
∫

0

yx−1e−y
1

n
dy

= n
Γ(nx)

Γ(x)
, x > 0.

Thus, by the uniqueness theorem for the inverse two-sided Laplace trans-
form, from (1)-(3) we obtain the equality of distributions

σ1/n
d
=

1

nn · ξ1/n · ξ2/n · . . . · ξ(n−1)/n

, n = 1, 2, 3, . . . . (4)

For n = 2 it is known as a property of the Γ( 1
2 , 1) probability distribution (P.

Lévy).
Joachim Domsta

2. Problem. Lipschitz perturbation of continuous linear functionals

Let X be a normed space, D ⊆ X be an open convex set and let f :D −→ R

be a Lipschitz perturbation of a linear functional, i.e., let f be of the form

f = x∗ + `,

where x∗ is a continuous linear functional and `:D −→ R is an ε-Lipschitz
function, i.e.,

|`(x) − `(y)| ≤ ε‖x− y‖ (x, y ∈ D).

Then, for x, y ∈ D and t ∈ [0, 1], we have
∣

∣tf(x) + (1 − t)f(y) − f(tx+ (1 − t)y)
∣

∣

=
∣

∣t`(x) + (1 − t)`(y) − `(tx+ (1 − t)y)
∣

∣

≤ t
∣

∣`(x) − `(tx+ (1 − t)y)
∣

∣ + (1 − t)
∣

∣`(y) − `(tx+ (1 − t)y)
∣

∣

≤ tε‖x− (tx+ (1 − t)y)‖ + (1 − t)ε‖y − (tx+ (1 − t)y)‖

= 2εt(1 − t)‖x− y‖.

On the other hand, in the case X = R, we have the following converse of
the above observation.

Claim

Let I be an open interval and ε ≥ 0. Assume that f : I −→ R satisfies, for all
x, y ∈ I and t ∈ [0, 1], the inequality

∣

∣tf(x) + (1 − t)f(y) − f(tx+ (1 − t)y)
∣

∣ ≤ 2εt(1− t)|x− y|. (1)
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Then there exists a constant c ∈ R such that the function `: I −→ R defined
by `(x) := f(x) − cx is (2ε)-Lipschitz.

The proof is elementary and is left to the reader. However, the following
more general and open problem seems to be of interest.

Problem

Does there exist a constant γ (that may depend on X and D) such that,
whenever a function f :D −→ X satisfies inequality (1) for all x, y ∈ D and
t ∈ [0, 1], then there exists a continuous linear functional x∗ such that the
function ` := f − x∗ is γε-Lipschitz on D?

Zsolt Páles

3. Problems. 1. Find all mappings T : R3 −→ R
3 such that the following

functional equation is satisfied:

‖T~u× T~v‖ = ‖~u× ~v‖, for all ~u,~v ∈ R
3.

Geometrically the problem is asking for the determination of all mappings
T : R3 −→ R

3 which preserve area of parallelograms in the Euclidean 3-dimensio-
nal space.

2. Find all mappings T : R3 −→ R
3 such that the following functional equa-

tion is satisfied

|(T~u× T~v) · T ~w| = |(~u× ~v) · ~w|, for all ~u,~v, ~w ∈ R
3.

Geometrically the problem is asking for the determination of all mappings
T : R3 −→ R

3, which preserve volume of parallelepipeds in the Euclidean
3-dimensional space.

Note. In the above two problems the symbols ×, · denote vector product
and dot (scalar) product, respectively.

Remark. It will be interesting to formulate and solve the analogous func-
tional equations for mappings T : R3 −→ R

3 for the determination of all map-
pings which preserve area (resp. volume) of the surfaces of balls (resp. solid
balls) in the Euclidean 3-dimensional space. The same problem remains open
for ellipsoids in R

3.
3. Examine whether there exists a mapping f :B −→ R

3, that is at the
same time harmonic as well as homeomorphism.

Remark. f :B −→ R
3 is a harmonic mapping if its three coordinate real-

valued functions on the unit ball B are harmonic functions, i.e., if each one of
the three coordinate functions of f satisfies the Laplace equation in B. The
mapping f :B −→ R

3 is a homeomorphism if it is a bijective and bicontinuous
mapping.

The same problem remains open for the n-dimensional case where n =
4, 5, . . . .

Themistocles M. Rassias
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4. Remark. Some remarks on the talk of T. Miura

Recently the number of papers whose title includes the word combination
“Ulam stability” threateningly grows. Little by little these works begin to in-
volve operators which are very far from the linear functional operators P in
several variables (in the framework of these operators this notion have ap-
peared). The interest to the type of stability in question is easily explained
by its evident connection with the very important problem of the approximate
solvability of the inequality ‖PF‖ < ε. But to the late days any progress in
the solvability of this problem in the class of functional equations in several
variables was connected mainly with a success in guessing new types of the op-
erators P to which it is possible (after a series of substitutions and arithmetic
transformations) to apply the original construction of Hyers.

As to the classical operators of analysis (integral, differential, partial differ-
ential, etc.) to which from time to time some authors turn in order to cross
them with the Ulam stability, for these operators the “Ulam problem” is suc-
cessfully solving under different names during 70 years in the framework of
functional analysis (Banach, Riesz, Schauder, Leray and others). I’ll demon-
strate this on the basis of the Miura’s talk “A note on stability of Volterra type
integral equation”. The speaker delivered the following result.

Let f : R −→ B be a C(R, B)-function, B a Banach space and

(Tf)(t) = f(0) + α(t)

t
∫

0

p(s, t)f(s) ds

with α and p being continuous maps to C. Then there is a function

ϕ: R −→ B depending on f such that ϕ−Tϕ = 0 and ‖f−ϕ‖C < mε

if ‖f − Tf‖ ≤ ε with m a constant depending neither on f nor ε.

(As a matter of fact, the speaker dealt with the simplest case α = 1, p(s, t) =
p(s).) From the point of view of functional analysis this is a standard exercise
related to the invertibility of linear operators in B-space. No hint at stability!
The following solution does not require any comment. Denote byE the identical
operators in C(I, B) with I – a compact interval in R, and let f ∈ C(I, B).
Then

1. the operator T is compact in C(I, B) ⇒

2. the range of the operator E − T is closed ⇒

3. the a priori estimate

inf
ϕ∈ker(E−T )

|f − ϕ|C(I,B) ≤ m|(E − T )f |C(I,B), f ∈ C(I, B)

holds.
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This completes the solution.

In the case α = 1, p(s, t) = p(s) the space ker(E − T ) is one-dimensional

and consists of the functions ϕ = λ exp(
∫ t

0
p(s) ds) with λ ∈ B.

In my opinion, the majority of results related to integro-differential opera-
tors with the reference to the stability, as a matter of fact, has the same nature:
some usual property of an inverse operator is treated as the Ulam stability. But
from this point of view any classical result in the theory of boundary problems
for partial differential equations (the unique solvability of the Dirichlet problem
for the Laplace operator, for example) may be treated as Ulam stability.

Boris Paneah

5. Remark. Some remarks on the talk of Z. Kominek

In his talk Prof. Z. Kominek considered the operator

P : f(t) −→ f(x+ 2y) + f(x) − 2f(x+ y) − 2f(y)

from C(R) to C(R2) and formulated the following proposition: there is a func-
tion w(x, y) such that if |(Pf)(x, y)| < |w(x, y)| for all points (x, y) ∈ R

2 then
the equation PF = 0 is uniquely solvable, and for some function ψ the relation
|f − F | ≤ ψ(w) holds. No information about w and ψ had been mentioned.

It is easily seen that the above operator P :C(I) −→ C(D) with D =
{(x, y) | x + 2y ≤ 1, x ≥ 0, y ≥ 0} and I = [0, 1] satisfies all conditions
formulated in my talk and providing solvability of the identifying problem for
P . According to the main result of this talk, if |(Pf)(x, y)|〈2〉 < ε for all points

(x, y) of the straight line Γ = {(x, y) | x = 1
3 t, y

1
3 t; 0 ≤ t ≤ 1}, then the

inequality |f(t)−λt2|〈2〉 < cε holds for a constant λ and all points t, 0 ≤ t ≤ 1.
The constant c does not depend on f nor t, | · |〈2〉 is the norm in the space
C〈2〉 of continuous in I functions satisfying the 2-Hölder condition at t = 0.
What is important here is that the initial condition of the smallness of Pf is
imposed only at points of an one-dimensional manifold Γ and the approximate
solution f of the relation |PΓf | < ε is close not to the subspace kerP , but to
the subspace kerPΓ = {ϕ | ϕ(3t) − 2ϕ(2t) − ϕ(t) = 0, 0 ≤ t ≤ 1}, where PΓ

denotes the restriction of the operator P to Γ.
Boris Paneah

6. Remark. On functional equations “of Kuczma’s type”

The first paper on functional equations written by Marek Kuczma (1935-
1991) had appeared 50 years ago. Together with his colleagues and students
he developed the theory of functional equations called “in a single variable” or
“iterative” – later on.

Having this anniversary in mind I proposed to introduce in the title of our
paper [1] the name “functional equation of Kuczma’s type”.

But, motivated by what have been said at the Conference on names assigned
to stability problems, I have found this idea was not good. First of all, the late
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Marek Kuczma himself would be against it. And all who knew him personally
would confirm this prediction. Moreover, the new name is unprecise, may led
to confusions, and the existing ones are satisfactory.

The aim of this remark is to declare that we decided to change the title of
our paper, as indicated in [1].

[1] B. Choczewski, M. Czerni, Special solutions of a linear functional equation of

Kuczma’s type. New title: Special solutions of a linear iterative functional equa-

tion, Aequationes Math., to appear.
Bogdan Choczewski

7. Problem. A functional equation with two complex variables

The functional equation

ϕ(z + 2πi) = ϕ(z), z ∈ C (1)

in the class of entire functions has the general solution of the form ϕ(z) =
ψ(exp z), where ψ is an arbitrary entire function. Equation (1) characterizes
the complex exponent.

Let f(z) be a given polynomial or entire function. Consider now the func-
tional equation

ϕ[z + 2πi, f(z)] = ϕ[z, f(z)], z ∈ C, (2)

where ϕ(z, w) is unknown entire function with respect to z and to w.

Conjecture

The general solution of (2) has the form ϕ(z, w) = ψ(exp z, w), where ψ is an

arbitrary entire function of two variables.

It is worth noting that an artificial insert of the exponent in ϕ does not solve
the problem. For instance, the function ψ0(u,w) = lnu produces ϕ0(z, w) =
ln exp z = z in the strip 0 ≤ Im z ≤ 2π periodically continued onto C. The
function ϕ0 satisfies (2), however, ϕ0 and ψ0 are not entire functions.

One can see also that the functional equation ϕ(z + 2πi, w) = ϕ(z, w),
(z, w) ∈ C

2 (compare to equation (1)) has only exponent in z solutions. But
the restriction w = f(z) in (2) yields complications.

The case f(z) = z and its application to Arnold’s problem [1, p. 168-170]
of topologically elementary functions were discussed in [2].

[1] V.I. Arnold (ed.), Arnold’s Problems, Springer, Berlin, 2004.

[2] V. Mityushev, Exponent in one of the variables, Jan Długosz University of Częs-
tochowa, Scientific Issues, Mathematics XII, Częstochowa, 2007.

Vladimir Mityushev
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8. Problems. Stability of the orthogonality preserving property and related

problems

1. As it was reminded in Prof. Aleksej Turnšek’s talk, the orthogonality pre-
serving property for linear mappings between Hilbert spaces is stable. Namely
(cf. [1], [4]), if f :X −→ Y is a linear mapping satisfying

x⊥y =⇒ fx⊥εfy, x, y ∈ X

(where u⊥εv means that |〈u|v〉| ≤ ε‖u‖ ‖v‖), then there exists a linear mapping
g:X −→ Y satisfying

x⊥y =⇒ gx⊥gy, x, y ∈ X

and such that

‖fx− gx‖ ≤

(

1 −

√

1 − ε

1 + ε

)

· min{‖fx‖, ‖gx‖}, x ∈ X.

Problem 1. The question is whether the linearity can be omitted in the
above statement (both in assumption and in assertion).

2. Orthogonality preserving property can also be defined for mappings
between normed spaces, with one of the possible notions of orthogonality. At-
tempting to solve the stability problem for this property, with respect to the
isosceles orthogonality (u⊥v ⇔ ‖u+v‖ = ‖u−v‖) I encountered the following
problem concerning the stability of isometries.

Problem 2. Let f :X −→ Y be a linear mapping between Banach spaces
satisfying

| ‖fx− fy‖ − ‖x− y‖ | ≤ ε‖x− y‖, x, y ∈ X.

Does there exists a linear isometry I :X −→ Y such that

‖fx− Ix‖ ≤ δ(ε)‖x‖, x ∈ X

(with some δ : R+ −→ R+ satisfying limε−→0+ δ(ε) = 0)?

Without the linearity assumption, the question has a negative answer, as it
was shown by G. Dolinar [3, Proposition 4].

Yet during the meeting Problem 2 has been solved by Prof. Vladimir Pro-
tasov. For finite-dimensional spaces the answer to the question is positive
(some compactness argument is sufficient) whereas for infinite ones it is gener-
ally not true. Namely, for an increasing sequence of positive numbers {αk}k∈N

such that the series
∑

k∈N(1−α2
k) converges, consider the following norm in a

Hilbert space l2:
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‖x‖α := sup

{

‖x‖l2 ,

∣

∣

∣

∣

x1

α1

∣

∣

∣

∣

,

∣

∣

∣

∣

x2

α2

∣

∣

∣

∣

, . . .

}

, x = (x1, x2, . . .) ∈ l2 .

Denote the space l2 endowed with the new norm ‖ · ‖α by Hα (this space is
reflexive). Now, let Ak:Hα → Hα be an operator interchanging the kth and
(k + 1)st coordinates. It can be shown that Ak is an approximate isometry
(with given ε provided that k is sufficiently big) but it cannot be approximated
by a linear isometry, as the only linear isometries on the considered space are
coordinate symmetries (i.e., Tei = ±ei, i = 1, 2, . . .).

Afterwards, A. Turnšek pointed out that the problem has been already
considered in the literature, e.g. in [2].

[1] J. Chmieliński, Stability of the orthogonality preserving property in finite-dimen-

sional inner product spaces, J. Math. Anal. Appl. 318 (2006), 433-443.

[2] G.G. Ding, The approximation problem of almost isometric operators by isometric

operators, Acta Math. Sci. (English Ed.), 8 (1988), 361-372.

[3] G. Dolinar, Generalized stability of isometries, J. Math. Anal. Appl. 242 (2000),
39-56.

[4] A. Turnšek, On mappings approximately preserving orthogonality, J. Math. Anal.
Appl. 336 (2007), 625-631.

Jacek Chmieliński
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