Show simple item record

dc.contributor.authorRong, Tangpl
dc.contributor.authorYonghui, Huangpl
dc.date.accessioned2024-05-08T12:07:57Z
dc.date.available2024-05-08T12:07:57Z
dc.date.issued2011
dc.identifier.citationAnnales Universitatis Paedagogicae Cracoviensis. 102, Studia Mathematica 10 (2011), s. [35]-65pl
dc.identifier.urihttp://hdl.handle.net/11716/13145
dc.description.abstractLet $X(t, ω) ≜ {x_t(ω); t ≥ 0}$ be a Markov process defined on a probability space $(Ω, F, P)$ and valued in a measurable space $(E, ε)$. In this paper, we give the definitions of $σ-algebras$ prior to $α$ and $post-α$ and discuss their properties. At the same time, we prove that the strong Markov property holds for an arbitrary Markov process, that is, we prove that the Markov property is equivalent to the strong Markov property.en
dc.language.isoenpl
dc.titleThe research on the strong Markov propertyen
dc.typeArticlepl


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record