The research on the strong Markov property
dc.contributor.author | Rong, Tang | pl |
dc.contributor.author | Yonghui, Huang | pl |
dc.date.accessioned | 2024-05-08T12:07:57Z | |
dc.date.available | 2024-05-08T12:07:57Z | |
dc.date.issued | 2011 | |
dc.identifier.citation | Annales Universitatis Paedagogicae Cracoviensis. 102, Studia Mathematica 10 (2011), s. [35]-65 | pl |
dc.identifier.uri | http://hdl.handle.net/11716/13145 | |
dc.description.abstract | Let $X(t, ω) ≜ {x_t(ω); t ≥ 0}$ be a Markov process defined on a probability space $(Ω, F, P)$ and valued in a measurable space $(E, ε)$. In this paper, we give the definitions of $σ-algebras$ prior to $α$ and $post-α$ and discuss their properties. At the same time, we prove that the strong Markov property holds for an arbitrary Markov process, that is, we prove that the Markov property is equivalent to the strong Markov property. | en |
dc.language.iso | en | pl |
dc.title | The research on the strong Markov property | en |
dc.type | Article | pl |