Pokaż uproszczony rekord

dc.contributor.authorKrzywkowski, Marcinpl
dc.date.accessioned2024-05-08T12:17:43Z
dc.date.available2024-05-08T12:17:43Z
dc.date.issued2011
dc.identifier.citationAnnales Universitatis Paedagogicae Cracoviensis. 102, Studia Mathematica 10 (2011), s. [67]-77pl
dc.identifier.urihttp://hdl.handle.net/11716/13146
dc.description.abstractThe topic is the hat problem in which each of n players is randomly fitted with a blue or red hat. Then everybody can try to guess simultaneously his own hat color by looking at the hat colors of the other players. The team wins if at least one player guesses his hat color correctly, and no one guesses his hat color wrong; otherwise the team loses. The aim is to maximize the probability of winning. We consider a generalized hat problem with $q ≥ 2$ colors. We solve the problem with three players and three colors. Next we prove some upper bounds on the chance of success of any strategy for the generalized hat problem with $n$ players and $q$ colors. We also consider the numbers of strategies that suffice to be examined to solve the hat problem, or the generalized hat problem.en
dc.language.isoenpl
dc.titleA more colorful hat problemen
dc.typeArticlepl


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord