dc.contributor.author | Łuszcz-Świdecka, Patrycja | pl |
dc.date.accessioned | 2024-05-08T12:34:49Z | |
dc.date.available | 2024-05-08T12:34:49Z | |
dc.date.issued | 2011 | |
dc.identifier.citation | Annales Universitatis Paedagogicae Cracoviensis. 102, Studia Mathematica 10 (2011), s. [105]-115 | pl |
dc.identifier.uri | http://hdl.handle.net/11716/13149 | |
dc.description.abstract | We show that on a blow up of $ℙ^2$ in 3 general points there exists
a finite set of nef divisors $P_1 ,..., P_s$ such that the Okounkov body $∆(D)$ of
an arbitrary effective $ℝ–divisor$ $D$ on $X$ is the Minkowski sum
\[∆(D) = \sum_{i=1}^sa_i∆(P_i)\] (1)
with non-negative coefficients $a_i ∊ ℝ≥0$. | en |
dc.language.iso | en | pl |
dc.title | On Minkowski decomposition of Okounkov bodies on a Del Pezzo surface | en |
dc.type | Article | pl |