Pokaż uproszczony rekord

dc.contributor.authorPokora, Piotrpl
dc.contributor.authorSkrzyński, Marcinpl
dc.date.accessioned2025-03-26T11:14:15Z
dc.date.available2025-03-26T11:14:15Z
dc.date.issued2012
dc.identifier.citationAnnales Universitatis Paedagogicae Cracoviensis. 122, Studia Mathematica 11 (2012), s. [101]-109pl
dc.identifier.urihttp://hdl.handle.net/11716/13653
dc.description.abstractThe purpose of this paper is to introduce the notion of rank function equation, and to present some results on such equations. In particular, we find all sequences $(A_{1}, ..., A_{k}, B)$ of nonzero nilpotent $n \times n$ matrices satisfying condition $$ \forall\, m \in \{1, ..., n\} :\, \sum_{i=1}^{k} r_{A_{i}}(m) = r_{B}(m),$$ and give a characterization of all sequences $(A_{1}, ..., A_{k}, B)$ of nilpotent $n \times n$ matrices such that $$ \forall\, m \in \{1, ..., n\} :\, \sum_{i = 1}^k f (r_{A_{i}} (m)) = r_{B} (m),$$ where $f : \mathbb{R} \supset [0, \infty) \longrightarrow \mathbb{R}$ is a function with certain natural properties. We also provide a geometric characterization of some solutions to rank function equations.en
dc.language.isoenpl
dc.subjectrank function equationen
dc.subjectrank functionen
dc.subjectconjugacy classen
dc.subjectnilpotent matrixen
dc.subjectJordan partitionen
dc.titleRank function equationsen
dc.typeArticlepl


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord