Simultaneous primality of the integers $n$ and $2n - d$
dc.contributor.author | Torasso, Flavio | pl |
dc.date.accessioned | 2025-04-03T06:37:38Z | |
dc.date.available | 2025-04-03T06:37:38Z | |
dc.date.issued | 2013 | |
dc.identifier.citation | Annales Universitatis Paedagogicae Cracoviensis. 128, Studia Mathematica 12 (2013), s. [83]-90 | pl |
dc.identifier.uri | http://hdl.handle.net/11716/13664 | |
dc.description.abstract | A necessary and sufficient condition for the simultaneous primality of integers $n$ and $2n-d$ is given by means of congruences ${mod n(2n - d)}$ that hold if and only if they form a prime pair. These are used to obtain explicit primality criteria for some values of $d$, after computation of a finite number of exceptions that appear when $n$ is lower than a fixed quantity depending only on $d$. | en |
dc.language.iso | en | pl |
dc.subject | primality tests | en |
dc.subject | prime pairs | en |
dc.subject | congruences | en |
dc.subject | composite divisors | en |
dc.title | Simultaneous primality of the integers $n$ and $2n - d$ | en |
dc.type | Article | pl |