Show simple item record

dc.contributor.authorDavison, Thomas M.K.pl_PL
dc.date.accessioned2019-07-04T08:35:48Z
dc.date.available2019-07-04T08:35:48Z
dc.date.issued2001
dc.identifier.citationAnnales Academiae Paedagogicae Cracoviensis. 4, Studia Mathematica 1 (2001), s. [31]-38pl_PL
dc.identifier.urihttp://hdl.handle.net/11716/5440
dc.description.abstractWe consider D’Alembert’s functional equation (1) where the domain of the function $f$ is the additive group of the integers and the codomain is an arbitrary commutative ring with identity. We show that if $f(0) = 1$ then $f(n)$ is the value of the Chebyshev polynomial $T_{|n|}$ evaluated at $f(1)$.en_EN
dc.language.isoenpl_PL
dc.titleD'Alembert's functional equation and Chebyshev polynomialsen_EN
dc.typeArticlepl_PL


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record