D'Alembert's functional equation and Chebyshev polynomials
dc.contributor.author | Davison, Thomas M.K. | pl_PL |
dc.date.accessioned | 2019-07-04T08:35:48Z | |
dc.date.available | 2019-07-04T08:35:48Z | |
dc.date.issued | 2001 | |
dc.identifier.citation | Annales Academiae Paedagogicae Cracoviensis. 4, Studia Mathematica 1 (2001), s. [31]-38 | pl_PL |
dc.identifier.uri | http://hdl.handle.net/11716/5440 | |
dc.description.abstract | We consider D’Alembert’s functional equation (1) where the domain of the function $f$ is the additive group of the integers and the codomain is an arbitrary commutative ring with identity. We show that if $f(0) = 1$ then $f(n)$ is the value of the Chebyshev polynomial $T_{|n|}$ evaluated at $f(1)$. | en_EN |
dc.language.iso | en | pl_PL |
dc.title | D'Alembert's functional equation and Chebyshev polynomials | en_EN |
dc.type | Article | pl_PL |