Show simple item record

dc.contributor.authorSchwaiger, Jenspl_PL
dc.date.accessioned2019-07-04T09:13:10Z
dc.date.available2019-07-04T09:13:10Z
dc.date.issued2001
dc.identifier.citationAnnales Academiae Paedagogicae Cracoviensis. 4, Studia Mathematica 1 (2001), s. [139]-146pl_PL
dc.identifier.urihttp://hdl.handle.net/11716/5450
dc.description.abstractDerivations of order n as defined by L. Reich are additive and nonlinear functions $f : ℝ → ℝ$ with $f(1) = 0$ which satisfy the functional equation $δ_{a_1}$ ○ $δ_{a_2}$ ○ ... ○ $δ_{a_{(n+1)}}f = 0$ for all $a_1, a_2,..., a_{n+1} ϵ ℝ$, where $δ_af(x) := f(ax) - af(x)$. Here we prove several stability results concerning this (and similar) functional equations.en_EN
dc.language.isoenpl_PL
dc.titleOn the stability of derivations of higher orderen_EN
dc.typeArticlepl_PL


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record