dc.contributor.author | Schwaiger, Jens | pl_PL |
dc.date.accessioned | 2019-07-04T09:13:10Z | |
dc.date.available | 2019-07-04T09:13:10Z | |
dc.date.issued | 2001 | |
dc.identifier.citation | Annales Academiae Paedagogicae Cracoviensis. 4, Studia Mathematica 1 (2001), s. [139]-146 | pl_PL |
dc.identifier.uri | http://hdl.handle.net/11716/5450 | |
dc.description.abstract | Derivations of order n as defined by L. Reich are additive and nonlinear functions $f : ℝ → ℝ$ with $f(1) = 0$ which
satisfy the functional equation $δ_{a_1}$ ○ $δ_{a_2}$ ○ ... ○ $δ_{a_{(n+1)}}f = 0$ for all $a_1, a_2,..., a_{n+1} ϵ ℝ$, where $δ_af(x) := f(ax) - af(x)$. Here we prove several stability results concerning this (and similar) functional equations. | en_EN |
dc.language.iso | en | pl_PL |
dc.title | On the stability of derivations of higher order | en_EN |
dc.type | Article | pl_PL |