A Wiener Tauberian Theorem on discrete abelian torsion groups
| dc.contributor.author | Székelyhidi, László | pl_PL |
| dc.date.accessioned | 2019-07-04T09:16:37Z | |
| dc.date.available | 2019-07-04T09:16:37Z | |
| dc.date.issued | 2001 | |
| dc.identifier.citation | Annales Academiae Paedagogicae Cracoviensis. 4, Studia Mathematica 1 (2001), s. [147]-150 | pl_PL |
| dc.identifier.uri | http://hdl.handle.net/11716/5451 | |
| dc.description.abstract | One version of the classical Wiener Tauberian Theorem states that if $G$ is a locally compact abelian group then any nonzero closed translation invariant subspace of $L^∞(G)$ contains a character. In other words, spectral analysis holds for $L^∞(G)$. In this paper we prove a similar theorem: if $G$ is a discrete abelian torsion group then spectral analysis holds for $C(G)$, the space of all complex valued functions on $G$. | en_EN |
| dc.language.iso | en | pl_PL |
| dc.title | A Wiener Tauberian Theorem on discrete abelian torsion groups | en_EN |
| dc.type | Article | pl_PL |
