dc.contributor.author | Kairies, Hans-Heinrich | pl_PL |
dc.date.accessioned | 2019-09-04T08:12:22Z | |
dc.date.available | 2019-09-04T08:12:22Z | |
dc.date.issued | 2002 | |
dc.identifier.citation | Annales Academiae Paedagogicae Cracoviensis. 13, Studia Mathematica 2 (2002), s. [13]-22 | pl_PL |
dc.identifier.uri | http://hdl.handle.net/11716/5703 | |
dc.description.abstract | We discuss spectral properties of the operator $F : D -> F|D|$, defined by
\[F|ϕ|f(x) := \sum_{k=0}^∞ \frac{1}{2^k}ϕ(2^kx)\]
$D$ is the vector space of real functions $ϕ$ such that the sum above converges for all $x ∈ R$. The point spectrum and the eigenspaces of $F$ and of
its restriction to the vector space $U$ of ultimately bounded functions are
given. Moreover we compute the point spectrum and eigenspaces, the
continuous spectrum and the residual spectrum of $F$ , restricted to the
Banach spaces $B$ of bounded functions and $C$ of bounded and continuous
functions. | en |
dc.language.iso | en | pl_PL |
dc.title | Spectra of certain operators and iterative functional equations | en_EN |
dc.type | Article | pl_PL |