Pokaż uproszczony rekord

dc.contributor.authorKairies, Hans-Heinrichpl_PL
dc.date.accessioned2019-09-04T08:12:22Z
dc.date.available2019-09-04T08:12:22Z
dc.date.issued2002
dc.identifier.citationAnnales Academiae Paedagogicae Cracoviensis. 13, Studia Mathematica 2 (2002), s. [13]-22pl_PL
dc.identifier.urihttp://hdl.handle.net/11716/5703
dc.description.abstractWe discuss spectral properties of the operator $F : D -> F|D|$, defined by \[F|ϕ|f(x) := \sum_{k=0}^∞ \frac{1}{2^k}ϕ(2^kx)\] $D$ is the vector space of real functions $ϕ$ such that the sum above converges for all $x ∈ R$. The point spectrum and the eigenspaces of $F$ and of its restriction to the vector space $U$ of ultimately bounded functions are given. Moreover we compute the point spectrum and eigenspaces, the continuous spectrum and the residual spectrum of $F$ , restricted to the Banach spaces $B$ of bounded functions and $C$ of bounded and continuous functions.en
dc.language.isoenpl_PL
dc.titleSpectra of certain operators and iterative functional equationsen_EN
dc.typeArticlepl_PL


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord