Some consequences of a theorem of Liouville
dc.contributor.author | Schleiermacher, Adolf | pl_PL |
dc.date.accessioned | 2019-09-04T08:39:16Z | |
dc.date.available | 2019-09-04T08:39:16Z | |
dc.date.issued | 2002 | |
dc.identifier.citation | Annales Academiae Paedagogicae Cracoviensis. 13, Studia Mathematica 2 (2002), s. [39]-53 | pl_PL |
dc.identifier.uri | http://hdl.handle.net/11716/5705 | |
dc.description.abstract | Let $E_n$ denote the $n$-dimensional Euclidean space and $S$ the group of Euclidean similarities. It is shown that the group $ (g, S)$ generated by $S$ and a single diffeomorphism $g$ outside $S$ has an orbit which is dense in $(E_n)^{n+1}$. | en_EN |
dc.language.iso | en | pl_PL |
dc.title | Some consequences of a theorem of Liouville | en_EN |
dc.type | Article | pl_PL |