Pokaż uproszczony rekord

dc.contributor.authorKadobianski, Romanpl_PL
dc.contributor.authorKubarski, Janpl_PL
dc.date.accessioned2019-10-08T16:36:40Z
dc.date.available2019-10-08T16:36:40Z
dc.date.issued2004
dc.identifier.citationAnnales Academiae Paedagogicae Cracoviensis. 23, Studia Mathematica 4 (2004), s. [87]-102pl_PL
dc.identifier.urihttp://hdl.handle.net/11716/6128
dc.description.abstractWe study locally conformal symplectic structures and their generalizations from the point of view of transitive Lie algebroids. To consider l.c.s. structures and their generalizations we use Lie algebroids with trivial adjoint Lie algebra bundle $M x R$ and $M x g$. We observe that important l.c.s's notions can be translated on the Lie algebroid's language. We generalize l.c.s. structures to g-l.c.s. structures in which we can consider an arbitrary finite dimensional Lie algebra $g$ instead of the commutative Lie algebra $R$.en_EN
dc.language.isoenpl_PL
dc.titleLocally conformal symplectic structures and their generalizations from the point of view of Lie algebroidsen_EN
dc.typeArticlepl_PL


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord