Show simple item record

dc.contributor.authorPiszczek, Magdalenapl_PL
dc.date.accessioned2019-12-30T09:03:53Z
dc.date.available2019-12-30T09:03:53Z
dc.date.issued2006
dc.identifier.citationAnnales Academiae Paedagogicae Cracoviensis. 33, Studia Mathematica 5 (2006), s. [87]-98pl_PL
dc.identifier.urihttp://hdl.handle.net/11716/6647
dc.description.abstractLet $K$ be a closed convex cone with the nonempty interior in a real Banach space and let $cc(K)$ denote the family of all nonempty convex compact subsets of $K$. If $\{F_t : t ≥ 0\}$ is a regular cosine family of continuous linear set-valued functions $F_t:K → cc(K), x ∈ F_t(x)$ for $t ≥ 0, x ∈ K$ and $F_t ᴑ F_s = F_s ᴑ F_t$ for $s; t ≥ 0$, then \[D^2F_t(x) = F_t(H(x))\] for $x ∈ K$ and $t ≥ 0$, where $D^2F_t(x)$ denotes the second Hukuhara derivative of $F_t(x)$ with respect to $t$ and $H(x)$ is the second Hukuhara derivative of this multifunction at $t = 0$.en_EN
dc.language.isoenpl_PL
dc.titleSecond Hukuhara derivative and cosine family of linear set-valued functionsen_EN
dc.typeArticlepl_PL


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record