dc.contributor.author | Piszczek, Magdalena | pl_PL |
dc.date.accessioned | 2019-12-30T09:03:53Z | |
dc.date.available | 2019-12-30T09:03:53Z | |
dc.date.issued | 2006 | |
dc.identifier.citation | Annales Academiae Paedagogicae Cracoviensis. 33, Studia Mathematica 5 (2006), s. [87]-98 | pl_PL |
dc.identifier.uri | http://hdl.handle.net/11716/6647 | |
dc.description.abstract | Let $K$ be a closed convex cone with the nonempty interior in a real Banach space and let $cc(K)$ denote the family of all nonempty convex compact subsets of $K$. If $\{F_t : t ≥ 0\}$ is a regular cosine family of continuous linear set-valued functions $F_t:K → cc(K), x ∈ F_t(x)$ for $t ≥ 0, x ∈ K$ and $F_t ᴑ F_s = F_s ᴑ F_t$ for $s; t ≥ 0$, then
\[D^2F_t(x) = F_t(H(x))\]
for $x ∈ K$ and $t ≥ 0$, where $D^2F_t(x)$ denotes the second Hukuhara derivative of $F_t(x)$ with respect to $t$ and $H(x)$ is the second Hukuhara derivative of this multifunction at $t = 0$. | en_EN |
dc.language.iso | en | pl_PL |
dc.title | Second Hukuhara derivative and cosine family of linear set-valued functions | en_EN |
dc.type | Article | pl_PL |