• polski
    • English
  • polski 
    • polski
    • English
  • Zaloguj
Zobacz pozycję 
  •   Strona główna Repozytorium Uniwersytetu Komisji Edukacji Narodowej
  • Czasopisma Naukowe
  • Annales Academiae/Universitatis Paedagogicae Cracoviensis
  • Studia Mathematica
  • 2017, Studia Mathematica 16
  • Zobacz pozycję
  •   Strona główna Repozytorium Uniwersytetu Komisji Edukacji Narodowej
  • Czasopisma Naukowe
  • Annales Academiae/Universitatis Paedagogicae Cracoviensis
  • Studia Mathematica
  • 2017, Studia Mathematica 16
  • Zobacz pozycję
JavaScript is disabled for your browser. Some features of this site may not work without it.

Local convergence of a multi-step high order method with divided differences under hypotheses on the first derivative

Thumbnail
Oglądaj/Otwórz
Local convergence... (442.6KB)
Autor:
Argyros, Ioannis K.
George, Santhosh
Źródło: Annales Universitatis Paedagogicae Cracoviensis. 206, Studia Mathematica 16 (2017), s. [41]-50
Język: en
Data: 2017
Metadata
Pokaż pełny rekord
Opis:
Dokument cyfrowy wytworzony, opracowany, opublikowany oraz finansowany w ramach programu "Społeczna Odpowiedzialność Nauki" - modułu "Wsparcie dla bibliotek naukowych" przez Ministerstwo Nauki i Szkolnictwa Wyższego w projekcie nr rej. SONB/SP/465103/2020 pt. "Organizacja kolekcji czasopism naukowych w Repozytorium UP wraz z wykonaniem rekordów analitycznych".
Streszczenie
This paper is devoted to the study of a multi-step method with divided differences for solving nonlinear equations in Banach spaces. In earlier studies, hypotheses on the Fréchet derivative up to the sixth order of the operator under consideration is used to prove the convergence of the method. That restricts the applicability of the method. In this paper we extended the applicability of the sixth-order multi-step method by using only hypotheses on the first derivative of the operator involved. Our convergence conditions are weaker than the conditions used in earlier studies. Numerical examples where earlier results cannot be applied to solve equations but our results can be applied are also given in this study.
URI
http://hdl.handle.net/11716/10667
Pozycja umieszczona jest w następujących kolekcjach
  • 2017, Studia Mathematica 16

DSpace software copyright © 2002-2016  DuraSpace
Kontakt z nami | Wyślij uwagi

Deklaracja dostępności
Theme by 
Atmire NV
Logo
Budowa Repozytorium Uniwersytetu Komisji Edukacji Narodowej w Krakowie została sfinansowana ze środków Ministerstwa Nauki i Szkolnictwa Wyższego na działalność upowszechniającą naukę.

Image
 

 

Przeglądaj

Całe RepozytoriumZbiory i kolekcje Daty wydaniaAutorzyTytułyTematyTa kolekcjaDaty wydaniaAutorzyTytułyTematy

Moje konto

Zaloguj

DSpace software copyright © 2002-2016  DuraSpace
Kontakt z nami | Wyślij uwagi

Deklaracja dostępności
Theme by 
Atmire NV
Logo
Budowa Repozytorium Uniwersytetu Komisji Edukacji Narodowej w Krakowie została sfinansowana ze środków Ministerstwa Nauki i Szkolnictwa Wyższego na działalność upowszechniającą naukę.

Image