Local convergence of a multi-step high order method with divided differences under hypotheses on the first derivative
View/ Open
Author:
Argyros, Ioannis K.
George, Santhosh
xmlui.dri2xhtml.METS-1.0.item-citation: Annales Universitatis Paedagogicae Cracoviensis. 206, Studia Mathematica 16 (2017), s. [41]-50
xmlui.dri2xhtml.METS-1.0.item-iso: en
Date: 2017
Metadata
Show full item recordDescription:
Dokument cyfrowy wytworzony, opracowany, opublikowany oraz finansowany w ramach programu "Społeczna Odpowiedzialność Nauki" - modułu "Wsparcie dla bibliotek naukowych" przez Ministerstwo Nauki i Szkolnictwa Wyższego w projekcie nr rej. SONB/SP/465103/2020 pt. "Organizacja kolekcji czasopism naukowych w Repozytorium UP wraz z wykonaniem rekordów analitycznych".Abstract
This paper is devoted to the study of a multi-step method with
divided differences for solving nonlinear equations in Banach spaces. In
earlier studies, hypotheses on the Fréchet derivative up to the sixth order
of the operator under consideration is used to prove the convergence of the
method. That restricts the applicability of the method. In this paper we
extended the applicability of the sixth-order multi-step method by using only
hypotheses on the first derivative of the operator involved. Our convergence
conditions are weaker than the conditions used in earlier studies. Numerical
examples where earlier results cannot be applied to solve equations but our
results can be applied are also given in this study.