Show simple item record

dc.contributor.authorŁuszcz-Świdecka, Patrycjapl
dc.date.accessioned2024-05-08T12:34:49Z
dc.date.available2024-05-08T12:34:49Z
dc.date.issued2011
dc.identifier.citationAnnales Universitatis Paedagogicae Cracoviensis. 102, Studia Mathematica 10 (2011), s. [105]-115pl
dc.identifier.urihttp://hdl.handle.net/11716/13149
dc.description.abstractWe show that on a blow up of $ℙ^2$ in 3 general points there exists a finite set of nef divisors $P_1 ,..., P_s$ such that the Okounkov body $∆(D)$ of an arbitrary effective $ℝ–divisor$ $D$ on $X$ is the Minkowski sum \[∆(D) = \sum_{i=1}^sa_i∆(P_i)\] (1) with non-negative coefficients $a_i ∊ ℝ≥0$.en
dc.language.isoenpl
dc.titleOn Minkowski decomposition of Okounkov bodies on a Del Pezzo surfaceen
dc.typeArticlepl


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record