On Minkowski decomposition of Okounkov bodies on a Del Pezzo surface
View/ Open
Author:
Łuszcz-Świdecka, Patrycja
xmlui.dri2xhtml.METS-1.0.item-citation: Annales Universitatis Paedagogicae Cracoviensis. 102, Studia Mathematica 10 (2011), s. [105]-115
xmlui.dri2xhtml.METS-1.0.item-iso: en
Date: 2011
Metadata
Show full item recordAbstract
We show that on a blow up of $ℙ^2$ in 3 general points there exists
a finite set of nef divisors $P_1 ,..., P_s$ such that the Okounkov body $∆(D)$ of
an arbitrary effective $ℝ–divisor$ $D$ on $X$ is the Minkowski sum
\[∆(D) = \sum_{i=1}^sa_i∆(P_i)\] (1)
with non-negative coefficients $a_i ∊ ℝ≥0$.