On a problem of H.-H. Kairies concerning Euler's Gamma function
Author:
Wach-Michalik, Anna
xmlui.dri2xhtml.METS-1.0.item-citation: Annales Academiae Paedagogicae Cracoviensis. 4, Studia Mathematica 1 (2001), s. [151]-161
xmlui.dri2xhtml.METS-1.0.item-iso: en
Date: 2001
Metadata
Show full item recordAbstract
The Bohr-Mollerup theorem on the Euler $Γ$ function states: If $f : ℝ_+ → ℝ_+$ satisfies the functional equation $f(x+1) = xf(x)$ on $ℝ_+$, log ○ $f$ is convex on $(γ , +∞)$ for some $γ ≥ 0$ and $f(1) = 1$ then $f = Γ$. We give some partial
answers to the question posed by H.-H. Kairies: By what other function can the logarithm be replaced in this
statement.