On a problem of H.-H. Kairies concerning Euler's Gamma function
dc.contributor.author | Wach-Michalik, Anna | pl_PL |
dc.date.accessioned | 2019-07-04T09:20:33Z | |
dc.date.available | 2019-07-04T09:20:33Z | |
dc.date.issued | 2001 | |
dc.identifier.citation | Annales Academiae Paedagogicae Cracoviensis. 4, Studia Mathematica 1 (2001), s. [151]-161 | pl_PL |
dc.identifier.uri | http://hdl.handle.net/11716/5452 | |
dc.description.abstract | The Bohr-Mollerup theorem on the Euler $Γ$ function states: If $f : ℝ_+ → ℝ_+$ satisfies the functional equation $f(x+1) = xf(x)$ on $ℝ_+$, log ○ $f$ is convex on $(γ , +∞)$ for some $γ ≥ 0$ and $f(1) = 1$ then $f = Γ$. We give some partial answers to the question posed by H.-H. Kairies: By what other function can the logarithm be replaced in this statement. | en_EN |
dc.language.iso | en | pl_PL |
dc.title | On a problem of H.-H. Kairies concerning Euler's Gamma function | en_EN |
dc.type | Article | pl_PL |