Randomly $C_n ∪ C_m$ graphs
dc.contributor.author | Híc, Pavel | pl_PL |
dc.contributor.author | Pokorný, Milan | pl_PL |
dc.date.accessioned | 2020-02-17T09:30:46Z | |
dc.date.available | 2020-02-17T09:30:46Z | |
dc.date.issued | 2007 | |
dc.identifier.citation | Annales Academiae Paedagogicae Cracoviensis. 45, Studia Mathematica 6 (2007), s. [123]-130 | pl_PL |
dc.identifier.uri | http://hdl.handle.net/11716/6843 | |
dc.description.abstract | A graph G is said to be a randomly H graph if and only if any subgraph of G without isolated vertices, which is isomorphic to a subgraph of H, can be extended to a subgraph F of G such that F is isomorphic to H. In this paper the problem of randomly H graphs, where $H = C_n ∪ C_m, m ≠ n$, is discussed. | en_EN |
dc.language.iso | en | pl_PL |
dc.title | Randomly $C_n ∪ C_m$ graphs | en_EN |
dc.type | Article | pl_PL |